mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
refactor: delete unnecessary comment
This commit is contained in:
parent
f9b1636598
commit
db04df78d4
@ -53,7 +53,6 @@ dataset_configs = [
|
|||||||
{'abbr': 'seedbench_3-5', 'data_file': '3-5.json', 'evaluator': 'AccScoreStr_Evaluator'},
|
{'abbr': 'seedbench_3-5', 'data_file': '3-5.json', 'evaluator': 'AccScoreStr_Evaluator'},
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
seedbench_datasets = []
|
seedbench_datasets = []
|
||||||
for stage in ['zero-shot','one-shot']:
|
for stage in ['zero-shot','one-shot']:
|
||||||
for config in dataset_configs:
|
for config in dataset_configs:
|
@ -1,27 +1,34 @@
|
|||||||
import os
|
|
||||||
import random
|
import random
|
||||||
import datasets
|
|
||||||
from typing import List
|
|
||||||
from .base import BaseDataset
|
|
||||||
from opencompass.openicl.icl_evaluator.icl_base_evaluator import BaseEvaluator
|
|
||||||
import numpy as np
|
|
||||||
import re
|
import re
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
import datasets
|
||||||
import jieba
|
import jieba
|
||||||
|
import numpy as np
|
||||||
from rouge_chinese import Rouge
|
from rouge_chinese import Rouge
|
||||||
|
|
||||||
|
from opencompass.openicl.icl_evaluator.icl_base_evaluator import BaseEvaluator
|
||||||
from opencompass.registry import ICL_EVALUATORS, TEXT_POSTPROCESSORS
|
from opencompass.registry import ICL_EVALUATORS, TEXT_POSTPROCESSORS
|
||||||
|
|
||||||
|
from .base import BaseDataset
|
||||||
|
|
||||||
|
|
||||||
class SeedBenchDataset(BaseDataset):
|
class SeedBenchDataset(BaseDataset):
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def load(data_files: str, path: str = 'json', split: str = None, **kwargs) -> datasets.Dataset:
|
def load(data_files: str,
|
||||||
|
path: str = 'json',
|
||||||
|
split: str = None,
|
||||||
|
**kwargs) -> datasets.Dataset:
|
||||||
dataset = datasets.load_dataset(path, data_files=data_files, **kwargs)
|
dataset = datasets.load_dataset(path, data_files=data_files, **kwargs)
|
||||||
|
|
||||||
if split is None:
|
if split is None:
|
||||||
split = list(dataset.keys())[0]
|
split = list(dataset.keys())[0]
|
||||||
print(f"my datasets split : {split}")
|
print(f'my datasets split : {split}')
|
||||||
|
|
||||||
if split not in dataset:
|
if split not in dataset:
|
||||||
raise ValueError(f"Split '{split}' not found. Available splits: {list(dataset.keys())}")
|
raise ValueError(f"Split '{split}' not found. \
|
||||||
|
Available splits: {list(dataset.keys())}")
|
||||||
|
|
||||||
return dataset[split]
|
return dataset[split]
|
||||||
|
|
||||||
@ -30,7 +37,8 @@ class F1Evaluator(BaseEvaluator):
|
|||||||
"""F1 Score evaluator for multiple choice questions.
|
"""F1 Score evaluator for multiple choice questions.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
seed (int): Seed for randomness, ensuring reproducibility. Defaults to 0.
|
seed (int): Seed for randomness, ensuring reproducibility.
|
||||||
|
Defaults to 0.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, seed: int = 0) -> None:
|
def __init__(self, seed: int = 0) -> None:
|
||||||
@ -38,41 +46,15 @@ class F1Evaluator(BaseEvaluator):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
def _preprocess(self, predictions: List, references: List) -> dict:
|
def _preprocess(self, predictions: List, references: List) -> dict:
|
||||||
"""Preprocess the final predictions and references to needed format.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
predictions (List): List of predictions for each sample.
|
|
||||||
references (List): List of reference answers for each sample.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
dict: Preprocessed predictions and references in the required format.
