Merge remote-tracking branch 'origin' into code_update

This commit is contained in:
Dongsheng Zhu 2025-04-05 02:29:09 +00:00
commit d251524efc
32 changed files with 1203 additions and 345 deletions

View File

@ -24,9 +24,9 @@ models = [
abbr='lmdeploy-api-test', abbr='lmdeploy-api-test',
type=OpenAISDK, type=OpenAISDK,
key='EMPTY', key='EMPTY',
openai_api_base='http://0.0.0.0:23333/v1', openai_api_base='http://localhost:23333/v1',
path='internlm2', path='internlm3',
tokenizer_path='internlm/internlm2_5-7b-chat', tokenizer_path='internlm/internlm3-8b-instruct',
rpm_verbose=True, rpm_verbose=True,
meta_template=api_meta_template, meta_template=api_meta_template,
query_per_second=128, query_per_second=128,

View File

@ -11,18 +11,10 @@ with read_base():
from opencompass.configs.datasets.winogrande.winogrande_5shot_ll_252f01 import \ from opencompass.configs.datasets.winogrande.winogrande_5shot_ll_252f01 import \
winogrande_datasets # noqa: F401, E501 winogrande_datasets # noqa: F401, E501
# read hf models - chat models # read hf models - chat models
from opencompass.configs.models.chatglm.hf_glm4_9b import \
models as hf_glm4_9b_model # noqa: F401, E501
from opencompass.configs.models.chatglm.lmdeploy_glm4_9b import \ from opencompass.configs.models.chatglm.lmdeploy_glm4_9b import \
models as lmdeploy_glm4_9b_model # noqa: F401, E501 models as lmdeploy_glm4_9b_model # noqa: F401, E501
from opencompass.configs.models.deepseek.hf_deepseek_7b_base import \ from opencompass.configs.models.deepseek.hf_deepseek_7b_base import \
models as hf_deepseek_7b_base_model # noqa: F401, E501 models as hf_deepseek_7b_base_model # noqa: F401, E501
from opencompass.configs.models.deepseek.hf_deepseek_67b_base import \
models as hf_deepseek_67b_base_model # noqa: F401, E501
from opencompass.configs.models.deepseek.hf_deepseek_moe_16b_base import \
models as hf_deepseek_moe_16b_base_model # noqa: F401, E501
from opencompass.configs.models.deepseek.hf_deepseek_v2_lite import \
models as hf_deepseek_v2_lite_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_7b_base import \ from opencompass.configs.models.deepseek.lmdeploy_deepseek_7b_base import \
models as lmdeploy_deepseek_7b_base_model # noqa: F401, E501 models as lmdeploy_deepseek_7b_base_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_67b_base import \ from opencompass.configs.models.deepseek.lmdeploy_deepseek_67b_base import \
@ -49,12 +41,6 @@ with read_base():
models as hf_internlm2_5_7b_model # noqa: F401, E501 models as hf_internlm2_5_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.hf_internlm2_7b import \ from opencompass.configs.models.hf_internlm.hf_internlm2_7b import \
models as hf_internlm2_7b_model # noqa: F401, E501 models as hf_internlm2_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.hf_internlm2_20b import \
models as hf_internlm2_20b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.hf_internlm2_base_7b import \
models as hf_internlm2_base_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.hf_internlm2_base_20b import \
models as hf_internlm2_base_20b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_1_8b import \ from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_1_8b import \
models as lmdeploy_internlm2_1_8b_model # noqa: F401, E501 models as lmdeploy_internlm2_1_8b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b import \ from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b import \
@ -65,14 +51,14 @@ with read_base():
models as lmdeploy_internlm2_20b_model # noqa: F401, E501 models as lmdeploy_internlm2_20b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_base_7b import \ from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_base_7b import \
models as lmdeploy_internlm2_base_7b_model # noqa: F401, E501 models as lmdeploy_internlm2_base_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_base_20b import \
models as lmdeploy_internlm2_base_20b_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.hf_llama2_7b import \ from opencompass.configs.models.hf_llama.hf_llama2_7b import \
models as hf_llama2_7b_model # noqa: F401, E501 models as hf_llama2_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.hf_llama3_1_8b import \ from opencompass.configs.models.hf_llama.hf_llama3_1_8b import \
models as hf_llama3_1_8b_model # noqa: F401, E501 models as hf_llama3_1_8b_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.hf_llama3_8b import \ from opencompass.configs.models.hf_llama.hf_llama3_8b import \
models as hf_llama3_8b_model # noqa: F401, E501 models as hf_llama3_8b_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.hf_llama3_70b import \
models as hf_llama3_70b_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.lmdeploy_llama3_1_8b import \ from opencompass.configs.models.hf_llama.lmdeploy_llama3_1_8b import \
models as lmdeploy_llama3_1_8b_model # noqa: F401, E501 models as lmdeploy_llama3_1_8b_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.lmdeploy_llama3_8b import \ from opencompass.configs.models.hf_llama.lmdeploy_llama3_8b import \

View File

@ -15,14 +15,24 @@ with read_base():
models as vllm_glm4_9b_chat_model # noqa: F401, E501 models as vllm_glm4_9b_chat_model # noqa: F401, E501
from opencompass.configs.models.deepseek.hf_deepseek_7b_chat import \ from opencompass.configs.models.deepseek.hf_deepseek_7b_chat import \
models as hf_deepseek_7b_chat_model # noqa: F401, E501 models as hf_deepseek_7b_chat_model # noqa: F401, E501
from opencompass.configs.models.deepseek.hf_deepseek_67b_chat import \ from opencompass.configs.models.deepseek.lmdeploy_deepseek_67b_chat import \
models as hf_deepseek_67b_chat_model # noqa: F401, E501 models as lmdeploy_deepseek_67b_chat_model # noqa: F401, E501
from opencompass.configs.models.deepseek.hf_deepseek_moe_16b_chat import \ from opencompass.configs.models.deepseek.lmdeploy_deepseek_r1_distill_llama_8b import \
models as hf_deepseek_moe_16b_chat_model # noqa: F401, E501 models as \
from opencompass.configs.models.deepseek.hf_deepseek_v2_lite_chat import \ lmdeploy_deepseek_r1_distill_llama_8b_model # noqa: F401, E501
models as hf_deepseek_v2_lite_chat_model # noqa: F401, E501 from opencompass.configs.models.deepseek.lmdeploy_deepseek_r1_distill_llama_70b import \
models as \
lmdeploy_deepseek_r1_distill_llama_70b_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_r1_distill_qwen_1_5b import \
models as \
lmdeploy_deepseek_r1_distill_qwen_1_5b_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_r1_distill_qwen_32b import \
models as \
lmdeploy_deepseek_r1_distill_qwen_32b_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_v2_5_1210 import \ from opencompass.configs.models.deepseek.lmdeploy_deepseek_v2_5_1210 import \
models as lmdeploy_deepseek_v2_5_1210_model # noqa: F401, E501 models as lmdeploy_deepseek_v2_5_1210_model # noqa: F401, E501
from opencompass.configs.models.deepseek.lmdeploy_deepseek_v2_lite import \
models as lmdeploy_deepseek_v2_lite_model # noqa: F401, E501
from opencompass.configs.models.deepseek.vllm_deepseek_7b_chat import \ from opencompass.configs.models.deepseek.vllm_deepseek_7b_chat import \
models as vllm_deepseek_7b_chat_model # noqa: F401, E501 models as vllm_deepseek_7b_chat_model # noqa: F401, E501
from opencompass.configs.models.gemma.hf_gemma2_2b_it import \ from opencompass.configs.models.gemma.hf_gemma2_2b_it import \
@ -45,6 +55,8 @@ with read_base():
models as hf_internlm2_5_7b_chat_model # noqa: F401, E501 models as hf_internlm2_5_7b_chat_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.hf_internlm2_5_20b_chat import \ from opencompass.configs.models.hf_internlm.hf_internlm2_5_20b_chat import \
models as hf_internlm2_5_20b_chat_model # noqa: F401, E501 models as hf_internlm2_5_20b_chat_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.hf_internlm3_8b_instruct import \
models as hf_internlm3_8b_instruct_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import \ from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import \
models as lmdeploy_internlm2_5_7b_chat_model # noqa: F401, E501 models as lmdeploy_internlm2_5_7b_chat_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_20b_chat import \ from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_20b_chat import \
@ -57,6 +69,8 @@ with read_base():
models as lmdeploy_internlm2_chat_7b_model # noqa: F401, E501 models as lmdeploy_internlm2_chat_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_chat_7b_sft import \ from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_chat_7b_sft import \
models as lmdeploy_internlm2_chat_7b_sft_model # noqa: F401, E501 models as lmdeploy_internlm2_chat_7b_sft_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.lmdeploy_internlm3_8b_instruct import \
models as lmdeploy_internlm3_8b_instruct_model # noqa: F401, E501
from opencompass.configs.models.hf_internlm.vllm_internlm2_chat_7b import \ from opencompass.configs.models.hf_internlm.vllm_internlm2_chat_7b import \
models as vllm_internlm2_chat_7b_model # noqa: F401, E501 models as vllm_internlm2_chat_7b_model # noqa: F401, E501
from opencompass.configs.models.hf_llama.hf_llama3_1_8b_instruct import \ from opencompass.configs.models.hf_llama.hf_llama3_1_8b_instruct import \
@ -83,10 +97,6 @@ with read_base():
models as hf_mistral_nemo_instruct_2407_model # noqa: F401, E501 models as hf_mistral_nemo_instruct_2407_model # noqa: F401, E501
from opencompass.configs.models.mistral.hf_mistral_small_instruct_2409 import \ from opencompass.configs.models.mistral.hf_mistral_small_instruct_2409 import \
models as hf_mistral_small_instruct_2409_model # noqa: F401, E501 models as hf_mistral_small_instruct_2409_model # noqa: F401, E501
from opencompass.configs.models.mistral.hf_mixtral_8x7b_instruct_v0_1 import \
models as hf_mixtral_8x7b_instruct_v0_1_model # noqa: F401, E501
from opencompass.configs.models.mistral.hf_mixtral_8x22b_instruct_v0_1 import \
models as hf_mixtral_8x22b_instruct_v0_1_model # noqa: F401, E501
from opencompass.configs.models.mistral.lmdeploy_mistral_large_instruct_2411 import \ from opencompass.configs.models.mistral.lmdeploy_mistral_large_instruct_2411 import \
models as \ models as \
lmdeploy_mistral_large_instruct_2411_model # noqa: F401, E501 lmdeploy_mistral_large_instruct_2411_model # noqa: F401, E501
@ -95,14 +105,19 @@ with read_base():
from opencompass.configs.models.mistral.lmdeploy_mistral_small_instruct_2409 import \ from opencompass.configs.models.mistral.lmdeploy_mistral_small_instruct_2409 import \
models as \ models as \
lmdeploy_mistral_small_instruct_2409_model # noqa: F401, E501 lmdeploy_mistral_small_instruct_2409_model # noqa: F401, E501
from opencompass.configs.models.mistral.lmdeploy_mixtral_8x22b_instruct_v0_1 import \
models as \
lmdeploy_mixtral_8x22b_instruct_v0_1_model # noqa: F401, E501
from opencompass.configs.models.mistral.vllm_mistral_7b_instruct_v0_1 import \ from opencompass.configs.models.mistral.vllm_mistral_7b_instruct_v0_1 import \
models as vllm_mistral_7b_instruct_v0_1_model # noqa: F401, E501 models as vllm_mistral_7b_instruct_v0_1_model # noqa: F401, E501
from opencompass.configs.models.mistral.vllm_mistral_7b_instruct_v0_2 import \ from opencompass.configs.models.mistral.vllm_mistral_7b_instruct_v0_2 import \
models as vllm_mistral_7b_instruct_v0_2_model # noqa: F401, E501 models as vllm_mistral_7b_instruct_v0_2_model # noqa: F401, E501
from opencompass.configs.models.mistral.vllm_mixtral_8x22b_instruct_v0_1 import \
models as vllm_mixtral_8x22b_instruct_v0_1_model # noqa: F401, E501
from opencompass.configs.models.nvidia.lmdeploy_nemotron_70b_instruct_hf import \ from opencompass.configs.models.nvidia.lmdeploy_nemotron_70b_instruct_hf import \
models as lmdeploy_nemotron_70b_instruct_hf_model # noqa: F401, E501 models as lmdeploy_nemotron_70b_instruct_hf_model # noqa: F401, E501
from opencompass.configs.models.phi.hf_phi_3_mini_4k_instruct import \ from opencompass.configs.models.phi.hf_phi_4 import \
models as hf_phi_3_mini_4k_instruct_model # noqa: F401, E501 models as hf_phi_4_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.hf_qwen2_5_0_5b_instruct import \ from opencompass.configs.models.qwen2_5.hf_qwen2_5_0_5b_instruct import \
models as hf_qwen2_5_0_5b_instruct_model # noqa: F401, E501 models as hf_qwen2_5_0_5b_instruct_model # noqa: F401, E501
from opencompass.configs.models.qwen2_5.hf_qwen2_5_3b_instruct import \ from opencompass.configs.models.qwen2_5.hf_qwen2_5_3b_instruct import \
@ -142,6 +157,8 @@ with read_base():
from ...volc import infer as volc_infer # noqa: F401, E501 from ...volc import infer as volc_infer # noqa: F401, E501
hf_glm4_9b_chat_model[0]['path'] = 'THUDM/glm-4-9b-chat-hf'
race_datasets = [race_datasets[1]] race_datasets = [race_datasets[1]]
datasets = sum([v for k, v in locals().items() if k.endswith('_datasets')], []) datasets = sum([v for k, v in locals().items() if k.endswith('_datasets')], [])

