mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
[Update] Add SuperGPQA subset metrics (#1966)
This commit is contained in:
parent
aa05993922
commit
db96161a4e
@ -1,5 +1,5 @@
|
||||
from opencompass.datasets.supergpqa.supergpqa import (
|
||||
SuperGPQADataset,
|
||||
SuperGPQADataset, supergpqa_llmjudge_postprocess
|
||||
)
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
@ -87,7 +87,7 @@ eval_cfg = dict(
|
||||
reader_cfg=reader_cfg,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
dict_postprocessor=dict(type=supergpqa_llmjudge_postprocess),
|
||||
),
|
||||
)
|
||||
supergpqa_dataset = dict(
|
||||
|
@ -1,4 +1,5 @@
|
||||
import os
|
||||
import re
|
||||
|
||||
from datasets import Dataset, load_dataset
|
||||
|
||||
@ -7,6 +8,7 @@ from opencompass.datasets.supergpqa.supergpqa_eval import (
|
||||
from opencompass.datasets.supergpqa.supergpqa_utils import load_yaml
|
||||
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
||||
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
|
||||
from opencompass.utils import get_logger
|
||||
|
||||
from ..base import BaseDataset
|
||||
|
||||
@ -180,3 +182,133 @@ class SuperGPQAEvaluator(BaseEvaluator):
|
||||
'details':
|
||||
details,
|
||||
}
|
||||
|
||||
|
||||
def _generic_llmjudge_postprocess(judgement: str):
|
||||
match = re.search(r'(A|B)', judgement)
|
||||
grade_letter = (match.group(0) if match else 'B'
|
||||
) # Default to "INCORRECT" if no match
|
||||
return grade_letter
|
||||
|
||||
|
||||
def supergpqa_llmjudge_postprocess(
|
||||
output: dict,
|
||||
output_path: str,
|
||||
dataset: Dataset,
|
||||
) -> dict:
|
||||
# Get the original dataset
|
||||
original_dataset = dataset.reader.dataset['test']
|
||||
|
||||
judged_answers = []
|
||||
original_responses = []
|
||||
references = []
|
||||
details = []
|
||||
|
||||
# Initialize statistics dictionaries
|
||||
stats = {'discipline': {}, 'field': {}, 'subfield': {}}
|
||||
|
||||
total_correct = 0
|
||||
total_count = 0
|
||||
|
||||
# Process each sample
|
||||
for k, v in output.items():
|
||||
idx = int(k) # Convert key to integer for indexing
|
||||
original_responses.append(v['prediction'])
|
||||
processed_judge = _generic_llmjudge_postprocess(v['prediction'])
|
||||
|
||||
# Get category information from the dataset
|
||||
sample = original_dataset[idx]
|
||||
discipline = sample.get('discipline', 'unknown')
|
||||
field = sample.get('field', 'unknown')
|
||||
subfield = sample.get('subfield', 'unknown')
|
||||
|
||||
# Initialize category stats if not exists
|
||||
for level, key in [
|
||||
('discipline', discipline),
|
||||
('field', f'{discipline}/{field}'),
|
||||
('subfield', f'{discipline}/{field}/{subfield}'),
|
||||
]:
|
||||
if key not in stats[level]:
|
||||
stats[level][key] = {'correct': 0, 'total': 0}
|
||||
|
||||
# Record the judgment
|
||||
if processed_judge is not None:
|
||||
judged_answers.append(processed_judge)
|
||||
try:
|
||||
gold = v['gold']
|
||||
references.append(gold)
|
||||
except KeyError:
|
||||
get_logger().warning(
|
||||
f'No gold answer for {k}, use empty string as reference!')