|
|
||||||
"""
|
|
||||||
return {
|
return {
|
||||||
'predictions': predictions,
|
'predictions': predictions,
|
||||||
'references': references,
|
'references': references,
|
||||||
}
|
}
|
||||||
|
|
||||||
def _postprocess(self, scores: dict) -> dict:
|
def _postprocess(self, scores: dict) -> dict:
|
||||||
"""Postprocess the final score for F1.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
scores (dict): Dictionary of calculated F1 score.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
dict: Postprocessed F1 score.
|
|
||||||
"""
|
|
||||||
return scores
|
return scores
|
||||||
|
|
||||||
def score(self, predictions: List, references: List) -> dict:
|
def score(self, predictions: List, references: List) -> dict:
|
||||||
"""Calculate F1 score.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
predictions (List): List of predicted answers for each sample.
|
|
||||||
references (List): List of reference answers for each sample.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
dict: Calculated F1 score.
|
|
||||||
"""
|
|
||||||
random_state = random.getstate()
|
random_state = random.getstate()
|
||||||
np_random_state = np.random.get_state()
|
np_random_state = np.random.get_state()
|
||||||
details = []
|
details = []
|
||||||
@ -82,7 +64,8 @@ class F1Evaluator(BaseEvaluator):
|
|||||||
|
|
||||||
if len(predictions) != len(references):
|
if len(predictions) != len(references):
|
||||||
return {
|
return {
|
||||||
'error': 'predictions and references have different '
|
'error':
|
||||||
|
'predictions and references have different '
|
||||||
f'length. len(predictions): {len(predictions)}, '
|
f'length. len(predictions): {len(predictions)}, '
|
||||||
f'len(references): {len(references)}'
|
f'len(references): {len(references)}'
|
||||||
}
|
}
|
||||||
@ -105,18 +88,29 @@ class F1Evaluator(BaseEvaluator):
|
|||||||
true_positives += sample_tp
|
true_positives += sample_tp
|
||||||
false_positives += sample_fp
|
false_positives += sample_fp
|
||||||
false_negatives += sample_fn
|
false_negatives += sample_fn
|
||||||
sample_precision = sample_tp / (sample_tp + sample_fp) if (sample_tp + sample_fp) > 0 else 0
|
sample_precision = sample_tp / (sample_tp + sample_fp) if (
|
||||||
sample_recall = sample_tp / (sample_tp + sample_fn) if (sample_tp + sample_fn) > 0 else 0
|
sample_tp + sample_fp) > 0 else 0
|
||||||
sample_f1 = (2 * sample_precision * sample_recall) / (sample_precision + sample_recall) if (sample_precision + sample_recall) > 0 else 0
|
sample_recall = sample_tp / (sample_tp + sample_fn) if (
|
||||||
details.append({'pred': hyp, 'answer': ref, 'correct': sample_f1 * 100})
|
sample_tp + sample_fn) > 0 else 0
|
||||||
|
sample_f1 = (2 * sample_precision * sample_recall) / (
|
||||||
|
sample_precision + sample_recall) if (sample_precision +
|
||||||
|
sample_recall) > 0 else 0
|
||||||
|
details.append({
|
||||||
|
'pred': hyp,
|
||||||
|
'answer': ref,
|
||||||
|
'correct': sample_f1 * 100
|
||||||
|
})
|
||||||
|
|
||||||
precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0
|
precision = true_positives / (true_positives + false_positives) if (
|
||||||
recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0
|
true_positives + false_positives) > 0 else 0
|
||||||
f1 = (2 * precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
|
recall = true_positives / (true_positives + false_negatives) if (
|
||||||
|
true_positives + false_negatives) > 0 else 0
|
||||||
|
f1 = (2 * precision *
|
||||||
|
recall) / (precision + recall) if (precision + recall) > 0 else 0
|
||||||
|
|
||||||
result = {
|
result = {
|
||||||
"ours_F1Score": f1 * 100, # 总体 F1 分数
|
'ours_F1Score': f1 * 100, # 总体 F1 分数
|
||||||
"details": details
|
'details': details
|
||||||
}
|
}
|
||||||
random.setstate(random_state)
|
random.setstate(random_state)
|
||||||
np.random.set_state(np_random_state)
|
np.random.set_state(np_random_state)
|
||||||
@ -126,6 +120,7 @@ class F1Evaluator(BaseEvaluator):
|
|||||||
@ICL_EVALUATORS.register_module()
|
@ICL_EVALUATORS.register_module()
|
||||||
class F1ScoreEvaluator(F1Evaluator):
|
class F1ScoreEvaluator(F1Evaluator):
|
||||||
"""F1 Score evaluator for multiple choice questions."""