View File

@ -175,10 +175,11 @@ class TestApibench:
class TestVolcFullbench: class TestVolcFullbench:
"""Test cases for chat model.""" """Test cases for chat model."""
@pytest.mark.parametrize( @pytest.mark.parametrize('model, dataset', [(p1, p2) for p1 in [
'model, dataset', 'internlm2_5-7b-chat-turbomind', 'qwen2.5-7b-instruct-turbomind',
[(p1, p2) for p1 in ['internlm2_5-7b-chat-turbomind'] 'internlm2_5-7b-chat-pytorch', 'qwen2.5-7b-instruct-pytorch',
for p2 in dataset_list('internlm2_5-7b-chat-turbomind', 'objective')]) 'internlm3-8b-instruct-turbomind', 'internlm3-8b-instruct-pytorch'
] for p2 in dataset_list(p1, 'objective')])
@pytest.mark.chat_objective @pytest.mark.chat_objective
def test_chat_objective(self, baseline_scores_fullbench, result_scores, def test_chat_objective(self, baseline_scores_fullbench, result_scores,
model, dataset): model, dataset):
@ -245,10 +246,7 @@ class TestCmdCase:
@pytest.mark.parametrize('model, dataset', @pytest.mark.parametrize('model, dataset',
[('internlm2_5-7b-hf', 'race-middle_accuracy'), [('internlm2_5-7b-hf', 'race-middle_accuracy'),
('internlm2_5-7b-hf', 'race-high_accuracy'), ('internlm2_5-7b-hf', 'race-high_accuracy'),
('internlm2_5-7b-hf', 'demo_gsm8k_accuracy'), ('internlm2_5-7b-hf', 'demo_gsm8k_accuracy')])
('internlm2-1.8b-hf', 'race-middle_accuracy'),
('internlm2-1.8b-hf', 'race-high_accuracy'),
('internlm2-1.8b-hf', 'demo_gsm8k_accuracy')])
def test_cmd_case1(self, baseline_scores, result_scores, model, dataset): def test_cmd_case1(self, baseline_scores, result_scores, model, dataset):
base_score = baseline_scores.get(model).get(dataset) base_score = baseline_scores.get(model).get(dataset)
result_score = result_scores.get(model).get(dataset) result_score = result_scores.get(model).get(dataset)
@ -260,9 +258,9 @@ class TestCmdCase:
[('internlm2_5-7b-chat-lmdeploy', 'race-middle_accuracy'), [('internlm2_5-7b-chat-lmdeploy', 'race-middle_accuracy'),
('internlm2_5-7b-chat-lmdeploy', 'race-high_accuracy'), ('internlm2_5-7b-chat-lmdeploy', 'race-high_accuracy'),
('internlm2_5-7b-chat-lmdeploy', 'demo_gsm8k_accuracy'), ('internlm2_5-7b-chat-lmdeploy', 'demo_gsm8k_accuracy'),
('internlm2-chat-1.8b-lmdeploy', 'race-middle_accuracy'), ('internlm3-8b-instruct-lmdeploy', 'race-middle_accuracy'),
('internlm2-chat-1.8b-lmdeploy', 'race-high_accuracy'), ('internlm3-8b-instruct-lmdeploy', 'race-high_accuracy'),
('internlm2-chat-1.8b-lmdeploy', 'demo_gsm8k_accuracy')]) ('internlm3-8b-instruct-lmdeploy', 'demo_gsm8k_accuracy')])
def test_cmd_case2(self, baseline_scores, result_scores, model, dataset): def test_cmd_case2(self, baseline_scores, result_scores, model, dataset):
base_score = baseline_scores.get(model).get(dataset) base_score = baseline_scores.get(model).get(dataset)
result_score = result_scores.get(model).get(dataset) result_score = result_scores.get(model).get(dataset)
@ -280,13 +278,25 @@ class TestCmdCase:
@pytest.mark.case4 @pytest.mark.case4
@pytest.mark.parametrize( @pytest.mark.parametrize(
'model, dataset', [('internlm2_5-7b-chat_hf', 'race-middle_accuracy'), 'model, dataset',
('internlm2_5-7b-chat_hf', 'race-high_accuracy'), [('internlm3-8b-instruct_hf-lmdeploy', 'race-middle_accuracy'),
('internlm2_5-7b-chat_hf', 'demo_gsm8k_accuracy')]) ('internlm3-8b-instruct_hf-lmdeploy', 'race-high_accuracy'),
('internlm3-8b-instruct_hf-lmdeploy', 'demo_gsm8k_accuracy')])
def test_cmd_case4(self, baseline_scores, result_scores, model, dataset): def test_cmd_case4(self, baseline_scores, result_scores, model, dataset):
base_score = baseline_scores.get(model).get(dataset) base_score = baseline_scores.get(model).get(dataset)
result_score = result_scores.get(model).get(dataset) result_score = result_scores.get(model).get(dataset)
assert_score(model, result_score, base_score, dataset) assert_score(model + '_batch', result_score, base_score, dataset)
@pytest.mark.case5
@pytest.mark.parametrize(
'model, dataset',
[('internlm3-8b-instruct_hf-vllm', 'race-middle_accuracy'),
('internlm3-8b-instruct_hf-vllm', 'race-high_accuracy'),
('internlm3-8b-instruct_hf-vllm', 'demo_gsm8k_accuracy')])
def test_cmd_case5(self, baseline_scores, result_scores, model, dataset):
base_score = baseline_scores.get(model).get(dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(model + '_batch', result_score, base_score, dataset)
def assert_score(model_type, score, baseline, dataset: str = ''): def assert_score(model_type, score, baseline, dataset: str = ''):

View File

@ -8,20 +8,25 @@ internlm2_5-7b_hf:
race-middle_accuracy: 91.78 race-middle_accuracy: 91.78
race-high_accuracy: 90.02 race-high_accuracy: 90.02
internlm2-1.8b-hf:
demo_gsm8k_accuracy: 15.62
race-middle_accuracy: 71.66
race-high_accuracy: 66.38
internlm2_5-7b-chat-lmdeploy: internlm2_5-7b-chat-lmdeploy:
demo_gsm8k_accuracy: 89.06 demo_gsm8k_accuracy: 87.50
race-middle_accuracy: 92.76 race-middle_accuracy: 92.76
race-high_accuracy: 90.54 race-high_accuracy: 90.54
internlm2-chat-1.8b-lmdeploy: internlm3-8b-instruct-lmdeploy:
demo_gsm8k_accuracy: 31 demo_gsm8k_accuracy: 73.44
race-middle_accuracy: 81.34 race-middle_accuracy: 93.38
race-high_accuracy: 73.96 race-high_accuracy: 90.34
internlm3-8b-instruct_hf-lmdeploy:
demo_gsm8k_accuracy: 73.44
race-middle_accuracy: 93.38
race-high_accuracy: 90.34
internlm3-8b-instruct_hf-vllm:
demo_gsm8k_accuracy: 81.25
race-middle_accuracy: 92.20
race-high_accuracy: 89.88
internlm2_5-7b-chat_hf: internlm2_5-7b-chat_hf:
demo_gsm8k_accuracy: 87.50 demo_gsm8k_accuracy: 87.50
@ -29,6 +34,6 @@ internlm2_5-7b-chat_hf:
race-high_accuracy: 90.48 race-high_accuracy: 90.48
lmdeploy-api-test: lmdeploy-api-test:
gsm8k_accuracy: 68.75 gsm8k_accuracy: 56.25
race-middle_accuracy: 87.50 race-middle_accuracy: 93.75
race-high_accuracy: 93.75 race-high_accuracy: 93.75

