mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
refactor: delete unnecessary comment
This commit is contained in:
parent
f9b1636598
commit
db04df78d4
@ -53,7 +53,6 @@ dataset_configs = [
|
||||
{'abbr': 'seedbench_3-5', 'data_file': '3-5.json', 'evaluator': 'AccScoreStr_Evaluator'},
|
||||
]
|
||||
|
||||
|
||||
seedbench_datasets = []
|
||||
for stage in ['zero-shot','one-shot']:
|
||||
for config in dataset_configs:
|
@ -1,27 +1,34 @@
|
||||
import os
|
||||
import random
|
||||
import datasets
|
||||
from typing import List
|
||||
from .base import BaseDataset
|
||||
from opencompass.openicl.icl_evaluator.icl_base_evaluator import BaseEvaluator
|
||||
import numpy as np
|
||||
import re
|
||||
from typing import List
|
||||
|
||||
import datasets
|
||||
import jieba
|
||||
import numpy as np
|
||||
from rouge_chinese import Rouge
|
||||
|
||||
from opencompass.openicl.icl_evaluator.icl_base_evaluator import BaseEvaluator
|
||||
from opencompass.registry import ICL_EVALUATORS, TEXT_POSTPROCESSORS
|
||||
|
||||
from .base import BaseDataset
|
||||
|
||||
|
||||
class SeedBenchDataset(BaseDataset):
|
||||
|
||||
@staticmethod
|
||||
def load(data_files: str, path: str = 'json', split: str = None, **kwargs) -> datasets.Dataset:
|
||||
def load(data_files: str,
|
||||
path: str = 'json',
|
||||
split: str = None,
|
||||
**kwargs) -> datasets.Dataset:
|
||||
dataset = datasets.load_dataset(path, data_files=data_files, **kwargs)
|
||||
|
||||
if split is None:
|
||||
split = list(dataset.keys())[0]
|
||||
print(f"my datasets split : {split}")
|
||||
print(f'my datasets split : {split}')
|
||||
|
||||
if split not in dataset:
|
||||
raise ValueError(f"Split '{split}' not found. Available splits: {list(dataset.keys())}")
|
||||
raise ValueError(f"Split '{split}' not found. \
|
||||
Available splits: {list(dataset.keys())}")
|
||||
|
||||
return dataset[split]
|
||||
|
||||
@ -30,7 +37,8 @@ class F1Evaluator(BaseEvaluator):
|
||||
"""F1 Score evaluator for multiple choice questions.
|
||||
|
||||
Args:
|
||||
seed (int): Seed for randomness, ensuring reproducibility. Defaults to 0.
|
||||
seed (int): Seed for randomness, ensuring reproducibility.
|
||||
Defaults to 0.
|
||||
"""
|
||||
|
||||
def __init__(self, seed: int = 0) -> None:
|
||||
@ -38,41 +46,15 @@ class F1Evaluator(BaseEvaluator):
|
||||
super().__init__()
|
||||
|
||||
def _preprocess(self, predictions: List, references: List) -> dict:
|
||||
"""Preprocess the final predictions and references to needed format.
|
||||
|
||||
Args:
|
||||
predictions (List): List of predictions for each sample.
|
||||
references (List): List of reference answers for each sample.
|
||||
|
||||
Returns:
|
||||
dict: Preprocessed predictions and references in the required format.
|
||||
"""
|
||||
return {
|
||||
'predictions': predictions,
|
||||
'references': references,
|
||||
}
|
||||
|
||||
def _postprocess(self, scores: dict) -> dict:
|
||||
"""Postprocess the final score for F1.
|
||||
|
||||
Args:
|
||||
scores (dict): Dictionary of calculated F1 score.
|
||||
|
||||
Returns:
|
||||
dict: Postprocessed F1 score.
|
||||
"""
|
||||
return scores
|
||||
|
||||
def score(self, predictions: List, references: List) -> dict:
|
||||
"""Calculate F1 score.
|
||||
|
||||
Args:
|
||||
predictions (List): List of predicted answers for each sample.
|
||||
references (List): List of reference answers for each sample.
|
||||
|
||||
Returns:
|
||||
dict: Calculated F1 score.
