mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
[Docs] Add model docs. (#11)
* [Docs] Add model docs. * Imporve according to comments
This commit is contained in:
parent
83dac269bd
commit
e035265352
@ -1 +1,100 @@
|
||||
# Prepare Models
|
||||
|
||||
To support the evaluation of new models in OpenCompass, there are several ways:
|
||||
|
||||
1. HuggingFace-based models
|
||||
2. API-based models
|
||||
3. Custom models
|
||||
|
||||
## HuggingFace-based Models
|
||||
|
||||
In OpenCompass, we support constructing evaluation models directly from HuggingFace's
|
||||
`AutoModel.from_pretrained` and `AutoModelForCausalLM.from_pretrained` interfaces. If the model to be
|
||||
evaluated follows the typical generation interface of HuggingFace models, there is no need to write code. You
|
||||
can simply specify the relevant configurations in the configuration file.
|
||||
|
||||
Here is an example configuration file for a HuggingFace-based model:
|
||||
|
||||
```python
|
||||
# Use `HuggingFace` to evaluate models supported by AutoModel.
|
||||
# Use `HuggingFaceCausalLM` to evaluate models supported by AutoModelForCausalLM.
|
||||
from opencompass.models import HuggingFaceCausalLM
|
||||
|
||||
models = [
|
||||
dict(
|
||||
type=HuggingFaceCausalLM,
|
||||
# Parameters for `HuggingFaceCausalLM` initialization.
|
||||
path='huggyllama/llama-7b',
|
||||
tokenizer_path='huggyllama/llama-7b',
|
||||
tokenizer_kwargs=dict(padding_side='left', truncation_side='left'),
|
||||
max_seq_len=2048,
|
||||
batch_padding=False,
|
||||
# Common parameters shared by various models, not specific to `HuggingFaceCausalLM` initialization.
|
||||
abbr='llama-7b', # Model abbreviation used for result display.
|
||||
max_out_len=100, # Maximum number of generated tokens.
|
||||
batch_size=16, # The size of a batch during inference.
|
||||
run_cfg=dict(num_gpus=1), # Run configuration to specify resource requirements.
|
||||
)
|
||||
]
|
||||
```
|
||||
|
||||
Explanation of some of the parameters:
|
||||
|
||||
- `batch_padding=False`: If set to False, each sample in a batch will be inferred individually. If set to True,
|
||||
a batch of samples will be padded and inferred together. For some models, such padding may lead to
|
||||
unexpected results. If the model being evaluated supports sample padding, you can set this parameter to True
|
||||
to speed up inference.
|
||||
- `padding_side='left'`: Perform padding on the left side. Not all models support padding, and padding on the
|
||||
right side may interfere with the model's output.
|
||||
- `truncation_side='left'`: Perform truncation on the left side. The input prompt for evaluation usually
|
||||
consists of both the in-context examples prompt and the input prompt. If the right side of the input prompt
|
||||
is truncated, it may cause the input of the generation model to be inconsistent with the expected format.
|
||||
Therefore, if necessary, truncation should be performed on the left side.
|
||||
|
||||
During evaluation, OpenCompass will instantiate the evaluation model based on the `type` and the
|
||||
initialization parameters specified in the configuration file. Other parameters are used for inference,
|
||||
summarization, and other processes related to the model. For example, in the above configuration file, we will
|
||||
instantiate the model as follows during evaluation:
|
||||
|
||||
```python
|
||||
model = HuggingFaceCausalLM(
|
||||
path='huggyllama/llama-7b',
|
||||
tokenizer_path='huggyllama/llama-7b',
|
||||
tokenizer_kwargs=dict(padding_side='left', truncation_side='left'),
|
||||
max_seq_len=2048,
|
||||
)
|
||||
```
|
||||
|
||||
## API-based Models
|
||||
|
||||
Currently, OpenCompass supports API-based model inference for the following:
|
||||
|
||||
- OpenAI (`opencompass.models.OpenAI`)
|
||||
- More coming soon
|
||||
|
||||
Let's take the OpenAI configuration file as an example to see how API-based models are used in the
|
||||
configuration file.
|
||||
|
||||
```python
|
||||
from opencompass.models import OpenAI
|
||||
|
||||
models = [
|
||||
dict(
|
||||
type=OpenAI, # Using the OpenAI model
|
||||
# Parameters for `OpenAI` initialization
|
||||
path='gpt-4', # Specify the model type
|
||||
key='YOUR_OPENAI_KEY', # OpenAI API Key
|
||||
max_seq_len=2048, # The max input number of tokens
|
||||
# Common parameters shared by various models, not specific to `OpenAI` initialization.
|
||||
abbr='GPT-4', # Model abbreviation used for result display.
|
||||
max_out_len=512, # Maximum number of generated tokens.
|
||||
batch_size=1, # The size of a batch during inference.
|
||||
run_cfg=dict(num_gpus=0), # Resource requirements (no GPU needed)
|
||||
),
|
||||
]
|
||||
```
|
||||
|
||||
# Custom Models
|
||||
|
||||
If the above methods do not support your model evaluation requirements, you can refer to
|
||||
[Supporting New Models](../advanced_guides/new_model.md) to add support for new models in OpenCompass.