View File

@ -24,8 +24,8 @@ internlm2_5-7b-chat-hf_fullbench:
lcb_test_output_pass@1: 18.75 lcb_test_output_pass@1: 18.75
bbh-logical_deduction_seven_objects_score: 50 bbh-logical_deduction_seven_objects_score: 50
bbh-multistep_arithmetic_two_score: 68.75 bbh-multistep_arithmetic_two_score: 68.75
mmlu-other_naive_average: 72.6 mmlu-other_accuracy: 72.6
cmmlu-china-specific_naive_average: 76.25 cmmlu-china-specific_accuracy: 76.25
mmlu_pro_math_accuracy: 25 mmlu_pro_math_accuracy: 25
ds1000_Pandas_accuracy: 12.5 ds1000_Pandas_accuracy: 12.5
ds1000_Numpy_accuracy: 0 ds1000_Numpy_accuracy: 0
@ -39,15 +39,15 @@ internlm2_5-7b-chat-hf_fullbench:
college_knowledge_naive_average: 87.5 college_knowledge_naive_average: 87.5
subjective: subjective:
alignment_bench_v1_1_总分: 0.66 alignment_bench_v1_1_总分: 0.66
alpaca_eval_total: 20 alpaca_eval_total: 0
arenahard_score: 50 arenahard_score: 50
Followbench_naive_average: 1 Followbench_naive_average: 1
CompassArena_naive_average: 43 CompassArena_naive_average: 43
mtbench101_avg: 7.8 mtbench101_avg: 7.8
wildbench_average: -12.78 wildbench_average: -15.56
simpleqa_accuracy_given_attempted: 0 simpleqa_accuracy_given_attempted: 0
chinese_simpleqa_given_attempted_accuracy: 1 chinese_simpleqa_given_attempted_accuracy: 1
alignment_bench_v1_1_专业能力: 7.90 alignment_bench_v1_1_专业能力: 8.00
alignment_bench_v1_1_数学计算: 0 alignment_bench_v1_1_数学计算: 0
alignment_bench_v1_1_基本任务: 0 alignment_bench_v1_1_基本任务: 0
alignment_bench_v1_1_逻辑推理: 0 alignment_bench_v1_1_逻辑推理: 0
@ -55,7 +55,7 @@ internlm2_5-7b-chat-hf_fullbench:
alignment_bench_v1_1_文本写作: 0 alignment_bench_v1_1_文本写作: 0
alignment_bench_v1_1_角色扮演: 0 alignment_bench_v1_1_角色扮演: 0
alignment_bench_v1_1_综合问答: 0 alignment_bench_v1_1_综合问答: 0
alpaca_eval_helpful_base: 20 alpaca_eval_helpful_base: 0
compassarena_language_naive_average: 35 compassarena_language_naive_average: 35
compassarena_knowledge_naive_average: 55 compassarena_knowledge_naive_average: 55
compassarena_reason_v2_naive_average: 40 compassarena_reason_v2_naive_average: 40
@ -78,53 +78,53 @@ internlm2_5-7b-chat-hf_fullbench:
internlm2_5-7b-chat-turbomind_fullbench: internlm2_5-7b-chat-turbomind_fullbench:
objective: objective:
race-high_accuracy: 93.75 race-high_accuracy: 93.75
ARC-c_accuracy: 93.75 ARC-c_accuracy: 87.50
BoolQ_accuracy: 68.75 BoolQ_accuracy: 68.75
triviaqa_wiki_1shot_score: 50 triviaqa_wiki_1shot_score: 50
nq_open_1shot_score: 25 nq_open_1shot_score: 25
IFEval_Prompt-level-strict-accuracy: 56.25 IFEval_Prompt-level-strict-accuracy: 56.25
drop_accuracy: 81.25 drop_accuracy: 75
GPQA_diamond_accuracy: 31.25 GPQA_diamond_accuracy: 31.25
hellaswag_accuracy: 81.25 hellaswag_accuracy: 87.5
TheoremQA_score: 6.25 TheoremQA_score: 12.5
musr_average_naive_average: 39.58 musr_average_naive_average: 39.58
korbench_single_naive_average: 37.50 korbench_single_naive_average: 40
gsm8k_accuracy: 68.75 gsm8k_accuracy: 62.5
math_accuracy: 68.75 math_accuracy: 75
cmo_fib_accuracy: 6.25 cmo_fib_accuracy: 6.25
aime2024_accuracy: 6.25 aime2024_accuracy: 6.25
wikibench-wiki-single_choice_cncircular_perf_4: 50.00 wikibench-wiki-single_choice_cncircular_perf_4: 25
sanitized_mbpp_score: 68.75 sanitized_mbpp_score: 68.75
ds1000_naive_average: 16.96 ds1000_naive_average: 17.86
lcb_code_generation_pass@1: 12.5 lcb_code_generation_pass@1: 12.5
lcb_code_execution_pass@1: 43.75 lcb_code_execution_pass@1: 43.75
lcb_test_output_pass@1: 25.00 lcb_test_output_pass@1: 18.75
bbh-logical_deduction_seven_objects_score: 50.00 bbh-logical_deduction_seven_objects_score: 56.25
bbh-multistep_arithmetic_two_score: 68.75 bbh-multistep_arithmetic_two_score: 75
mmlu-other_naive_average: 69.71 mmlu-other_accuracy: 72.6
cmmlu-china-specific_naive_average: 75.83 cmmlu-china-specific_accuracy: 78.33
mmlu_pro_math_accuracy: 31.25 mmlu_pro_math_accuracy: 31.25
ds1000_Pandas_accuracy: 0 ds1000_Pandas_accuracy: 12.5
ds1000_Numpy_accuracy: 0 ds1000_Numpy_accuracy: 0
ds1000_Tensorflow_accuracy: 12.5 ds1000_Tensorflow_accuracy: 12.5
ds1000_Scipy_accuracy: 18.75 ds1000_Scipy_accuracy: 25
ds1000_Sklearn_accuracy: 18.75 ds1000_Sklearn_accuracy: 18.75
ds1000_Pytorch_accuracy: 18.75 ds1000_Pytorch_accuracy: 6.25
ds1000_Matplotlib_accuracy: 50.00 ds1000_Matplotlib_accuracy: 50.00
openai_mmmlu_lite_AR-XY_accuracy: 37.5 openai_mmmlu_lite_AR-XY_accuracy: 37.5
college_naive_average: 12.50 college_naive_average: 12.50
college_knowledge_naive_average: 87.5 college_knowledge_naive_average: 87.5
subjective: subjective:
alignment_bench_v1_1_总分: 0.70 alignment_bench_v1_1_总分: 0.66
alpaca_eval_total: 0 alpaca_eval_total: 0
arenahard_score: 50 arenahard_score: 50
Followbench_naive_average: 1 Followbench_naive_average: 1
CompassArena_naive_average: 38 CompassArena_naive_average: 40
mtbench101_avg: 7.80 mtbench101_avg: 8
wildbench_average: -4.86 wildbench_average: -6.81
simpleqa_accuracy_given_attempted: 0 simpleqa_accuracy_given_attempted: 0
chinese_simpleqa_given_attempted_accuracy: 1 chinese_simpleqa_given_attempted_accuracy: 1
alignment_bench_v1_1_专业能力: 8.4 alignment_bench_v1_1_专业能力: 7.9
alignment_bench_v1_1_数学计算: 0 alignment_bench_v1_1_数学计算: 0
alignment_bench_v1_1_基本任务: 0 alignment_bench_v1_1_基本任务: 0
alignment_bench_v1_1_逻辑推理: 0 alignment_bench_v1_1_逻辑推理: 0
@ -134,10 +134,10 @@ internlm2_5-7b-chat-turbomind_fullbench:
alignment_bench_v1_1_综合问答: 0 alignment_bench_v1_1_综合问答: 0
alpaca_eval_helpful_base: 0 alpaca_eval_helpful_base: 0
compassarena_language_naive_average: 35 compassarena_language_naive_average: 35
compassarena_knowledge_naive_average: 50 compassarena_knowledge_naive_average: 45
compassarena_reason_v2_naive_average: 30 compassarena_reason_v2_naive_average: 25
compassarena_math_v2_naive_average: 50 compassarena_math_v2_naive_average: 60
compassarena_creationv2_zh_naive_average: 25 compassarena_creationv2_zh_naive_average: 35
followbench_llmeval_en_HSR_AVG: 1 followbench_llmeval_en_HSR_AVG: 1
followbench_llmeval_en_SSR_AVG: 1 followbench_llmeval_en_SSR_AVG: 1
followbench_llmeval_en_HSR_L1: 1 followbench_llmeval_en_HSR_L1: 1
@ -190,20 +190,20 @@ internlm2_5-7b-turbomind_fullbench:
drop_accuracy: 62.5 drop_accuracy: 62.5
GPQA_diamond_accuracy: 62.5 GPQA_diamond_accuracy: 62.5
hellaswag_accuracy: 93.75 hellaswag_accuracy: 93.75
TheoremQA_score: 25.00 TheoremQA_score: 31.25
winogrande_accuracy: 87.5 winogrande_accuracy: 87.5
gsm8k_accuracy: 62.50 gsm8k_accuracy: 56.25
GaokaoBench_2010-2022_Math_II_MCQs_score: 81.25 GaokaoBench_2010-2022_Math_II_MCQs_score: 68.75
GaokaoBench_2010-2022_Math_II_Fill-in-the-Blank_score: 0 GaokaoBench_2010-2022_Math_II_Fill-in-the-Blank_score: 0
math_accuracy: 18.75 math_accuracy: 18.75
wikibench-wiki-single_choice_cncircular_perf_4: 25 wikibench-wiki-single_choice_cncircular_perf_4: 25
sanitized_mbpp_score: 62.50 sanitized_mbpp_score: 62.50
dingo_en_192_score: 31.25 dingo_en_192_score: 50.00
dingo_zh_170_score: 93.75 dingo_zh_170_score: 93.75
mmlu-other_accuracy: 76.92 mmlu-other_accuracy: 76.92
cmmlu-china-specific_accuracy: 84.17 cmmlu-china-specific_accuracy: 84.17
mmlu_pro_math_accuracy: 18.75 mmlu_pro_math_accuracy: 18.75
bbh-logical_deduction_seven_objects_score: 50 bbh-logical_deduction_seven_objects_score: 43.75
bbh-multistep_arithmetic_two_score: 56.25 bbh-multistep_arithmetic_two_score: 56.25
college_naive_average: 12.5 college_naive_average: 12.5
college_knowledge_naive_average: 87.5 college_knowledge_naive_average: 87.5
@ -234,15 +234,15 @@ internlm2_5-7b-turbomind:
sanitized_mbpp_score: 55.25 sanitized_mbpp_score: 55.25
dingo_en_192_score: 60.94 dingo_en_192_score: 60.94
dingo_zh_170_score: 67.65 dingo_zh_170_score: 67.65
mmlu-stem_naive_average: 63.72 mmlu-stem_accuracy: 63.72
mmlu-social-science_naive_average: 80.15 mmlu-social-science_accuracy: 80.15
mmlu-humanities_naive_average: 74.27 mmlu-humanities_accuracy: 74.27
mmlu-other_naive_average: 71.85 mmlu-other_accuracy: 71.85
cmmlu-stem_naive_average: 67.07 cmmlu-stem_accuracy: 67.07
cmmlu-social-science_naive_average: 81.49 cmmlu-social-science_accuracy: 81.49
cmmlu-humanities_naive_average: 85.84 cmmlu-humanities_accuracy: 85.84
cmmlu-other_naive_average: 82.69 cmmlu-other_accuracy: 82.69
cmmlu-china-specific_naive_average: 79.88 cmmlu-china-specific_accuracy: 79.88
mmlu_pro_biology_accuracy: 58.58 mmlu_pro_biology_accuracy: 58.58
mmlu_pro_business_accuracy: 28.01 mmlu_pro_business_accuracy: 28.01
mmlu_pro_chemistry_accuracy: 22.79 mmlu_pro_chemistry_accuracy: 22.79
@ -281,12 +281,12 @@ internlm2_5-7b-turbomind:
longbench_naive_average: 46.19 longbench_naive_average: 46.19
longbench_zh_naive_average: 49.3 longbench_zh_naive_average: 49.3
longbench_en_naive_average: 43.97 longbench_en_naive_average: 43.97
longbench_single-document-qa_naive_average: 42.84 longbench_single-document-qa_score: 42.84
longbench_multi-document-qa_naive_average: 37.29 longbench_multi-document-qa_score: 41.25
longbench_summarization_naive_average: 23.21 longbench_summarization_score: 23.21
longbench_few-shot-learning_naive_average: 61.67 longbench_few-shot-learning_score: 61.67
longbench_synthetic-tasks_naive_average: 60.05 longbench_synthetic-tasks_score: 60.05
longbench_code-completion_naive_average: 52.09 longbench_code-completion_score: 52.09
internlm2_5-7b-chat-turbomind: internlm2_5-7b-chat-turbomind:
objective: objective:
@ -327,15 +327,15 @@ internlm2_5-7b-chat-turbomind:
teval_naive_average: 80 teval_naive_average: 80