|
||||
"""
|
||||
random_state = random.getstate()
|
||||
np_random_state = np.random.get_state()
|
||||
details = []
|
||||
@ -82,7 +64,8 @@ class F1Evaluator(BaseEvaluator):
|
||||
|
||||
if len(predictions) != len(references):
|
||||
return {
|
||||
'error': 'predictions and references have different '
|
||||
'error':
|
||||
'predictions and references have different '
|
||||
f'length. len(predictions): {len(predictions)}, '
|
||||
f'len(references): {len(references)}'
|
||||
}
|
||||
@ -105,18 +88,29 @@ class F1Evaluator(BaseEvaluator):
|
||||
true_positives += sample_tp
|
||||
false_positives += sample_fp
|
||||
false_negatives += sample_fn
|
||||
sample_precision = sample_tp / (sample_tp + sample_fp) if (sample_tp + sample_fp) > 0 else 0
|
||||
sample_recall = sample_tp / (sample_tp + sample_fn) if (sample_tp + sample_fn) > 0 else 0
|
||||
sample_f1 = (2 * sample_precision * sample_recall) / (sample_precision + sample_recall) if (sample_precision + sample_recall) > 0 else 0
|
||||
details.append({'pred': hyp, 'answer': ref, 'correct': sample_f1 * 100})
|
||||
sample_precision = sample_tp / (sample_tp + sample_fp) if (
|
||||
sample_tp + sample_fp) > 0 else 0
|
||||
sample_recall = sample_tp / (sample_tp + sample_fn) if (
|
||||
sample_tp + sample_fn) > 0 else 0
|
||||
sample_f1 = (2 * sample_precision * sample_recall) / (
|
||||
sample_precision + sample_recall) if (sample_precision +
|
||||
sample_recall) > 0 else 0
|
||||
details.append({
|
||||
'pred': hyp,
|
||||
'answer': ref,
|
||||
'correct': sample_f1 * 100
|
||||
})
|
||||
|
||||
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
|
||||
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
|
||||
f1 = (2 * precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
|
||||
precision = true_positives / (true_positives + false_positives) if (
|
||||
true_positives + false_positives) > 0 else 0
|
||||
recall = true_positives / (true_positives + false_negatives) if (
|
||||
true_positives + false_negatives) > 0 else 0
|
||||
f1 = (2 * precision *
|
||||
recall) / (precision + recall) if (precision + recall) > 0 else 0
|
||||
|
||||
result = {
|
||||
"ours_F1Score": f1 * 100, # 总体 F1 分数
|
||||
"details": details
|
||||
'ours_F1Score': f1 * 100, # 总体 F1 分数
|
||||
'details': details
|
||||
}
|
||||
random.setstate(random_state)
|
||||
np.random.set_state(np_random_state)
|
||||
@ -126,6 +120,7 @@ class F1Evaluator(BaseEvaluator):
|
||||
@ICL_EVALUATORS.register_module()
|
||||
class F1ScoreEvaluator(F1Evaluator):
|
||||
"""F1 Score evaluator for multiple choice questions."""
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
@ -143,7 +138,8 @@ class AverageRougeEvaluator(BaseEvaluator):
|
||||
"""Average Rouge Score evaluator for fill-in-the-blank tasks.
|
||||
|
||||
Args:
|
||||
seed (int): Seed for randomness, ensuring reproducibility. Defaults to 0.
|
||||
seed (int): Seed for randomness, ensuring reproducibility.
|
||||
Defaults to 0.
|
||||
"""
|
||||
|
||||
def __init__(self, seed: int = 0) -> None:
|
||||
@ -151,17 +147,11 @@ class AverageRougeEvaluator(BaseEvaluator):
|
||||
super().__init__()
|
||||
|
||||
def _preprocess(self, predictions: List, references: List) -> dict:
|
||||
"""Preprocess the final predictions and references to needed format.
|
||||
|
||||
Args:
|
||||
predictions (List): List of predictions for each sample.
|
||||
references (List): List of reference answers for each sample.
|
||||
|
||||
Returns:
|
||||
dict: Preprocessed predictions and references in the required format.