|
"""F1 Score evaluator for multiple choice questions."""
|
||||||
|
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
@ -143,7 +138,8 @@ class AverageRougeEvaluator(BaseEvaluator):
|
|||||||
"""Average Rouge Score evaluator for fill-in-the-blank tasks.
|
"""Average Rouge Score evaluator for fill-in-the-blank tasks.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
seed (int): Seed for randomness, ensuring reproducibility. Defaults to 0.
|
seed (int): Seed for randomness, ensuring reproducibility.
|
||||||
|
Defaults to 0.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, seed: int = 0) -> None:
|
def __init__(self, seed: int = 0) -> None:
|
||||||
@ -151,17 +147,11 @@ class AverageRougeEvaluator(BaseEvaluator):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
def _preprocess(self, predictions: List, references: List) -> dict:
|
def _preprocess(self, predictions: List, references: List) -> dict:
|
||||||
"""Preprocess the final predictions and references to needed format.
|
pattern = r'(正确答案[::]|correct answer[::])'
|
||||||
|
cleaned_predictions = [
|
||||||
Args:
|
re.sub(pattern, '', pred, flags=re.IGNORECASE).strip()
|
||||||
predictions (List): List of predictions for each sample.
|
for pred in predictions
|
||||||
references (List): List of reference answers for each sample.
|
]
|
||||||
|
|
||||||
Returns:
|
|
||||||
dict: Preprocessed predictions and references in the required format.
|
|
||||||
"""
|
|
||||||
pattern = r"(正确答案[::]|correct answer[::])"
|
|
||||||
cleaned_predictions = [re.sub(pattern, "", pred, flags=re.IGNORECASE).strip() for pred in predictions]
|
|
||||||
|
|
||||||
return {
|
return {
|
||||||
'predictions': cleaned_predictions,
|
'predictions': cleaned_predictions,
|
||||||
@ -169,35 +159,19 @@ class AverageRougeEvaluator(BaseEvaluator):
|
|||||||
}
|
}
|
||||||
|
|
||||||
def _postprocess(self, scores: dict) -> dict:
|
def _postprocess(self, scores: dict) -> dict:
|
||||||
"""Postprocess the final Rouge scores.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
scores (dict): Dictionary of calculated average Rouge scores.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
dict: Postprocessed Rouge scores.
|
|
||||||
"""
|
|
||||||
return scores
|
return scores
|
||||||
|
|
||||||
def score(self, predictions: List, references: List) -> dict:
|
def score(self, predictions: List, references: List) -> dict:
|
||||||
"""Calculate average Rouge-L score.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
predictions (List): List of predicted strings for each sample.
|
|
||||||
references (List): List of reference strings for each sample.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
dict: Calculated average Rouge-L score.