SciCode_sub_accuracy: 5.56 SciCode_sub_accuracy: 5.56
qa_dingo_cn_score: 99.01 qa_dingo_cn_score: 99.01
mmlu-stem_naive_average: 68.2 mmlu-stem_accuracy: 68.2
mmlu-social-science_naive_average: 75.8 mmlu-social-science_accuracy: 75.8
mmlu-humanities_naive_average: 69.3 mmlu-humanities_accuracy: 69.3
mmlu-other_naive_average: 71.3 mmlu-other_accuracy: 71.3
cmmlu-stem_naive_average: 66.64 cmmlu-stem_accuracy: 66.64
cmmlu-social-science_naive_average: 76 cmmlu-social-science_accuracy: 76
cmmlu-humanities_naive_average: 77.9 cmmlu-humanities_accuracy: 77.9
cmmlu-other_naive_average: 77.25 cmmlu-other_accuracy: 77.25
cmmlu-china-specific_naive_average: 73.6 cmmlu-china-specific_accuracy: 73.6
mmlu_pro_biology_accuracy: 66.67 mmlu_pro_biology_accuracy: 66.67
mmlu_pro_business_accuracy: 47.91 mmlu_pro_business_accuracy: 47.91
mmlu_pro_chemistry_accuracy: 35 mmlu_pro_chemistry_accuracy: 35
@ -409,7 +409,7 @@ internlm2_5-7b-chat-turbomind:
alpaca_eval_koala: 28.21 alpaca_eval_koala: 28.21
alpaca_eval_oasst: 23.4 alpaca_eval_oasst: 23.4
alpaca_eval_selfinstruct: 30.95 alpaca_eval_selfinstruct: 30.95
alpaca_eval_vicuna: 25 alpaca_eval_vicuna: 33.75
compassarena_language_naive_average: 52.5 compassarena_language_naive_average: 52.5
compassarena_knowledge_naive_average: 36 compassarena_knowledge_naive_average: 36
compassarena_reason_v2_naive_average: 35 compassarena_reason_v2_naive_average: 35
@ -448,9 +448,536 @@ internlm2_5-7b-chat-1m-turbomind:
babilong_32k_naive_average: 48.9 babilong_32k_naive_average: 48.9
babilong_128k_naive_average: 40.8 babilong_128k_naive_average: 40.8
babilong_256k_naive_average: 23.5 babilong_256k_naive_average: 23.5
longbench_single-document-qa_naive_average: 43.56 longbench_single-document-qa_score: 43.56
longbench_multi-document-qa_naive_average: 46.24 longbench_multi-document-qa_score: 46.24
longbench_summarization_naive_average: 24.32 longbench_summarization_score: 24.32
longbench_few-shot-learning_naive_average: 51.67 longbench_few-shot-learning_score: 51.67
longbench_synthetic-tasks_naive_average: 66.83 longbench_synthetic-tasks_score: 66.83
longbench_code-completion_naive_average: 45.99 longbench_code-completion_score: 45.99
qwen2.5-7b-instruct-turbomind:
objective:
race-high_accuracy: 84.99
ARC-c_accuracy: 92.2
BoolQ_accuracy: 86.7
triviaqa_wiki_1shot_score: 53.06
nq_open_1shot_score: 17.51
mmmlu_lite_naive_average: 54.96
IFEval_Prompt-level-strict-accuracy: 71.53
drop_accuracy: 80.07
bbh_naive_average: 68.81
GPQA_diamond_accuracy: 34.34
hellaswag_accuracy: 85.42
TheoremQA_score: 18.38
musr_average_naive_average: 43.44
korbench_single_naive_average: 39.44
ARC_Prize_Public_Evaluation_accuracy: 0
gsm8k_accuracy: 92.57
GaokaoBench_weighted_average: 80.14
math_accuracy: 73.58
cmo_fib_accuracy: 25
aime2024_accuracy: 16.67
Mathbench_naive_average: 77.33
wikibench-wiki-single_choice_cncircular_perf_4: 34.9
cmmlu_naive_average: 75.97
mmlu_naive_average: 76.01
mmlu_pro_naive_average: 56.12
openai_humaneval_humaneval_pass@1: 83.54
sanitized_mbpp_score: 74.71
humanevalx_naive_average: 48.29
ds1000_naive_average: 18.66
lcb_code_generation_pass@1: 39.5
lcb_code_execution_pass@1: 42.38
lcb_test_output_pass@1: 50.68
bigcodebench_hard_instruct_pass@1: 16.22
bigcodebench_hard_complete_pass@1: 11.49
teval_naive_average: 79.72
SciCode_sub_accuracy: 100
qa_dingo_cn_score: 99.01
mmlu_accuracy: 76.01
mmlu-stem_accuracy: 77.59
mmlu-social-science_accuracy: 79.02
mmlu-humanities_accuracy: 72.07
mmlu-other_accuracy: 74.86
cmmlu_accuracy: 75.97
cmmlu-stem_accuracy: 73.09
cmmlu-social-science_accuracy: 75.95
cmmlu-humanities_accuracy: 76.53
cmmlu-other_accuracy: 78.79
cmmlu-china-specific_accuracy: 73.17
mmlu_pro_accuracy: 56.12
mmlu_pro_biology_accuracy: 71.41
mmlu_pro_business_accuracy: 67.68
mmlu_pro_chemistry_accuracy: 54.59
mmlu_pro_computer_science_accuracy: 58.29
mmlu_pro_economics_accuracy: 66.82
mmlu_pro_engineering_accuracy: 42.41
mmlu_pro_health_accuracy: 55.87
mmlu_pro_history_accuracy: 46.46
mmlu_pro_law_accuracy: 28.97
mmlu_pro_math_accuracy: 73.13
mmlu_pro_philosophy_accuracy: 44.89
mmlu_pro_physics_accuracy: 58.43
mmlu_pro_psychology_accuracy: 63.16
mmlu_pro_other_accuracy: 53.57
humanevalx-python_pass@1: 50
humanevalx-cpp_pass@1: 42.07
humanevalx-go_pass@1: 0
humanevalx-java_pass@1: 74.39
humanevalx-js_pass@1: 75
ds1000_Pandas_accuracy: 14.09
ds1000_Numpy_accuracy: 8.18
ds1000_Tensorflow_accuracy: 17.78
ds1000_Scipy_accuracy: 15.09
ds1000_Sklearn_accuracy: 10.43
ds1000_Pytorch_accuracy: 4.41
ds1000_Matplotlib_accuracy: 60.65
mmmlu_lite_accuracy: 54.96
openai_mmmlu_lite_AR-XY_accuracy: 42.32
openai_mmmlu_lite_BN-BD_accuracy: 42.25
openai_mmmlu_lite_DE-DE_accuracy: 59.93
openai_mmmlu_lite_ES-LA_accuracy: 66.53
openai_mmmlu_lite_FR-FR_accuracy: 66.88
openai_mmmlu_lite_HI-IN_accuracy: 49.26
openai_mmmlu_lite_ID-ID_accuracy: 61.26
openai_mmmlu_lite_IT-IT_accuracy: 65.47
openai_mmmlu_lite_JA-JP_accuracy: 61.54
openai_mmmlu_lite_KO-KR_accuracy: 60.28
openai_mmmlu_lite_PT-BR_accuracy: 55.51
openai_mmmlu_lite_SW-KE_accuracy: 36.42
openai_mmmlu_lite_YO-NG_accuracy: 32.14
openai_mmmlu_lite_ZH-CN_accuracy: 69.61
college_naive_average: 48
high_naive_average: 59
middle_naive_average: 78
primary_naive_average: 85.67
arithmetic_naive_average: 75.67
mathbench-a (average)_naive_average: 69.27
college_knowledge_naive_average: 83.86
high_knowledge_naive_average: 80.29
middle_knowledge_naive_average: 84.26
primary_knowledge_naive_average: 93.16
mathbench-t (average)_naive_average: 85.39
internlm2_5-7b-chat-pytorch:
objective:
race-high_accuracy: 86.39
ARC-c_accuracy: 90.51
BoolQ_accuracy: 88.01
triviaqa_wiki_1shot_score: 64.77
nq_open_1shot_score: 22.71
mmmlu_lite_naive_average: 45.02
IFEval_Prompt-level-strict-accuracy: 56.56
drop_accuracy: 75.46
bbh_naive_average: 73.34
GPQA_diamond_accuracy: 32.83
hellaswag_accuracy: 94.81
TheoremQA_score: 23.88
musr_average_naive_average: 51.31
korbench_single_naive_average: 32
ARC_Prize_Public_Evaluation_accuracy: 0.01
gsm8k_accuracy: 86.96
GaokaoBench_weighted_average: 78.05
math_accuracy: 60.34
cmo_fib_accuracy: 12.98
aime2024_accuracy: 3.33
Mathbench_naive_average: 64.82
wikibench-wiki-single_choice_cncircular_perf_4: 31.7
cmmlu_naive_average: 74.24
mmlu_naive_average: 70.2
mmlu_pro_naive_average: 45.39
openai_humaneval_humaneval_pass@1: 70.12
sanitized_mbpp_score: 64.59
humanevalx_naive_average: 38.78
ds1000_naive_average: 14.19
lcb_code_generation_pass@1: 16.5
lcb_code_execution_pass@1: 33.82
lcb_test_output_pass@1: 22.62
bigcodebench_hard_instruct_pass@1: 6.08
bigcodebench_hard_complete_pass@1: 6.76
teval_naive_average: 79.73
SciCode_sub_accuracy: 100
qa_dingo_cn_score: 100
mmlu_accuracy: 70.2
mmlu-stem_accuracy: 67.73
mmlu-social-science_accuracy: 75.49
mmlu-humanities_accuracy: 68.56
mmlu-other_accuracy: 70.58
cmmlu_accuracy: 74.24
cmmlu-stem_accuracy: 66.7
cmmlu-social-science_accuracy: 75.88
cmmlu-humanities_accuracy: 77.56
cmmlu-other_accuracy: 77.52
cmmlu-china-specific_accuracy: 73.46
mmlu_pro_accuracy: 45.39
mmlu_pro_biology_accuracy: 65.83
mmlu_pro_business_accuracy: 51.96
mmlu_pro_chemistry_accuracy: 36.84
mmlu_pro_computer_science_accuracy: 48.29
mmlu_pro_economics_accuracy: 56.16
mmlu_pro_engineering_accuracy: 29.1
mmlu_pro_health_accuracy: 44.5
mmlu_pro_history_accuracy: 42.26
mmlu_pro_law_accuracy: 24.98
mmlu_pro_math_accuracy: 54.85
mmlu_pro_philosophy_accuracy: 39.28
mmlu_pro_physics_accuracy: 37.41
mmlu_pro_psychology_accuracy: 58.27
mmlu_pro_other_accuracy: 45.78
humanevalx-python_pass@1: 56.1
humanevalx-cpp_pass@1: 20.73
humanevalx-go_pass@1: 0
humanevalx-java_pass@1: 59.15
humanevalx-js_pass@1: 57.93
ds1000_Pandas_accuracy: 8.93
ds1000_Numpy_accuracy: 4.09
ds1000_Tensorflow_accuracy: 11.11
ds1000_Scipy_accuracy: 7.55
ds1000_Sklearn_accuracy: 7.83
ds1000_Pytorch_accuracy: 8.82
ds1000_Matplotlib_accuracy: 50.97
mmmlu_lite_accuracy: 45.02
openai_mmmlu_lite_AR-XY_accuracy: 18.6
openai_mmmlu_lite_BN-BD_accuracy: 27.58
openai_mmmlu_lite_DE-DE_accuracy: 51.23
openai_mmmlu_lite_ES-LA_accuracy: 56.63
openai_mmmlu_lite_FR-FR_accuracy: 58.11
openai_mmmlu_lite_HI-IN_accuracy: 33.82
openai_mmmlu_lite_ID-ID_accuracy: 50.39
openai_mmmlu_lite_IT-IT_accuracy: 50.39
openai_mmmlu_lite_JA-JP_accuracy: 50.95
openai_mmmlu_lite_KO-KR_accuracy: 45.05
openai_mmmlu_lite_PT-BR_accuracy: 57.89
openai_mmmlu_lite_SW-KE_accuracy: 32.14
openai_mmmlu_lite_YO-NG_accuracy: 32.14
openai_mmmlu_lite_ZH-CN_accuracy: 65.33
college_naive_average: 21
high_naive_average: 47
middle_naive_average: 59.67
primary_naive_average: 76
arithmetic_naive_average: 62
mathbench-a (average)_naive_average: 53.13
college_knowledge_naive_average: 68.99
high_knowledge_naive_average: 70.06
middle_knowledge_naive_average: 78.53
primary_knowledge_naive_average: 88.49
mathbench-t (average)_naive_average: 76.51
qwen2.5-7b-instruct-pytorch:
objective:
race-high_accuracy: 85.16
ARC-c_accuracy: 90.85
BoolQ_accuracy: 86.61
triviaqa_wiki_1shot_score: 52.96
nq_open_1shot_score: 17.62
mmmlu_lite_naive_average: 54.7
IFEval_Prompt-level-strict-accuracy: 71.35
drop_accuracy: 80.23
bbh_naive_average: 68.88
GPQA_diamond_accuracy: 36.36
hellaswag_accuracy: 85.49
TheoremQA_score: 18.38
musr_average_naive_average: 43.3
korbench_single_naive_average: 39.44
ARC_Prize_Public_Evaluation_accuracy: 0
gsm8k_accuracy: 91.66
GaokaoBench_weighted_average: 80.02
math_accuracy: 73.74