|
||||
"""
|
||||
pattern = r"(正确答案[::]|correct answer[::])"
|
||||
cleaned_predictions = [re.sub(pattern, "", pred, flags=re.IGNORECASE).strip() for pred in predictions]
|
||||
pattern = r'(正确答案[::]|correct answer[::])'
|
||||
cleaned_predictions = [
|
||||
re.sub(pattern, '', pred, flags=re.IGNORECASE).strip()
|
||||
for pred in predictions
|
||||
]
|
||||
|
||||
return {
|
||||
'predictions': cleaned_predictions,
|
||||
@ -169,35 +159,19 @@ class AverageRougeEvaluator(BaseEvaluator):
|
||||
}
|
||||
|
||||
def _postprocess(self, scores: dict) -> dict:
|
||||
"""Postprocess the final Rouge scores.
|
||||
|
||||
Args:
|
||||
scores (dict): Dictionary of calculated average Rouge scores.
|
||||
|
||||
Returns:
|
||||
dict: Postprocessed Rouge scores.
|
||||
"""
|
||||
return scores
|
||||
|
||||
def score(self, predictions: List, references: List) -> dict:
|
||||
"""Calculate average Rouge-L score.
|
||||
|
||||
Args:
|
||||
predictions (List): List of predicted strings for each sample.
|
||||
references (List): List of reference strings for each sample.
|
||||
|
||||
Returns:
|
||||
dict: Calculated average Rouge-L score.
|
||||
"""
|
||||
def rouge_score(hyps, refs):
|
||||
assert(len(hyps) == len(refs))
|
||||
assert (len(hyps) == len(refs))
|
||||
hyps = [' '.join(jieba.cut(h)) for h in hyps]
|
||||
hyps = [h if h.strip() != "" else "无内容" for h in hyps]
|
||||
hyps = [h if h.strip() != '' else '无内容' for h in hyps]
|
||||
refs = [' '.join(jieba.cut(r)) for r in refs]
|
||||
rouge_scores = Rouge().get_scores(hyps, refs)
|
||||
rouge_ls = [score["rouge-l"]["f"] for score in rouge_scores]
|
||||
rouge_ls = [score['rouge-l']['f'] for score in rouge_scores]
|
||||
average_rouge_l = sum(rouge_ls) / len(rouge_ls)
|
||||
return {"score": average_rouge_l * 100}
|
||||
return {'score': average_rouge_l * 100}
|
||||
|
||||
random_state = random.getstate()
|
||||
np_random_state = np.random.get_state()
|
||||
@ -207,13 +181,15 @@ class AverageRougeEvaluator(BaseEvaluator):
|
||||
|
||||
if len(predictions) != len(references):
|
||||
return {
|
||||
'error': 'predictions and references have different '
|
||||
'error':
|
||||
'predictions and references have different '
|
||||
f'length. len(predictions): {len(predictions)}, '
|
||||
f'len(references): {len(references)}'
|
||||
}
|
||||
|
||||
preprocessed_data = self._preprocess(predictions, references)
|
||||
hyps, refs = preprocessed_data['predictions'], preprocessed_data['references']
|
||||
hyps, refs = preprocessed_data['predictions'], preprocessed_data[
|
||||
'references']
|
||||
|
||||
scores = []
|
||||
for i in range(len(hyps)):
|
||||
@ -227,19 +203,22 @@ class AverageRougeEvaluator(BaseEvaluator):
|
||||
word_level_hyps = [h.strip() for h in word_level_hyps]
|
||||
|
||||
if len(word_level_hyps) < len(word_level_refs):
|
||||
word_level_hyps += ['无内容'] * (len(word_level_refs) - len(word_level_hyps))
|
||||
word_level_hyps += ['无内容'] * (len(word_level_refs) -
|
||||
len(word_level_hyps))
|
||||
else:
|
||||
word_level_hyps = word_level_hyps[:len(word_level_refs)]
|
||||
|
||||
sample_score = rouge_score(word_level_hyps, word_level_refs)["score"]
|
||||
sample_score = rouge_score(word_level_hyps,
|
||||
word_level_refs)['score']
|
||||
scores.append(sample_score)
|
||||
details.append({'pred': word_level_hyps, 'answer': word_level_refs, 'correct': sample_score})
|
||||
details.append({
|
||||
'pred': word_level_hyps,
|
||||
'answer': word_level_refs,
|
||||
'correct': sample_score
|
||||
})
|
||||
|
||||
average_score = sum(scores) / len(scores)
|
||||
result = {
|
||||
"AvgRougeScore": average_score,
|
||||
"details": details
|
||||
}
|
||||
result = {'AvgRougeScore': average_score, 'details': details}
|
||||
random.setstate(random_state)
|
||||
np.random.set_state(np_random_state)
|
||||
|
||||
@ -258,7 +237,8 @@ class AccScoreStrEvaluator(BaseEvaluator):
|
||||
"""Accuracy evaluator based on string matching.