|
||||
|
@ -1 +1,91 @@
|
||||
# 准备模型
|
||||
|
||||
要在 OpenCompass 中支持新模型的评测,有以下几种方式:
|
||||
|
||||
1. 基于 HuggingFace 的模型
|
||||
2. 基于 API 的模型
|
||||
3. 自定义模型
|
||||
|
||||
## 基于 HuggingFace 的模型
|
||||
|
||||
在 OpenCompass 中,我们支持直接从 Huggingface 的 `AutoModel.from_pretrained` 和
|
||||
`AutoModelForCausalLM.from_pretrained` 接口构建评测模型。如果需要评测的模型符合 HuggingFace 模型通常的生成接口,
|
||||
则不需要编写代码,直接在配置文件中指定相关配置即可。
|
||||
|
||||
如下,为一个示例的 HuggingFace 模型配置文件:
|
||||
|
||||
```python
|
||||
# 使用 `HuggingFace` 评测 HuggingFace 中 AutoModel 支持的模型
|
||||
# 使用 `HuggingFaceCausalLM` 评测 HuggingFace 中 AutoModelForCausalLM 支持的模型
|
||||
from opencompass.models import HuggingFaceCausalLM
|
||||
|
||||
models = [
|
||||
dict(
|
||||
type=HuggingFaceCausalLM,
|
||||
# 以下参数为 `HuggingFaceCausalLM` 的初始化参数
|
||||
path='huggyllama/llama-7b',
|
||||
tokenizer_path='huggyllama/llama-7b',
|
||||
tokenizer_kwargs=dict(padding_side='left', truncation_side='left'),
|
||||
max_seq_len=2048,
|
||||
batch_padding=False,
|
||||
# 以下参数为各类模型都有的参数,非 `HuggingFaceCausalLM` 的初始化参数
|
||||
abbr='llama-7b', # 模型简称,用于结果展示
|
||||
max_out_len=100, # 最长生成 token 数
|
||||
batch_size=16, # 批次大小
|
||||
run_cfg=dict(num_gpus=1), # 运行配置,用于指定资源需求
|
||||
)
|
||||
]
|
||||
```
|
||||
|
||||
对以上一些参数的说明:
|
||||
|
||||
- `batch_padding=False`:如为 False,会对一个批次的样本进行逐一推理;如为 True,则会对一个批次的样本进行填充,
|
||||
组成一个 batch 进行推理。对于部分模型,这样的填充可能导致意料之外的结果;如果评测的模型支持样本填充,
|
||||
则可以将该参数设为 True,以加速推理。
|
||||
- `padding_side='left'`:在左侧进行填充,因为不是所有模型都支持填充,在右侧进行填充可能会干扰模型的输出。
|
||||
- `truncation_side='left'`:在左侧进行截断,评测输入的 prompt 通常包括上下文样本 prompt 和输入 prompt 两部分,
|
||||
如果截断右侧的输入 prompt,可能导致生成模型的输入和预期格式不符,因此如有必要,应对左侧进行截断。
|
||||
|
||||
在评测时,OpenCompass 会使用配置文件中的 `type` 与各个初始化参数实例化用于评测的模型,
|
||||
其他参数则用于推理及总结等过程中,与模型相关的配置。例如上述配置文件,我们会在评测时进行如下实例化过程:
|
||||
|
||||
```python
|
||||
model = HuggingFaceCausalLM(
|
||||
path='huggyllama/llama-7b',
|
||||
tokenizer_path='huggyllama/llama-7b',
|
||||
tokenizer_kwargs=dict(padding_side='left', truncation_side='left'),
|
||||
max_seq_len=2048,
|
||||
)
|
||||
```
|
||||
|
||||
# 基于 API 的模型
|
||||
|
||||
OpenCompass 目前支持以下基于 API 的模型推理:
|
||||
|
||||
- OpenAI(`opencompass.models.OpenAI`)
|
||||
- Coming soon
|
||||
|
||||
以下,我们以 OpenAI 的配置文件为例,模型如何在配置文件中使用基于 API 的模型。
|
||||
|
||||
```python
|
||||
from opencompass.models import OpenAI
|
||||
|
||||
models = [
|
||||
dict(
|
||||
type=OpenAI, # 使用 OpenAI 模型
|
||||
# 以下为 `OpenAI` 初始化参数
|
||||
path='gpt-4', # 指定模型类型
|
||||
key='YOUR_OPENAI_KEY', # OpenAI API Key
|
||||
max_seq_len=2048, # 最大输入长度
|
||||
# 以下参数为各类模型都有的参数,非 `OpenAI` 的初始化参数
|
||||
abbr='GPT-4', # 模型简称
|
||||
run_cfg=dict(num_gpus=0), # 资源需求(不需要 GPU)
|
||||
max_out_len=512, # 最长生成长度
|
||||
batch_size=1, # 批次大小
|
||||
),
|
||||
]
|
||||
```
|
||||
|
||||
# 自定义模型
|
||||
|
||||
如果以上方式无法支持你的模型评测需求,请参考 [支持新模型](../advanced_guides/new_model.md) 在 OpenCompass 中增添新的模型支持。
|
||||
|
Loading…
Reference in New Issue
Block a user