cmo_fib_accuracy: 26.44
aime2024_accuracy: 10
Mathbench_naive_average: 77.08
wikibench-wiki-single_choice_cncircular_perf_4: 34
cmmlu_naive_average: 75.9
mmlu_naive_average: 76.27
mmlu_pro_naive_average: 56.14
openai_humaneval_humaneval_pass@1: 84.76
sanitized_mbpp_score: 74.71
humanevalx_naive_average: 48.17
ds1000_naive_average: 18.57
lcb_code_generation_pass@1: 38.75
lcb_code_execution_pass@1: 42.38
lcb_test_output_pass@1: 50.45
bigcodebench_hard_instruct_pass@1: 16.89
bigcodebench_hard_complete_pass@1: 12.16
teval_naive_average: 79.46
SciCode_sub_accuracy: 100
qa_dingo_cn_score: 100
mmlu_accuracy: 76.27
mmlu-stem_accuracy: 77.75
mmlu-social-science_accuracy: 78.65
mmlu-humanities_accuracy: 73.12
mmlu-other_accuracy: 75.05
cmmlu_accuracy: 75.9
cmmlu-stem_accuracy: 73.41
cmmlu-social-science_accuracy: 75.97
cmmlu-humanities_accuracy: 76.42
cmmlu-other_accuracy: 78.15
cmmlu-china-specific_accuracy: 73.27
mmlu_pro_accuracy: 56.14
mmlu_pro_biology_accuracy: 72.25
mmlu_pro_business_accuracy: 66.16
mmlu_pro_chemistry_accuracy: 55.65
mmlu_pro_computer_science_accuracy: 60.24
mmlu_pro_economics_accuracy: 66.82
mmlu_pro_engineering_accuracy: 41.38
mmlu_pro_health_accuracy: 54.89
mmlu_pro_history_accuracy: 46.46
mmlu_pro_law_accuracy: 29.06
mmlu_pro_math_accuracy: 73.58
mmlu_pro_philosophy_accuracy: 44.89
mmlu_pro_physics_accuracy: 60.05
mmlu_pro_psychology_accuracy: 61.9
mmlu_pro_other_accuracy: 52.6
humanevalx-python_pass@1: 51.83
humanevalx-cpp_pass@1: 42.68
humanevalx-go_pass@1: 0
humanevalx-java_pass@1: 73.78
humanevalx-js_pass@1: 72.56
ds1000_Pandas_accuracy: 14.09
ds1000_Numpy_accuracy: 8.64
ds1000_Tensorflow_accuracy: 17.78
ds1000_Scipy_accuracy: 15.09
ds1000_Sklearn_accuracy: 8.7
ds1000_Pytorch_accuracy: 4.41
ds1000_Matplotlib_accuracy: 61.29
mmmlu_lite_accuracy: 54.7
openai_mmmlu_lite_AR-XY_accuracy: 42.32
openai_mmmlu_lite_BN-BD_accuracy: 42.18
openai_mmmlu_lite_DE-DE_accuracy: 60
openai_mmmlu_lite_ES-LA_accuracy: 66.18
openai_mmmlu_lite_FR-FR_accuracy: 66.88
openai_mmmlu_lite_HI-IN_accuracy: 48.63
openai_mmmlu_lite_ID-ID_accuracy: 61.26
openai_mmmlu_lite_IT-IT_accuracy: 65.26
openai_mmmlu_lite_JA-JP_accuracy: 60.7
openai_mmmlu_lite_KO-KR_accuracy: 60.63
openai_mmmlu_lite_PT-BR_accuracy: 54.46
openai_mmmlu_lite_SW-KE_accuracy: 36
openai_mmmlu_lite_YO-NG_accuracy: 31.86
openai_mmmlu_lite_ZH-CN_accuracy: 69.4
college_naive_average: 48.33
high_naive_average: 59.33
middle_naive_average: 76.67
primary_naive_average: 86.67
arithmetic_naive_average: 74.33
mathbench-a (average)_naive_average: 69.07
college_knowledge_naive_average: 83.54
high_knowledge_naive_average: 80.82
middle_knowledge_naive_average: 83.79
primary_knowledge_naive_average: 92.22
mathbench-t (average)_naive_average: 85.1
internlm3-8b-instruct-turbomind:
objective:
race-high_accuracy: 89.22
ARC-c_accuracy: 92.54
BoolQ_accuracy: 86.45
triviaqa_wiki_1shot_score: 60.72
nq_open_1shot_score: 20.25
mmmlu_lite_naive_average: 41.82
IFEval_Prompt-level-strict-accuracy: 77.45
drop_accuracy: 83.27
bbh_naive_average: 55.22
GPQA_diamond_accuracy: 37.88
hellaswag_accuracy: 91.28
TheoremQA_score: 20.12
musr_average_naive_average: 36.86
korbench_single_naive_average: 41.2
ARC_Prize_Public_Evaluation_accuracy: 0.06
gsm8k_accuracy: 91.28
GaokaoBench_weighted_average: 86.59
math_accuracy: 76.96
cmo_fib_accuracy: 35.1
aime2024_accuracy: 16.67
Mathbench_naive_average: 78.96
wikibench-wiki-single_choice_cncircular_perf_4: 37.45
cmmlu_naive_average: 83.33
mmlu_naive_average: 76.21
mmlu_pro_naive_average: 57.96
openai_humaneval_humaneval_pass@1: 81.71
sanitized_mbpp_score: 69.65
humanevalx_naive_average: 40.73
ds1000_naive_average: 27.23
lcb_code_generation_pass@1: 34.75
lcb_code_execution_pass@1: 49.9
lcb_test_output_pass@1: 48.19
bigcodebench_hard_instruct_pass@1: 13.51
bigcodebench_hard_complete_pass@1: 15.54
teval_naive_average: 82.86
SciCode_sub_accuracy: 100
qa_dingo_cn_score: 100
mmlu_accuracy: 76.21
mmlu-stem_accuracy: 77.7
mmlu-social-science_accuracy: 80.98
mmlu-humanities_accuracy: 70.83
mmlu-other_accuracy: 75.01
cmmlu_accuracy: 83.33
cmmlu-stem_accuracy: 79.66
cmmlu-social-science_accuracy: 83.39
cmmlu-humanities_accuracy: 84.73
cmmlu-other_accuracy: 86.2
cmmlu-china-specific_accuracy: 81.77
mmlu_pro_accuracy: 57.96
mmlu_pro_biology_accuracy: 75.45
mmlu_pro_business_accuracy: 64.64
mmlu_pro_chemistry_accuracy: 59.81
mmlu_pro_computer_science_accuracy: 60.24
mmlu_pro_economics_accuracy: 68.6
mmlu_pro_engineering_accuracy: 44.79
mmlu_pro_health_accuracy: 58.31
mmlu_pro_history_accuracy: 49.87
mmlu_pro_law_accuracy: 32.43
mmlu_pro_math_accuracy: 70.17
mmlu_pro_philosophy_accuracy: 46.89
mmlu_pro_physics_accuracy: 59.58
mmlu_pro_psychology_accuracy: 66.29
mmlu_pro_other_accuracy: 54.33
humanevalx-python_pass@1: 43.9
humanevalx-cpp_pass@1: 20.12
humanevalx-go_pass@1: 0
humanevalx-java_pass@1: 74.39
humanevalx-js_pass@1: 65.24
ds1000_Pandas_accuracy: 16.49
ds1000_Numpy_accuracy: 34.09
ds1000_Tensorflow_accuracy: 26.67
ds1000_Scipy_accuracy: 17.92
ds1000_Sklearn_accuracy: 20.87
ds1000_Pytorch_accuracy: 19.12
ds1000_Matplotlib_accuracy: 55.48
mmmlu_lite_accuracy: 41.82
openai_mmmlu_lite_AR-XY_accuracy: 32.56
openai_mmmlu_lite_BN-BD_accuracy: 4.56
openai_mmmlu_lite_DE-DE_accuracy: 24.91
openai_mmmlu_lite_ES-LA_accuracy: 51.09
openai_mmmlu_lite_FR-FR_accuracy: 61.68
openai_mmmlu_lite_HI-IN_accuracy: 24.98
openai_mmmlu_lite_ID-ID_accuracy: 44.56
openai_mmmlu_lite_IT-IT_accuracy: 52.35
openai_mmmlu_lite_JA-JP_accuracy: 51.02
openai_mmmlu_lite_KO-KR_accuracy: 47.93
openai_mmmlu_lite_PT-BR_accuracy: 53.89
openai_mmmlu_lite_SW-KE_accuracy: 33.47
openai_mmmlu_lite_YO-NG_accuracy: 33.47
openai_mmmlu_lite_ZH-CN_accuracy: 69.05
college_naive_average: 45.67
high_naive_average: 64.67
middle_naive_average: 82.33
primary_naive_average: 90.33
arithmetic_naive_average: 74
mathbench-a (average)_naive_average: 71.4
college_knowledge_naive_average: 85.28
high_knowledge_naive_average: 79.43
middle_knowledge_naive_average: 87.9
primary_knowledge_naive_average: 93.42
mathbench-t (average)_naive_average: 86.51
internlm3-8b-instruct-pytorch:
objective:
race-high_accuracy: 89.02
ARC-c_accuracy: 93.56
BoolQ_accuracy: 86.67
triviaqa_wiki_1shot_score: 60.54
nq_open_1shot_score: 20.3
mmmlu_lite_naive_average: 42.6
IFEval_Prompt-level-strict-accuracy: 79.11
drop_accuracy: 83.32
bbh_naive_average: 54.76
GPQA_diamond_accuracy: 42.42
hellaswag_accuracy: 91.31
TheoremQA_score: 18
musr_average_naive_average: 36.62
korbench_single_naive_average: 41.84
ARC_Prize_Public_Evaluation_accuracy: 0.06
gsm8k_accuracy: 90.67
GaokaoBench_weighted_average: 86.27
math_accuracy: 76.68
cmo_fib_accuracy: 33.65
aime2024_accuracy: 10
Mathbench_naive_average: 78.92
wikibench-wiki-single_choice_cncircular_perf_4: 37.35
cmmlu_naive_average: 83.11
mmlu_naive_average: 76.23
mmlu_pro_naive_average: 58.16
openai_humaneval_humaneval_pass@1: 82.32
sanitized_mbpp_score: 70.04
humanevalx_naive_average: 39.76
ds1000_naive_average: 27.84
lcb_code_generation_pass@1: 34.5
lcb_code_execution_pass@1: 48.02
lcb_test_output_pass@1: 47.74
bigcodebench_hard_instruct_pass@1: 12.84
bigcodebench_hard_complete_pass@1: 15.54
teval_naive_average: 82.86
SciCode_sub_accuracy: 100
qa_dingo_cn_score: 100
mmlu_accuracy: 76.23
mmlu-stem_accuracy: 78.08
mmlu-social-science_accuracy: 80.31
mmlu-humanities_accuracy: 71.38
mmlu-other_accuracy: 74.63
cmmlu_accuracy: 83.11
cmmlu-stem_accuracy: 79.42
cmmlu-social-science_accuracy: 83.34
cmmlu-humanities_accuracy: 83.95
cmmlu-other_accuracy: 86.22
cmmlu-china-specific_accuracy: 81.5
mmlu_pro_accuracy: 58.16
mmlu_pro_biology_accuracy: 74.62
mmlu_pro_business_accuracy: 65.02
mmlu_pro_chemistry_accuracy: 60.69
mmlu_pro_computer_science_accuracy: 61.46
mmlu_pro_economics_accuracy: 68.25
mmlu_pro_engineering_accuracy: 45.3
mmlu_pro_health_accuracy: 60.15
mmlu_pro_history_accuracy: 50.66
mmlu_pro_law_accuracy: 31.7
mmlu_pro_math_accuracy: 70.32
mmlu_pro_philosophy_accuracy: 47.7
mmlu_pro_physics_accuracy: 59.51
mmlu_pro_psychology_accuracy: 65.41
mmlu_pro_other_accuracy: 53.46
humanevalx-python_pass@1: 42.68
humanevalx-cpp_pass@1: 19.51
humanevalx-go_pass@1: 0
humanevalx-java_pass@1: 72.56
humanevalx-js_pass@1: 64.02
ds1000_Pandas_accuracy: 14.09
ds1000_Numpy_accuracy: 35
ds1000_Tensorflow_accuracy: 24.44
ds1000_Scipy_accuracy: 20.75
ds1000_Sklearn_accuracy: 21.74
ds1000_Pytorch_accuracy: 22.06
ds1000_Matplotlib_accuracy: 56.77
mmmlu_lite_accuracy: 42.6
openai_mmmlu_lite_AR-XY_accuracy: 32.84
openai_mmmlu_lite_BN-BD_accuracy: 10.46
openai_mmmlu_lite_DE-DE_accuracy: 24.56
openai_mmmlu_lite_ES-LA_accuracy: 50.95
openai_mmmlu_lite_FR-FR_accuracy: 61.05
openai_mmmlu_lite_HI-IN_accuracy: 30.6
openai_mmmlu_lite_ID-ID_accuracy: 45.89
openai_mmmlu_lite_IT-IT_accuracy: 51.79
openai_mmmlu_lite_JA-JP_accuracy: 51.65
openai_mmmlu_lite_KO-KR_accuracy: 48.77
openai_mmmlu_lite_PT-BR_accuracy: 52.7
openai_mmmlu_lite_SW-KE_accuracy: 32.91
openai_mmmlu_lite_YO-NG_accuracy: 32.84
openai_mmmlu_lite_ZH-CN_accuracy: 69.33
college_naive_average: 47
high_naive_average: 66.67
middle_naive_average: 81.67
primary_naive_average: 89.33
arithmetic_naive_average: 73.67
mathbench-a (average)_naive_average: 71.67
college_knowledge_naive_average: 82.91
high_knowledge_naive_average: 79.86
middle_knowledge_naive_average: 88.92
primary_knowledge_naive_average: 92.96
mathbench-t (average)_naive_average: 86.16

