[Feat] support ds1000 dataset (#395)

* [Feat] support ds1000 datase
This commit is contained in:
Hubert 2023-09-15 12:50:27 +08:00 committed by GitHub
parent 545d50a4c0
commit de8a154795
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 393 additions and 0 deletions

View File

@ -0,0 +1,67 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import (DS1000Dataset, ds1000_postprocess,
ds1000_matplotlib_postprocess,
DS1000Evaluator)
ds1000_reader_cfg = dict(
input_columns=["prompt"],
output_column="test_column",
train_split='test',
test_split='test')
ds1000_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt="{prompt}",
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
ds1000_eval_cfg = dict(
evaluator=dict(type=DS1000Evaluator),
pred_role="BOT",
pred_postprocessor=dict(type=ds1000_postprocess),
)
# The DS-1000 dataset can be downloaded from
# https://github.com/HKUNLP/DS-1000/blob/main/ds1000_data.zip
ds1000_datasets = [
dict(
abbr=f"ds1000_{lib}",
type=DS1000Dataset,
path="ds1000_data/",
libs=f"{lib}",
reader_cfg=ds1000_reader_cfg,
infer_cfg=ds1000_infer_cfg,
eval_cfg=ds1000_eval_cfg,
) for lib in [
'Pandas',
'Numpy',
'Tensorflow',
'Scipy',
'Sklearn',
'Pytorch',
]
]
ds1000_datasets.append(
dict(
abbr="ds1000_Matplotlib",
type=DS1000Dataset,
path="ds1000_data/",
libs="Matplotlib",
reader_cfg=ds1000_reader_cfg,
infer_cfg=ds1000_infer_cfg,
eval_cfg=dict(
evaluator=dict(type=DS1000Evaluator),
pred_role="BOT",
pred_postprocessor=dict(type=ds1000_matplotlib_postprocess),
),
))

View File

@ -24,6 +24,7 @@ from .csl import * # noqa: F401, F403
from .cvalues import * # noqa: F401, F403
from .drcd import * # noqa: F401, F403
from .drop import * # noqa: F401, F403
from .ds1000 import * # noqa: F401, F403
from .eprstmt import * # noqa: F401, F403
from .flores import * # noqa: F401, F403
from .game24 import * # noqa: F401, F403