|
|
||||||
"""
|
|
||||||
def rouge_score(hyps, refs):
|
def rouge_score(hyps, refs):
|
||||||
assert (len(hyps) == len(refs))
|
assert (len(hyps) == len(refs))
|
||||||
hyps = [' '.join(jieba.cut(h)) for h in hyps]
|
hyps = [' '.join(jieba.cut(h)) for h in hyps]
|
||||||
hyps = [h if h.strip() != "" else "无内容" for h in hyps]
|
hyps = [h if h.strip() != '' else '无内容' for h in hyps]
|
||||||
refs = [' '.join(jieba.cut(r)) for r in refs]
|
refs = [' '.join(jieba.cut(r)) for r in refs]
|
||||||
rouge_scores = Rouge().get_scores(hyps, refs)
|
rouge_scores = Rouge().get_scores(hyps, refs)
|
||||||
rouge_ls = [score["rouge-l"]["f"] for score in rouge_scores]
|
rouge_ls = [score['rouge-l']['f'] for score in rouge_scores]
|
||||||
average_rouge_l = sum(rouge_ls) / len(rouge_ls)
|
average_rouge_l = sum(rouge_ls) / len(rouge_ls)
|
||||||
return {"score": average_rouge_l * 100}
|
return {'score': average_rouge_l * 100}
|
||||||
|
|
||||||
random_state = random.getstate()
|
random_state = random.getstate()
|
||||||
np_random_state = np.random.get_state()
|
np_random_state = np.random.get_state()
|
||||||
@ -207,13 +181,15 @@ class AverageRougeEvaluator(BaseEvaluator):
|
|||||||
|
|
||||||
if len(predictions) != len(references):
|
if len(predictions) != len(references):
|
||||||
return {
|
return {
|
||||||
'error': 'predictions and references have different '
|
'error':
|
||||||
|
'predictions and references have different '
|
||||||
f'length. len(predictions): {len(predictions)}, '
|
f'length. len(predictions): {len(predictions)}, '
|
||||||
f'len(references): {len(references)}'
|
f'len(references): {len(references)}'
|
||||||
}
|
}
|
||||||
|
|
||||||
preprocessed_data = self._preprocess(predictions, references)
|
preprocessed_data = self._preprocess(predictions, references)
|
||||||
hyps, refs = preprocessed_data['predictions'], preprocessed_data['references']
|
hyps, refs = preprocessed_data['predictions'], preprocessed_data[
|
||||||
|
'references']
|
||||||
|
|
||||||
scores = []
|
scores = []
|
||||||
for i in range(len(hyps)):
|
for i in range(len(hyps)):
|
||||||
@ -227,19 +203,22 @@ class AverageRougeEvaluator(BaseEvaluator):
|
|||||||
word_level_hyps = [h.strip() for h in word_level_hyps]
|
word_level_hyps = [h.strip() for h in word_level_hyps]
|
||||||
|
|
||||||
if len(word_level_hyps) < len(word_level_refs):
|
if len(word_level_hyps) < len(word_level_refs):
|
||||||
word_level_hyps += ['无内容'] * (len(word_level_refs) - len(word_level_hyps))
|
word_level_hyps += ['无内容'] * (len(word_level_refs) -
|
||||||
|
len(word_level_hyps))
|
||||||
else:
|
else:
|
||||||
word_level_hyps = word_level_hyps[:len(word_level_refs)]
|
word_level_hyps = word_level_hyps[:len(word_level_refs)]
|
||||||
|
|
||||||
sample_score = rouge_score(word_level_hyps, word_level_refs)["score"]
|
sample_score = rouge_score(word_level_hyps,
|
||||||
|
word_level_refs)['score']
|
||||||
scores.append(sample_score)
|
scores.append(sample_score)
|
||||||
details.append({'pred': word_level_hyps, 'answer': word_level_refs, 'correct': sample_score})
|
details.append({
|
||||||
|
'pred': word_level_hyps,
|
||||||
|
'answer': word_level_refs,
|
||||||
|
'correct': sample_score
|
||||||
|
})
|
||||||
|
|
||||||
average_score = sum(scores) / len(scores)
|
average_score = sum(scores) / len(scores)
|
||||||
result = {
|
result = {'AvgRougeScore': average_score, 'details': details}
|
||||||
"AvgRougeScore": average_score,
|
|
||||||
"details": details
|
|
||||||
}
|
|
||||||
random.setstate(random_state)
|
random.setstate(random_state)
|
||||||
np.random.set_state(np_random_state)
|
np.random.set_state(np_random_state)
|
||||||
|
|
||||||
@ -258,7 +237,8 @@ class AccScoreStrEvaluator(BaseEvaluator):
|
|||||||
"""Accuracy evaluator based on string matching.