View File

@ -1,21 +1,24 @@
chat: chat:
glm-4-9b-chat-hf: glm-4-9b-chat-hf:
gsm8k_accuracy: 68.75 gsm8k_accuracy: 56.25
race-high_accuracy: 90.62 race-high_accuracy: 84.38
glm-4-9b-chat-turbomind: glm-4-9b-chat-turbomind:
gsm8k_accuracy: 71.88 gsm8k_accuracy: 71.88
race-high_accuracy: 90.62 race-high_accuracy: 90.62
glm-4-9b-chat-vllm: glm-4-9b-chat-vllm:
gsm8k_accuracy: 71.88 gsm8k_accuracy: 68.75
race-high_accuracy: 90.62 race-high_accuracy: 90.62
deepseek-7b-chat-hf: deepseek-7b-chat-hf:
gsm8k_accuracy: 46.88 gsm8k_accuracy: 46.88
race-high_accuracy: 81.25 race-high_accuracy: 81.25
deepseek-moe-16b-chat-hf: deepseek-r1-distill-llama-8b-turbomind:
gsm8k_accuracy: 50 gsm8k_accuracy: 31.25
race-high_accuracy: 68.75 race-high_accuracy: 81.25
deepseek-r1-distill-qwen-1_5b-turbomind:
gsm8k_accuracy: 37.5
race-high_accuracy: 53.12
deepseek-7b-chat-vllm: deepseek-7b-chat-vllm:
gsm8k_accuracy: 50 gsm8k_accuracy: 43.75
race-high_accuracy: 78.12 race-high_accuracy: 78.12
gemma2-2b-it-hf: gemma2-2b-it-hf:
gsm8k_accuracy: 50 gsm8k_accuracy: 50
@ -36,34 +39,40 @@ chat:
gsm8k_accuracy: 78.12 gsm8k_accuracy: 78.12
race-high_accuracy: 93.75 race-high_accuracy: 93.75
gemma-7b-it-vllm: gemma-7b-it-vllm:
gsm8k_accuracy: 46.88 gsm8k_accuracy: 31.25
race-high_accuracy: 68.75 race-high_accuracy: 68.75
internlm2_5-7b-chat-hf: internlm2_5-7b-chat-hf:
gsm8k_accuracy: 84.38 gsm8k_accuracy: 84.38
race-high_accuracy: 90.62 race-high_accuracy: 90.62
internlm3-8b-instruct-hf:
gsm8k_accuracy: 65.62
race-high_accuracy: 87.5
internlm2_5-7b-chat-turbomind: internlm2_5-7b-chat-turbomind:
gsm8k_accuracy: 87.50 gsm8k_accuracy: 84.38
race-high_accuracy: 90.62 race-high_accuracy: 90.62
internlm2-chat-1.8b-turbomind: internlm2-chat-1.8b-turbomind:
gsm8k_accuracy: 28.12 gsm8k_accuracy: 28.12
race-high_accuracy: 84.38 race-high_accuracy: 84.38
internlm2-chat-1.8b-sft-turbomind: internlm2-chat-1.8b-sft-turbomind:
gsm8k_accuracy: 21.88 gsm8k_accuracy: 31.25
race-high_accuracy: 84.38 race-high_accuracy: 84.38
internlm2-chat-7b-lmdeploy: internlm2-chat-7b-lmdeploy:
gsm8k_accuracy: 53.12 gsm8k_accuracy: 59.38
race-high_accuracy: 84.38 race-high_accuracy: 84.38
internlm2-chat-7b-sft-turbomind: internlm2-chat-7b-sft-turbomind:
gsm8k_accuracy: 53.12 gsm8k_accuracy: 56.25
race-high_accuracy: 90.62 race-high_accuracy: 90.62
internlm3-8b-instruct-turbomind:
gsm8k_accuracy: 68.75
race-high_accuracy: 87.5
internlm2-chat-7b-vllm: internlm2-chat-7b-vllm:
gsm8k_accuracy: 43.75 gsm8k_accuracy: 59.38
race-high_accuracy: 84.38 race-high_accuracy: 87.50
llama-3_1-8b-instruct-hf: llama-3_1-8b-instruct-hf:
gsm8k_accuracy: 84.38 gsm8k_accuracy: 84.38
race-high_accuracy: 90.62 race-high_accuracy: 90.62
llama-3_2-3b-instruct-hf: llama-3_2-3b-instruct-hf:
gsm8k_accuracy: 68.75 gsm8k_accuracy: 71.88
race-high_accuracy: 81.25 race-high_accuracy: 81.25
llama-3-8b-instruct-hf: llama-3-8b-instruct-hf:
gsm8k_accuracy: 68.75 gsm8k_accuracy: 68.75
@ -72,14 +81,14 @@ chat:
gsm8k_accuracy: 18.75 gsm8k_accuracy: 18.75
race-high_accuracy: 46.88 race-high_accuracy: 46.88
llama-3_1-8b-instruct-turbomind: llama-3_1-8b-instruct-turbomind:
gsm8k_accuracy: 78.12 gsm8k_accuracy: 81.25
race-high_accuracy: 90.62 race-high_accuracy: 90.62
llama-3_2-3b-instruct-turbomind: llama-3_2-3b-instruct-turbomind:
gsm8k_accuracy: 65.62 gsm8k_accuracy: 75.00
race-high_accuracy: 81.25 race-high_accuracy: 81.25
llama-3-8b-instruct-turbomind: llama-3-8b-instruct-turbomind:
gsm8k_accuracy: 71.88 gsm8k_accuracy: 68.75
race-high_accuracy: 87.5 race-high_accuracy: 84.38
mistral-7b-instruct-v0.2-hf: mistral-7b-instruct-v0.2-hf:
gsm8k_accuracy: 40.62 gsm8k_accuracy: 40.62
race-high_accuracy: 75 race-high_accuracy: 75
@ -94,13 +103,10 @@ chat:
race-high_accuracy: 78.12 race-high_accuracy: 78.12
mistral-7b-instruct-v0.1-vllm: mistral-7b-instruct-v0.1-vllm:
gsm8k_accuracy: 34.38 gsm8k_accuracy: 34.38
race-high_accuracy: 68.75 race-high_accuracy: 65.62
mistral-7b-instruct-v0.2-vllm: mistral-7b-instruct-v0.2-vllm:
gsm8k_accuracy: 31.25 gsm8k_accuracy: 21.88
race-high_accuracy: 75 race-high_accuracy: 78.12
phi-3-mini-4k-instruct-hf:
gsm8k_accuracy: 81.25
race-high_accuracy: 87.50
qwen2.5-0.5b-instruct-hf: qwen2.5-0.5b-instruct-hf:
gsm8k_accuracy: 34.38 gsm8k_accuracy: 34.38
race-high_accuracy: 46.88 race-high_accuracy: 46.88
@ -108,10 +114,10 @@ chat:
gsm8k_accuracy: 53.12 gsm8k_accuracy: 53.12
race-high_accuracy: 90.62 race-high_accuracy: 90.62
qwen2.5-0.5b-instruct-turbomind: qwen2.5-0.5b-instruct-turbomind:
gsm8k_accuracy: 28.12 gsm8k_accuracy: 31.25
race-high_accuracy: 50 race-high_accuracy: 43.75
qwen2.5-3b-instruct-turbomind: qwen2.5-3b-instruct-turbomind:
gsm8k_accuracy: 59.38 gsm8k_accuracy: 56.25
race-high_accuracy: 90.62 race-high_accuracy: 90.62
qwen1.5-0.5b-chat-hf: qwen1.5-0.5b-chat-hf:
gsm8k_accuracy: 0 gsm8k_accuracy: 0
@ -123,11 +129,11 @@ chat:
gsm8k_accuracy: 68.75 gsm8k_accuracy: 68.75
race-high_accuracy: 90.62 race-high_accuracy: 90.62
qwen2-1.5b-instruct-turbomind: qwen2-1.5b-instruct-turbomind:
gsm8k_accuracy: 53.12 gsm8k_accuracy: 56.25
race-high_accuracy: 84.38 race-high_accuracy: 84.38
qwen2-7b-instruct-turbomind: qwen2-7b-instruct-turbomind:
gsm8k_accuracy: 81.25 gsm8k_accuracy: 81.25
race-high_accuracy: 90.62 race-high_accuracy: 87.50
qwen1.5-0.5b-chat-vllm: qwen1.5-0.5b-chat-vllm:
gsm8k_accuracy: 3.12 gsm8k_accuracy: 3.12
race-high_accuracy: 53.12 race-high_accuracy: 53.12
@ -143,11 +149,11 @@ chat:
yi-1.5-9b-chat-turbomind: yi-1.5-9b-chat-turbomind:
gsm8k_accuracy: 71.88 gsm8k_accuracy: 71.88
race-high_accuracy: 93.75 race-high_accuracy: 93.75
deepseek-v2-lite-chat-hf: deepseek-v2_lite-chat-turbomind:
gsm8k_accuracy: 46.88 gsm8k_accuracy: 37.5
race-high_accuracy: 71.88 race-high_accuracy: 71.88
gemma2-27b-it-hf: gemma2-27b-it-hf:
gsm8k_accuracy: 75 gsm8k_accuracy: 71.88
race-high_accuracy: 93.75 race-high_accuracy: 93.75
internlm2_5-20b-chat-hf: internlm2_5-20b-chat-hf:
gsm8k_accuracy: 84.38 gsm8k_accuracy: 84.38
@ -161,6 +167,9 @@ chat:
mistral-small-instruct-2409-turbomind: mistral-small-instruct-2409-turbomind:
gsm8k_accuracy: 81.25 gsm8k_accuracy: 81.25
race-high_accuracy: 87.50 race-high_accuracy: 87.50
phi-4:
gsm8k_accuracy: 81.25
race-high_accuracy: 87.50
qwen2.5-14b-instruct-hf: qwen2.5-14b-instruct-hf:
gsm8k_accuracy: 71.88 gsm8k_accuracy: 71.88
race-high_accuracy: 96.88 race-high_accuracy: 96.88
@ -168,40 +177,41 @@ chat:
gsm8k_accuracy: 68.75 gsm8k_accuracy: 68.75
race-high_accuracy: 93.75 race-high_accuracy: 93.75
yi-1.5-34b-chat-turbomind: yi-1.5-34b-chat-turbomind:
gsm8k_accuracy: 78.12 gsm8k_accuracy: 75.00
race-high_accuracy: 93.75 race-high_accuracy: 93.75
deepseek-67b-chat-hf: deepseek-67b-chat-turbomind:
gsm8k_accuracy: 71.88 gsm8k_accuracy: 75.00
race-high_accuracy: 78.12 race-high_accuracy: 78.12
deepseek-r1-distill-qwen-32b-turbomind:
gsm8k_accuracy: 25
race-high_accuracy: 90.62
llama-3_3-70b-instruct-turbomind: llama-3_3-70b-instruct-turbomind:
gsm8k_accuracy: 93.75 gsm8k_accuracy: 93.75
race-high_accuracy: 87.5 race-high_accuracy: 87.5
mixtral-8x7b-instruct-v0.1-hf:
gsm8k_accuracy: 59.38
race-high_accuracy: 81.25
mixtral-large-instruct-2411-turbomind: mixtral-large-instruct-2411-turbomind:
gsm8k_accuracy: 90.62 gsm8k_accuracy: 87.50
race-high_accuracy: 93.75 race-high_accuracy: 93.75
nvidia-3_1-Nemotron-70b-instruct-HF-turbomind: nvidia-3_1-Nemotron-70b-instruct-HF-turbomind:
gsm8k_accuracy: 87.5 gsm8k_accuracy: 93.75
race-high_accuracy: 46.88 race-high_accuracy: 50.00
qwen2.5-72b-instruct-turbomind: qwen2.5-72b-instruct-turbomind:
gsm8k_accuracy: 75 gsm8k_accuracy: 81.25
race-high_accuracy: 93.75 race-high_accuracy: 90.62
deepseek-r1-distill-llama-70b-turbomind:
gsm8k_accuracy: 40.62
race-high_accuracy: 90.62
deepseek-v2_5-1210-turbomind: deepseek-v2_5-1210-turbomind:
gsm8k_accuracy: 90.62 gsm8k_accuracy: 90.62
race-high_accuracy: 84.38 race-high_accuracy: 84.38
mixtral-8x22b-instruct-v0.1-hf: mixtral-8x22b-instruct-v0.1-turbomind:
gsm8k_accuracy: 81.25 gsm8k_accuracy: 75
race-high_accuracy: 81.25 race-high_accuracy: 78.12
mixtral-8x22b-instruct-v0.1-vllm:
gsm8k_accuracy: 78.12
race-high_accuracy: 78.12
base: base:
glm-4-9b-hf:
gsm8k_accuracy: 68.75
GPQA_diamond_accuracy: 31.25
race-high_accuracy: 93.75
winogrande_accuracy: 84.38
glm-4-9b-turbomind: glm-4-9b-turbomind:
gsm8k_accuracy: 62.5 gsm8k_accuracy: 56.25
GPQA_diamond_accuracy: 28.12 GPQA_diamond_accuracy: 28.12
race-high_accuracy: 93.75 race-high_accuracy: 93.75
winogrande_accuracy: 84.38 winogrande_accuracy: 84.38
@ -210,15 +220,10 @@ base:
GPQA_diamond_accuracy: 0 GPQA_diamond_accuracy: 0
race-high_accuracy: 46.88 race-high_accuracy: 46.88
winogrande_accuracy: 71.88 winogrande_accuracy: 71.88
deepseek-moe-16b-base-hf:
gsm8k_accuracy: 21.88
GPQA_diamond_accuracy: 0
race-high_accuracy: 21.88
winogrande_accuracy: 65.62
deepseek-7b-base-turbomind: deepseek-7b-base-turbomind:
gsm8k_accuracy: 21.88 gsm8k_accuracy: 18.75
GPQA_diamond_accuracy: 0 GPQA_diamond_accuracy: 0
race-high_accuracy: 46.88 race-high_accuracy: 43.75
winogrande_accuracy: 84.38 winogrande_accuracy: 84.38
deepseek-moe-16b-base-vllm: deepseek-moe-16b-base-vllm:
gsm8k_accuracy: 21.88 gsm8k_accuracy: 21.88
@ -245,16 +250,21 @@ base:
GPQA_diamond_accuracy: 3.12 GPQA_diamond_accuracy: 3.12
race-high_accuracy: 65.62 race-high_accuracy: 65.62
winogrande_accuracy: 71.88 winogrande_accuracy: 71.88
gemma-2-9b-turbomind:
gsm8k_accuracy: 68.75
GPQA_diamond_accuracy: 0
race-high_accuracy: 78.12
winogrande_accuracy: 50
gemma-2b-vllm: gemma-2b-vllm:
gsm8k_accuracy: 15.62 gsm8k_accuracy: 15.62
GPQA_diamond_accuracy: 3.12 GPQA_diamond_accuracy: 3.12
race-high_accuracy: race-high_accuracy: 28.12
winogrande_accuracy: winogrande_accuracy: 68.75
gemma-7b-vllm: gemma-7b-vllm:
gsm8k_accuracy: 53.12 gsm8k_accuracy: 43.75
GPQA_diamond_accuracy: 9.38 GPQA_diamond_accuracy: 6.25
race-high_accuracy: race-high_accuracy: 81.25
winogrande_accuracy: winogrande_accuracy: 81.25
internlm2_5-7b-hf: internlm2_5-7b-hf:
gsm8k_accuracy: 37.5 gsm8k_accuracy: 37.5
GPQA_diamond_accuracy: 25 GPQA_diamond_accuracy: 25
@ -265,30 +275,25 @@ base:
GPQA_diamond_accuracy: 18.75 GPQA_diamond_accuracy: 18.75
race-high_accuracy: 62.5 race-high_accuracy: 62.5
winogrande_accuracy: 78.12 winogrande_accuracy: 78.12
internlm2-base-7b-hf:
gsm8k_accuracy: 3.12
GPQA_diamond_accuracy: 21.88
race-high_accuracy: 75
winogrande_accuracy: 65.62
internlm2-1.8b-turbomind: internlm2-1.8b-turbomind:
gsm8k_accuracy: 12.5 gsm8k_accuracy: 6.25
GPQA_diamond_accuracy: 9.38 GPQA_diamond_accuracy: 12.5
race-high_accuracy: 71.88 race-high_accuracy: 71.88
winogrande_accuracy: 78.12 winogrande_accuracy: 75
internlm2_5-7b-turbomind: internlm2_5-7b-turbomind:
gsm8k_accuracy: 62.50 gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 34.38 GPQA_diamond_accuracy: 34.38
race-high_accuracy: 93.75 race-high_accuracy: 93.75
winogrande_accuracy: 87.50 winogrande_accuracy: 84.38
internlm2-7b-turbomind: internlm2-7b-turbomind:
gsm8k_accuracy: 53.12 gsm8k_accuracy: 50
GPQA_diamond_accuracy: 21.88 GPQA_diamond_accuracy: 18.75
race-high_accuracy: 71.88 race-high_accuracy: 71.88
winogrande_accuracy: 84.38 winogrande_accuracy: 84.38
internlm2-base-7b-turbomind: internlm2-base-7b-turbomind:
gsm8k_accuracy: 37.50 gsm8k_accuracy: 37.50
GPQA_diamond_accuracy: 28.12 GPQA_diamond_accuracy: 21.88
race-high_accuracy: 81.25 race-high_accuracy: 84.38
winogrande_accuracy: 75 winogrande_accuracy: 75
llama-2-7b-hf: llama-2-7b-hf:
gsm8k_accuracy: 21.88 gsm8k_accuracy: 21.88
@ -311,7 +316,7 @@ base:
race-high_accuracy: 78.12 race-high_accuracy: 78.12
winogrande_accuracy: 78.12 winogrande_accuracy: 78.12
llama-3-8b-turbomind: llama-3-8b-turbomind:
gsm8k_accuracy: 50 gsm8k_accuracy: 46.88
GPQA_diamond_accuracy: 12.50 GPQA_diamond_accuracy: 12.50
race-high_accuracy: 65.62 race-high_accuracy: 65.62
winogrande_accuracy: 78.12 winogrande_accuracy: 78.12
@ -327,14 +332,14 @@ base:
winogrande_accuracy: 71.88 winogrande_accuracy: 71.88
qwen2.5-1.5b-turbomind: qwen2.5-1.5b-turbomind:
gsm8k_accuracy: 62.50 gsm8k_accuracy: 62.50
GPQA_diamond_accuracy: 12.50 GPQA_diamond_accuracy: 15.62
race-high_accuracy: 78.12 race-high_accuracy: 75
winogrande_accuracy: 68.75
qwen2.5-7b-turbomind:
gsm8k_accuracy: 75.00
GPQA_diamond_accuracy: 25
race-high_accuracy: 87.5
winogrande_accuracy: 71.88 winogrande_accuracy: 71.88
qwen2.5-7b-turbomind:
gsm8k_accuracy: 71.88
GPQA_diamond_accuracy: 18.75
race-high_accuracy: 87.5
winogrande_accuracy: 75.00
qwen1.5-moe-a2.7b-hf: qwen1.5-moe-a2.7b-hf:
gsm8k_accuracy: 62.5 gsm8k_accuracy: 62.5
GPQA_diamond_accuracy: 18.75 GPQA_diamond_accuracy: 18.75
@ -356,17 +361,17 @@ base:
race-high_accuracy: 87.5 race-high_accuracy: 87.5
winogrande_accuracy: 68.75 winogrande_accuracy: 68.75
qwen2-1.5b-turbomind: qwen2-1.5b-turbomind:
gsm8k_accuracy: 56.25 gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 9.38 GPQA_diamond_accuracy: 12.50
race-high_accuracy: 81.25 race-high_accuracy: 81.25
winogrande_accuracy: 75 winogrande_accuracy: 75
qwen2-7b-turbomind: qwen2-7b-turbomind:
gsm8k_accuracy: 75.00 gsm8k_accuracy: 65.62
GPQA_diamond_accuracy: 12.5 GPQA_diamond_accuracy: 12.5
race-high_accuracy: 87.5 race-high_accuracy: 87.5
winogrande_accuracy: 71.88 winogrande_accuracy: 71.88
qwen1.5-0.5b-vllm: qwen1.5-0.5b-vllm:
gsm8k_accuracy: 9.38 gsm8k_accuracy: 6.25
GPQA_diamond_accuracy: 0 GPQA_diamond_accuracy: 0
race-high_accuracy: 56.25 race-high_accuracy: 56.25
winogrande_accuracy: 62.5 winogrande_accuracy: 62.5
@ -382,27 +387,12 @@ base:
winogrande_accuracy: 59.38 winogrande_accuracy: 59.38
yi-1.5-9b-turbomind: yi-1.5-9b-turbomind:
gsm8k_accuracy: 78.12 gsm8k_accuracy: 78.12
GPQA_diamond_accuracy: 40.62 GPQA_diamond_accuracy: 43.75
race-high_accuracy: 87.5 race-high_accuracy: 87.5
winogrande_accuracy: 71.88 winogrande_accuracy: 71.88
deepseek-v2-lite-hf:
gsm8k_accuracy: 31.25
GPQA_diamond_accuracy: 28.12
race-high_accuracy: 59.38
winogrande_accuracy: 71.88
internlm2-20b-hf:
gsm8k_accuracy: 56.25
GPQA_diamond_accuracy: 15.62
race-high_accuracy: 68.75
winogrande_accuracy: 75
internlm2-base-20b-hf:
gsm8k_accuracy: 12.5
GPQA_diamond_accuracy: 9.38
race-high_accuracy: 84.38
winogrande_accuracy: 65.62
internlm2-20b-turbomind: internlm2-20b-turbomind:
gsm8k_accuracy: 71.88 gsm8k_accuracy: 75
GPQA_diamond_accuracy: 15.62 GPQA_diamond_accuracy: 18.75
race-high_accuracy: 68.75 race-high_accuracy: 68.75
winogrande_accuracy: 81.25 winogrande_accuracy: 81.25
qwen2.5-14b-hf: qwen2.5-14b-hf:
@ -416,37 +406,27 @@ base:
race-high_accuracy: 93.75 race-high_accuracy: 93.75
winogrande_accuracy: 78.12 winogrande_accuracy: 78.12
qwen2.5-32b-turbomind: qwen2.5-32b-turbomind:
gsm8k_accuracy: 84.38 gsm8k_accuracy: 87.5
GPQA_diamond_accuracy: 28.12 GPQA_diamond_accuracy: 18.75
race-high_accuracy: 93.75 race-high_accuracy: 93.75
winogrande_accuracy: 81.25 winogrande_accuracy: 81.25
deepseek-67b-base-hf:
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 31.25
race-high_accuracy: 81.25
winogrande_accuracy: 90.62
deepseek-67b-base-turbomind: deepseek-67b-base-turbomind:
gsm8k_accuracy: 56.25 gsm8k_accuracy: 53.12
GPQA_diamond_accuracy: 28.12 GPQA_diamond_accuracy: 28.12
race-high_accuracy: 81.25 race-high_accuracy: 81.25
winogrande_accuracy: 84.38 winogrande_accuracy: 84.38
llama-3-70b-turbomind: llama-3-70b-turbomind:
gsm8k_accuracy: 59.38 gsm8k_accuracy: 56.25
GPQA_diamond_accuracy: 9.38 GPQA_diamond_accuracy: 12.50
race-high_accuracy: 93.75 race-high_accuracy: 93.75
winogrande_accuracy: 84.38 winogrande_accuracy: 84.38
qwen2.5-72b-turbomind: qwen2.5-72b-turbomind:
gsm8k_accuracy: 84.38 gsm8k_accuracy: 84.38
GPQA_diamond_accuracy: 34.38 GPQA_diamond_accuracy: 31.25
race-high_accuracy: 93.75 race-high_accuracy: 93.75
winogrande_accuracy: 87.5 winogrande_accuracy: 87.5
deepseek-v2-turbomind: deepseek-v2-turbomind:
gsm8k_accuracy: 65.62 gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 15.62
race-high_accuracy: 93.75
winogrande_accuracy: 84.38
llama-3-70b-hf:
gsm8k_accuracy: 62.5
GPQA_diamond_accuracy: 3.12 GPQA_diamond_accuracy: 3.12
race-high_accuracy: 93.75 race-high_accuracy: 93.75
winogrande_accuracy: 84.38 winogrande_accuracy: 81.25