|
||||
gold = ''
|
||||
references.append('')
|
||||
|
||||
# Check if the answer is correct (A means correct)
|
||||
is_correct = processed_judge == 'A'
|
||||
total_count += 1
|
||||
|
||||
if is_correct:
|
||||
total_correct += 1
|
||||
# Update category stats
|
||||
for level, key in [
|
||||
('discipline', discipline),
|
||||
('field', f'{discipline}/{field}'),
|
||||
('subfield', f'{discipline}/{field}/{subfield}'),
|
||||
]:
|
||||
stats[level][key]['correct'] += 1
|
||||
|
||||
# Update category totals
|
||||
for level, key in [
|
||||
('discipline', discipline),
|
||||
('field', f'{discipline}/{field}'),
|
||||
('subfield', f'{discipline}/{field}/{subfield}'),
|
||||
]:
|
||||
stats[level][key]['total'] += 1
|
||||
# Add to details
|
||||
details.append({
|
||||
'id': k,
|
||||
'question': sample['question'],
|
||||
'options': sample['options'],
|
||||
'origin_prompt': v['origin_prompt'],
|
||||
'llm_judge': processed_judge,
|
||||
'gold': gold,
|
||||
'is_correct': is_correct,
|
||||
'discipline': discipline,
|
||||
'field': field,
|
||||
'subfield': subfield,
|
||||
})
|
||||
|
||||
# Calculate overall accuracy with two decimal places
|
||||
overall_accuracy = (round(
|
||||
(total_correct / total_count * 100), 2) if total_count > 0 else 0.00)
|
||||
|
||||
# Initialize results dictionary
|
||||
results = {
|
||||
'accuracy': overall_accuracy,
|
||||
'total_correct': total_correct,
|
||||
'total_count': total_count,
|
||||
'details': details,
|
||||
}
|
||||
|
||||
# Calculate accuracy for each category and flatten into results
|
||||
for level in stats:
|
||||
for key, value in stats[level].items():
|
||||
if value['total'] > 0:
|
||||
# Calculate accuracy with two decimal places
|
||||
accuracy = round((value['correct'] / value['total'] * 100), 2)
|
||||
|
||||
# Create a flattened key for the category
|
||||
flat_key = f'SuperGPQA-{level}'
|
||||
if level == 'discipline':
|
||||
flat_key = f'SuperGPQA-{key}'
|
||||
elif level == 'field':
|
||||
discipline, field = key.split('/')
|
||||
flat_key = f'SuperGPQA-{discipline}-{field}'
|
||||
elif level == 'subfield':
|
||||
discipline, field, subfield = key.split('/')
|
||||
flat_key = f'SuperGPQA-{discipline}-{field}-{subfield}'
|
||||
|
||||
# Add to results
|
||||
results[flat_key] = accuracy
|
||||
|
||||
return results
|
||||
|
@ -84,6 +84,8 @@ class GenericLLMEvaluator(BaseEvaluator):
|
||||
references: Optional[List] = None,
|
||||
) -> Dict:
|
||||
"""Apply to single-model scoring."""
|
||||
assert len(predictions) == len(
|
||||
references), 'predictions and references must have the same length'
|
||||
# -------------- Build Inferencer ----------------
|
||||
self.build_inferencer()
|
||||
|
||||
@ -127,7 +129,7 @@ class GenericLLMEvaluator(BaseEvaluator):
|
||||
prompt_template=self.prompt_template)
|
||||
|
||||
output = mmengine.load(self.output_path)
|
||||
return self.output_postprocess(output)
|
||||
return self.output_postprocess(output, dataset)
|
||||
|
||||
def pred_postprocess(self, predictions: List) -> Dict:
|
||||
if self.pred_postprocessor is None:
|
||||
@ -137,15 +139,24 @@ class GenericLLMEvaluator(BaseEvaluator):
|
||||
proc = TEXT_POSTPROCESSORS.get(kwargs.pop('type'))
|
||||
return [proc(pred, **kwargs) for pred in predictions]
|
||||
|
||||
def output_postprocess(self, output: Dict) -> Dict:
|
||||
def output_postprocess(self, output: Dict, dataset=None) -> Dict:
|
||||
"""Postprocess output by adding necessary statistics or data into
|
||||
it."""
|
||||
import inspect
|
||||
|
||||
if self.dict_postprocessor is None:
|
||||
return output
|
||||
else:
|
||||
kwargs = self.dict_postprocessor
|
||||
proc = DICT_POSTPROCESSORS.get(kwargs.pop('type'))
|
||||
return proc(output, self.output_path, **kwargs)
|
||||
sig = inspect.signature(proc)
|
||||
if 'dataset' in sig.parameters:
|
||||
return proc(output,
|
||||
self.output_path,
|
||||
dataset=dataset,
|
||||
**kwargs)
|
||||
else:
|
||||
return proc(output, self.output_path, **kwargs)
|
||||
|
||||
@property
|
||||
def default_judge_cfg(self):
|
||||
|
@ -89,6 +89,14 @@ class BaseEvaluator:
|
||||
original_dataset: Dataset,
|
||||
**score_kwargs,
|
||||
):
|
||||
# Check if predictions and references have the
|
||||
# same length if both are provided
|
||||
if 'predictions' in score_kwargs and 'references' in score_kwargs:
|
||||
if len(score_kwargs['predictions']) != len(
|
||||
score_kwargs['references']):
|
||||
raise ValueError(
|
||||
'Predictions and references must have the same length')
|
||||
|
||||
real_size = len(original_dataset) // n
|
||||
all_details = []
|
||||
all_results = []
|
||||
|
Loading…
Reference in New Issue
Block a user