|
"""Accuracy evaluator based on string matching.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
seed (int): Seed for randomness, ensuring reproducibility. Defaults to 0.
|
seed (int): Seed for randomness, ensuring reproducibility.
|
||||||
|
Defaults to 0.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, seed: int = 0) -> None:
|
def __init__(self, seed: int = 0) -> None:
|
||||||
@ -266,41 +246,15 @@ class AccScoreStrEvaluator(BaseEvaluator):
|
|||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
def _preprocess(self, predictions: List, references: List) -> dict:
|
def _preprocess(self, predictions: List, references: List) -> dict:
|
||||||
"""Preprocess the final predictions and references to needed format.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
predictions (List): List of predictions for each sample.
|
|
||||||
references (List): List of reference answers for each sample.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
dict: Preprocessed predictions and references in the required format.
|
|
||||||
"""
|
|
||||||
return {
|
return {
|
||||||
'predictions': predictions,
|
'predictions': predictions,
|
||||||
'references': references,
|
'references': references,
|
||||||
}
|
}
|
||||||
|
|
||||||
def _postprocess(self, scores: dict) -> dict:
|
def _postprocess(self, scores: dict) -> dict:
|
||||||
"""Postprocess the final accuracy score.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
scores (dict): Dictionary of calculated accuracy score.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
dict: Postprocessed accuracy score.
|
|
||||||
"""
|
|
||||||
return scores
|
return scores
|
||||||
|
|
||||||
def score(self, predictions: List, references: List) -> dict:
|
def score(self, predictions: List, references: List) -> dict:
|
||||||
"""Calculate accuracy score.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
predictions (List): List of predicted strings for each sample.
|
|
||||||
references (List): List of reference strings for each sample.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
dict: Calculated accuracy score.
|
|
||||||
"""
|
|
||||||
random_state = random.getstate()
|
random_state = random.getstate()
|
||||||
np_random_state = np.random.get_state()
|
np_random_state = np.random.get_state()
|
||||||
details = []
|
details = []
|
||||||
@ -309,7 +263,8 @@ class AccScoreStrEvaluator(BaseEvaluator):
|
|||||||
|
|
||||||
if len(predictions) != len(references):
|
if len(predictions) != len(references):
|
||||||
return {
|
return {
|
||||||
'error': 'predictions and references have different '
|
'error':
|
||||||
|
'predictions and references have different '
|
||||||
f'length. len(predictions): {len(predictions)}, '
|
f'length. len(predictions): {len(predictions)}, '
|
||||||
f'len(references): {len(references)}'
|
f'len(references): {len(references)}'
|
||||||
}
|
}
|
||||||
@ -317,16 +272,14 @@ class AccScoreStrEvaluator(BaseEvaluator):
|
|||||||
preprocessed_data = self._preprocess(predictions, references)
|
preprocessed_data = self._preprocess(predictions, references)
|
||||||
|
|
||||||
correct = 0
|
correct = 0
|
||||||
for hyp, ref in zip(preprocessed_data['predictions'], preprocessed_data['references']):
|
for hyp, ref in zip(preprocessed_data['predictions'],
|
||||||
|
preprocessed_data['references']):
|
||||||
is_correct = 1 if ref.strip().lower() in hyp.strip().lower() else 0
|
is_correct = 1 if ref.strip().lower() in hyp.strip().lower() else 0
|
||||||
correct += is_correct
|
correct += is_correct
|
||||||
details.append({'pred': hyp, 'answer': ref, 'correct': is_correct})
|
details.append({'pred': hyp, 'answer': ref, 'correct': is_correct})
|
||||||
|
|
||||||
accuracy = correct / len(predictions)
|
accuracy = correct / len(predictions)
|
||||||
result = {
|
result = {'ACCStrScore': accuracy * 100, 'details': details}
|
||||||
"ACCStrScore": accuracy * 100,
|
|
||||||
"details": details
|
|
||||||
}
|
|
||||||
random.setstate(random_state)
|
random.setstate(random_state)
|
||||||
np.random.set_state(np_random_state)
|
np.random.set_state(np_random_state)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user