View File

@ -0,0 +1,325 @@
import configparser
import importlib
import os
import pickle
import re
import shutil
import signal
import sys
import tempfile
import threading
from concurrent.futures import ProcessPoolExecutor
from pathlib import Path
from subprocess import PIPE, Popen
from typing import Optional, Union
from datasets import Dataset, DatasetDict
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
from .base import BaseDataset
@LOAD_DATASET.register_module()
class DS1000Dataset(BaseDataset):
"""DS1000 dataset.
The DS-1000 dataset can be downloaded from
https://github.com/HKUNLP/DS-1000/blob/main/ds1000_data.zip
"""
ALL_LIBS = [
'Pandas',
'Numpy',
'Matplotlib',
'Tensorflow',
'Scipy',
'Sklearn',
'Pytorch',
]
def get_data(self, problem_path: str) -> dict:
"""Get necessary data from problem path."""
problem_path = Path(problem_path)
data = dict()
# load meta information in .cfg
problem_config = configparser.RawConfigParser()
problem_config.read(problem_path / '.cfg')
for args in [
('library', 'lib'),
('test', 'test_type'),
('test', 'test_case_cnt'),
('perturbation', 'perturbation_type'),
('perturbation', 'perturbation_origin_id'),
]:
data[args[1]] = problem_config.get(*args)
# read problem content files
for file_name in [
'reference_code.txt',
'test_code.py',
'code_context.txt',
'test_generate_pickle.py',
'prompt.txt',
]:
with open(problem_path / file_name, 'r', encoding='UTF-8') as f:
data[file_name.split('.')[0]] = f.read()
data['test_column'] = dict(
problem_path=str(problem_path),
code_context=data.pop('code_context'),
test_case_cnt=data.pop('test_case_cnt'),
test_type=data.pop('test_type'),
)
return data
def load(self,
path: str,
libs: Optional[Union[str, list]] = None,
mode: str = 'Insertion'):
"""Load dataset.
Args:
path(str): Data path of the dataset.
libs(Optional[Union[str, list]]): All the libraries to be
tested. Defaults to None, which means all.
mode(str): Dataset mode. Only `Insertion` and `Completion`
are supported. Defaults to `Insertion`.
"""
if isinstance(libs, str):
libs = [libs]
if libs:
for lib in libs:
assert lib in self.ALL_LIBS, \
f'Please choose libs in {self.ALL_LIBS}'
else:
libs = self.ALL_LIBS
data_list = []
for lib in libs:
source_path = Path(path) / lib / mode
problems = sorted(os.listdir(source_path),
key=lambda x: int(str(x).replace('q', '')))
for problem in problems:
new_problem = self.get_data(source_path / problem)
data_list.append(new_problem)
dataset = Dataset.from_list(data_list)
return DatasetDict({'test': dataset})
@TEXT_POSTPROCESSORS.register_module('ds1000')
def ds1000_postprocess(text: str) -> str:
match = re.search('<code>(.*?)</code>', text, re.DOTALL)
if match:
text = match.group(1)
match = re.search('```python(.*?)```', text, re.DOTALL)
if match:
text = match.group(1)
match = re.search('```(.*?)```', text, re.DOTALL)
if match:
text = match.group(1)
match = re.search('BEGIN SOLUTION(.*?)END SOLUTION', text, re.DOTALL)
if match:
text = match.group(1)
return text
@TEXT_POSTPROCESSORS.register_module('ds1000_matplotlib')
def ds1000_matplotlib_postprocess(text: str) -> str:
text = ds1000_postprocess(text)
code_lines = text.split('\n')
postprocessed_lines = []
for line in code_lines:
skip_line_flag = False
# Matplotlib removes function calls that will clear the
# global figure object
# Removing these functions helps running execution-based evaluation
for phrase in ['plt.show()', 'plt.clf()', 'plt.close()', 'savefig']:
if phrase in line:
skip_line_flag = True
break
if skip_line_flag:
continue
else:
postprocessed_lines.append(line)
text = '\n'.join(postprocessed_lines)
return text
class DS1000Evaluator(BaseEvaluator):
"""Evaluator for ds1000 eval."""
def __init__(self, num_workers=16) -> None:
self.num_workers = num_workers
def score_single(self, pred, refer):
generated_code = pred
# get current dir because we will enter a temp dir to
# execute generated code
cwd = os.getcwd()
def chdir_return(cwd, return_value):
os.chdir(cwd)
return return_value
# we create a tempdir to execute each generated program
with tempfile.TemporaryDirectory() as tempdir_name:
tempdir_name = Path(tempdir_name)
# copy all files and data dependencies from
shutil.copytree(refer['problem_path'],
tempdir_name,
dirs_exist_ok=True)
# generated outputs will be put into `result`
os.mkdir(tempdir_name / 'result')
program = refer['code_context'].replace('[insert]', generated_code)
with open(tempdir_name / 'program.py', 'w', encoding='UTF-8') as f:
f.write(program)
# enter into the tempdir to execute
os.chdir(tempdir_name)
execution_status = []
# a question may not have test case but we can still execute and
# see if there is error
test_cnt = max(1, int(refer['test_case_cnt']))
for i in range(1, test_cnt + 1):
# notice this command, e.g., you may need to
# replace `python` with `python3`
cmd_text = f'python program.py --test_case {i}'
time_limit = 60 # should not change the official time_limit
cmd = Command(cmd_text, )
exit_code = cmd.run(
timeout=time_limit) # 0 if there is no error
execution_status.append(exit_code)
# return if execution error
if sum(execution_status) > 0:
return chdir_return(cwd, False)
# loading testing code as a module
test_module = import_source_file(tempdir_name / 'test_code.py',
'test_code')
pass_flag = True
if int(refer['test_type']) == 3:
# stringTest parses the generated code into AST
# and check AST components
# if there is static error, stringTest may raise an exception
generated_code = generated_code.split('\n')
for line in generated_code:
if 'print' in line and '#' not in line.split('print'):
generated_code.remove(line)
generated_code = '\n'.join(generated_code)
try:
pass_flag = test_module.stringTest(generated_code)
except Exception:
# return False if stringTest error
return chdir_return(cwd, False)
test_cnt = max(int(refer['test_case_cnt']), 1)
for i in range(1, test_cnt + 1):
try:
ans = pickle.load(open(f'ans/ans{i}.pkl', 'rb'))
# loading the generated output might still raise Exception
# if the generated code is not correct
result = pickle.load(open(f'result/result_{i}.pkl', 'rb'))
pass_flag = test_module.test(result, ans) == 1
except Exception:
# return False if stringTest error
return chdir_return(cwd, False)
return chdir_return(cwd, pass_flag)
def score(self, predictions, references):
total = len(predictions)
# Each process changes cwd, need to use multi-processing
with ProcessPoolExecutor(self.num_workers) as executor:
passed = sum(
list(executor.map(self.score_single, predictions, references)))
return {'accuracy': passed / total}
class Command(object):
"""This object takes in command and executes it with time out."""
def __init__(self, cmd):
self.cmd = cmd
self.process = None
def run(self, timeout):
def target():
# Check if in Windows https://stackoverflow.com/questions/1325581/how-do-i-check-if-im-running-on-windows-in-python # noqa
if os.name == 'nt':
self.process = Popen(self.cmd,
shell=True,
stdout=PIPE,
stderr=PIPE)
else:
self.process = Popen(self.cmd,
shell=True,
stdout=PIPE,
stderr=PIPE,
preexec_fn=os.setsid)
self.process.communicate()
thread = threading.Thread(target=target)
thread.start()
thread.join(timeout)
if thread.is_alive():
# Check if in Windows https://stackoverflow.com/questions/1325581/how-do-i-check-if-im-running-on-windows-in-python # noqa
if os.name == 'nt':
Popen('TASKKILL /F /PID {pid} /T'.format(pid=self.process.pid))
else:
os.killpg(self.process.pid, signal.SIGTERM)
thread.join()
return self.process.returncode
def import_source_file(fname, modname):
"""Import a Python source file and return the loaded module.
Args:
fname: The full path to the source file. It may container characters
like `.` or `-`.
modname: The name for the loaded module. It may contain `.` and even
characters that would normally not be allowed (e.g., `-`).
Return:
The imported module
Raises:
ImportError: If the file cannot be imported (e.g, if it's not a `.py`
file or if it does not exist).
Exception: Any exception that is raised while executing the module
(e.g. :exc:`SyntaxError).
These are errors made by the author of the module!
"""
# https://docs.python.org/3/library/importlib.html#importing-a-source-file-directly
spec = importlib.util.spec_from_file_location(modname, fname)
if spec is None:
raise ImportError(
f"Could not load spec for module '{modname}' at: {fname}")
module = importlib.util.module_from_spec(spec)
sys.modules[modname] = module
try:
spec.loader.exec_module(module)
except FileNotFoundError as e:
raise ImportError(f'{e.strerror}: {fname}') from e
return module