|
||||
|
||||
Args:
|
||||
seed (int): Seed for randomness, ensuring reproducibility. Defaults to 0.
|
||||
seed (int): Seed for randomness, ensuring reproducibility.
|
||||
Defaults to 0.
|
||||
"""
|
||||
|
||||
def __init__(self, seed: int = 0) -> None:
|
||||
@ -266,41 +246,15 @@ class AccScoreStrEvaluator(BaseEvaluator):
|
||||
super().__init__()
|
||||
|
||||
def _preprocess(self, predictions: List, references: List) -> dict:
|
||||
"""Preprocess the final predictions and references to needed format.
|
||||
|
||||
Args:
|
||||
predictions (List): List of predictions for each sample.
|
||||
references (List): List of reference answers for each sample.
|
||||
|
||||
Returns:
|
||||
dict: Preprocessed predictions and references in the required format.
|
||||
"""
|
||||
return {
|
||||
'predictions': predictions,
|
||||
'references': references,
|
||||
}
|
||||
|
||||
def _postprocess(self, scores: dict) -> dict:
|
||||
"""Postprocess the final accuracy score.
|
||||
|
||||
Args:
|
||||
scores (dict): Dictionary of calculated accuracy score.
|
||||
|
||||
Returns:
|
||||
dict: Postprocessed accuracy score.
|
||||
"""
|
||||
return scores
|
||||
|
||||
def score(self, predictions: List, references: List) -> dict:
|
||||
"""Calculate accuracy score.
|
||||
|
||||
Args:
|
||||
predictions (List): List of predicted strings for each sample.
|
||||
references (List): List of reference strings for each sample.
|
||||
|
||||
Returns:
|
||||
dict: Calculated accuracy score.
|
||||
"""
|
||||
random_state = random.getstate()
|
||||
np_random_state = np.random.get_state()
|
||||
details = []
|
||||
@ -309,7 +263,8 @@ class AccScoreStrEvaluator(BaseEvaluator):
|
||||
|
||||
if len(predictions) != len(references):
|
||||
return {
|
||||
'error': 'predictions and references have different '
|
||||
'error':
|
||||
'predictions and references have different '
|
||||
f'length. len(predictions): {len(predictions)}, '
|
||||
f'len(references): {len(references)}'
|
||||
}
|
||||
@ -317,16 +272,14 @@ class AccScoreStrEvaluator(BaseEvaluator):
|
||||
preprocessed_data = self._preprocess(predictions, references)
|
||||
|
||||
correct = 0
|
||||
for hyp, ref in zip(preprocessed_data['predictions'], preprocessed_data['references']):
|
||||
for hyp, ref in zip(preprocessed_data['predictions'],
|
||||
preprocessed_data['references']):
|
||||
is_correct = 1 if ref.strip().lower() in hyp.strip().lower() else 0
|
||||
correct += is_correct
|
||||
details.append({'pred': hyp, 'answer': ref, 'correct': is_correct})
|
||||
|
||||
accuracy = correct / len(predictions)
|
||||
result = {
|
||||
"ACCStrScore": accuracy * 100,
|
||||
"details": details
|
||||
}
|
||||
result = {'ACCStrScore': accuracy * 100, 'details': details}
|
||||
random.setstate(random_state)
|
||||
np.random.set_state(np_random_state)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user