View File

@ -61,6 +61,7 @@ env:
HUGGINGFACE_HUB_CACHE: /fs-computility/llm/shared/llmeval/models/opencompass_hf_hub HUGGINGFACE_HUB_CACHE: /fs-computility/llm/shared/llmeval/models/opencompass_hf_hub
HF_HUB_CACHE: /fs-computility/llm/shared/llmeval/models/opencompass_hf_hub HF_HUB_CACHE: /fs-computility/llm/shared/llmeval/models/opencompass_hf_hub
CONDA_ENV: regression_test CONDA_ENV: regression_test
export VLLM_WORKER_MULTIPROC_METHOD: spawn
jobs: jobs:
build-pypi: build-pypi:
@ -92,7 +93,6 @@ jobs:
matrix: matrix:
pyver: [py310] pyver: [py310]
runs-on: ubuntu-latest runs-on: ubuntu-latest
environment: 'prod'
env: env:
PYTHON_VERSION: ${{ matrix.pyver }} PYTHON_VERSION: ${{ matrix.pyver }}
PLAT_NAME: manylinux2014_x86_64 PLAT_NAME: manylinux2014_x86_64
@ -126,7 +126,6 @@ jobs:
if: ${{!cancelled()}} if: ${{!cancelled()}}
needs: ['build-pypi', 'build-pypi-lmdeploy'] needs: ['build-pypi', 'build-pypi-lmdeploy']
runs-on: volc_cu12 runs-on: volc_cu12
environment: 'prod'
timeout-minutes: 120 #2hours timeout-minutes: 120 #2hours
steps: steps:
- name: Clone repository - name: Clone repository
@ -157,7 +156,9 @@ jobs:
pip install opencompass*.whl --cache-dir ${{env.PIP_CACHE_PATH}} pip install opencompass*.whl --cache-dir ${{env.PIP_CACHE_PATH}}
pip install opencompass[lmdeploy] --cache-dir ${{env.PIP_CACHE_PATH}} pip install opencompass[lmdeploy] --cache-dir ${{env.PIP_CACHE_PATH}}
pip install opencompass[vllm] --cache-dir ${{env.PIP_CACHE_PATH}} pip install opencompass[vllm] --cache-dir ${{env.PIP_CACHE_PATH}}
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --cache-dir ${{env.PIP_CACHE_PATH}} pip install opencompass[full] --cache-dir ${{env.PIP_CACHE_PATH}}
pip install opencompass[api] --cache-dir ${{env.PIP_CACHE_PATH}}
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0 --cache-dir ${{env.PIP_CACHE_PATH}}
FLASH_ATTENTION_FORCE_BUILD=TRUE pip install /fs-computility/llm/qa-llm-cicd/packages/flash_attn-2.7.0.post2+cu12torch2.5cxx11abiFALSE-cp310-cp310-linux_x86_64.whl FLASH_ATTENTION_FORCE_BUILD=TRUE pip install /fs-computility/llm/qa-llm-cicd/packages/flash_attn-2.7.0.post2+cu12torch2.5cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
pip install xformers --index-url https://download.pytorch.org/whl/cu121 --cache-dir ${{env.PIP_CACHE_PATH}} pip install xformers --index-url https://download.pytorch.org/whl/cu121 --cache-dir ${{env.PIP_CACHE_PATH}}
cp -r /root/nltk_data ${{env.CONDA_PATH}}/envs/${{env.CONDA_ENV}}/nltk_data cp -r /root/nltk_data ${{env.CONDA_PATH}}/envs/${{env.CONDA_ENV}}/nltk_data
@ -188,7 +189,6 @@ jobs:
matrix: matrix:
regression_func: ${{fromJSON(github.event.inputs.regression_func_volc || '["chat_models","base_models","chat_obj_fullbench","base_fullbench"]')}} regression_func: ${{fromJSON(github.event.inputs.regression_func_volc || '["chat_models","base_models","chat_obj_fullbench","base_fullbench"]')}}
runs-on: volc_cu12_daily runs-on: volc_cu12_daily
environment: 'prod'
timeout-minutes: 180 #3hours timeout-minutes: 180 #3hours
steps: steps:
- name: Clone repository - name: Clone repository
@ -229,7 +229,6 @@ jobs:
matrix: matrix:
regression_func: ${{fromJSON(github.event.inputs.regression_func_local || '["cmd","api","chat_sub_fullbench"]')}} regression_func: ${{fromJSON(github.event.inputs.regression_func_local || '["cmd","api","chat_sub_fullbench"]')}}
runs-on: volc_cu12_local runs-on: volc_cu12_local
environment: 'prod'
timeout-minutes: 480 #6hours timeout-minutes: 480 #6hours
steps: steps:
- name: Clone repository - name: Clone repository
@ -256,27 +255,33 @@ jobs:
conda info --envs conda info --envs
export from_tf=TRUE export from_tf=TRUE
python tools/list_configs.py internlm2_5 mmlu python tools/list_configs.py internlm2_5 mmlu
opencompass --models hf_internlm2_5_7b hf_internlm2_1_8b --datasets race_ppl demo_gsm8k_chat_gen --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd1 --reuse --max-num-workers 2 --dump-eval-details opencompass --models hf_internlm2_5_7b --datasets race_ppl demo_gsm8k_chat_gen --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd1 --reuse --max-num-workers 2 --dump-eval-details
rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd1/*/summary regression_result_daily rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd1/*/summary regression_result_daily
python -m pytest -m case1 -s -v --color=yes .github/scripts/oc_score_assert.py python -m pytest -m case1 -s -v --color=yes .github/scripts/oc_score_assert.py
opencompass --models hf_internlm2_5_7b_chat hf_internlm2_chat_1_8b --datasets race_gen demo_gsm8k_chat_gen -a lmdeploy --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd2 --reuse --max-num-workers 2 --dump-eval-details opencompass --models hf_internlm2_5_7b_chat hf_internlm3_8b_instruct --datasets race_gen demo_gsm8k_chat_gen -a lmdeploy --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd2 --reuse --max-num-workers 2 --dump-eval-details
rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd2/*/summary regression_result_daily rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd2/*/summary regression_result_daily
python -m pytest -m case2 -s -v --color=yes .github/scripts/oc_score_assert.py python -m pytest -m case2 -s -v --color=yes .github/scripts/oc_score_assert.py
opencompass --datasets race_ppl demo_gsm8k_chat_gen --hf-type base --hf-path internlm/internlm2_5-7b --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd3 --reuse --max-num-workers 2 --dump-eval-details opencompass --datasets race_ppl demo_gsm8k_chat_gen --hf-type base --hf-path internlm/internlm2_5-7b --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd3 --reuse --max-num-workers 2 --dump-eval-details
rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd3/*/summary regression_result_daily rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd3/*/summary regression_result_daily
python -m pytest -m case3 -s -v --color=yes .github/scripts/oc_score_assert.py python -m pytest -m case3 -s -v --color=yes .github/scripts/oc_score_assert.py
opencompass --datasets race_gen demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm2_5-7b-chat --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd4 --reuse --max-num-workers 2 --dump-eval-details opencompass --datasets race_gen demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm3-8b-instruct -a lmdeploy --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd4 --reuse --max-num-workers 2 --dump-eval-details
rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd4/*/summary regression_result_daily rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd4/*/summary regression_result_daily
python -m pytest -m case4 -s -v --color=yes .github/scripts/oc_score_assert.py python -m pytest -m case4 -s -v --color=yes .github/scripts/oc_score_assert.py
opencompass --datasets race_gen demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm3-8b-instruct -a vllm --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd5 --reuse --max-num-workers 2 --dump-eval-details
rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/cmd5/*/summary regression_result_daily
python -m pytest -m case5 -s -v --color=yes .github/scripts/oc_score_assert.py
- name: Run model test - api - name: Run model test - api
if: matrix.regression_func == 'api' if: matrix.regression_func == 'api'
run: | run: |
. ${{env.CONDA_PATH}}/bin/activate . ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}} conda activate ${{env.CONDA_ENV}}
conda info --envs conda info --envs
lmdeploy serve api_server internlm/internlm2_5-7b-chat --max-batch-size 256 --model-name internlm2 > ${{env.REPORT_ROOT}}/${{ github.run_id }}/restful.log 2>&1 & lmdeploy serve api_server internlm/internlm3-8b-instruct --max-batch-size 256 --model-name internlm3 > ${{env.REPORT_ROOT}}/${{ github.run_id }}/restful.log 2>&1 &
echo "restful_pid=$!" >> "$GITHUB_ENV" echo "restful_pid=$!" >> "$GITHUB_ENV"
sleep 180s sleep 180s
env | grep PROXY
env | grep proxy
unset HTTP_PROXY;unset HTTPS_PROXY;unset http_proxy;unset https_proxy;
opencompass .github/scripts/eval_regression_api.py --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/api --reuse --max-num-workers 2 --dump-eval-details opencompass .github/scripts/eval_regression_api.py --work-dir ${{env.REPORT_ROOT}}/${{ github.run_id }}/api --reuse --max-num-workers 2 --dump-eval-details
rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/api/*/summary regression_result_daily rm regression_result_daily -f && ln -s ${{env.REPORT_ROOT}}/${{ github.run_id }}/api/*/summary regression_result_daily
python -m pytest -m api -s -v --color=yes .github/scripts/oc_score_assert.py python -m pytest -m api -s -v --color=yes .github/scripts/oc_score_assert.py
@ -305,7 +310,6 @@ jobs:
matrix: matrix:
function_type: ${{fromJSON(github.event.inputs.fullbench_eval || '["base_objective","chat_objective","chat_subjective","base_long_context","chat_long_context"]')}} function_type: ${{fromJSON(github.event.inputs.fullbench_eval || '["base_objective","chat_objective","chat_subjective","base_long_context","chat_long_context"]')}}
runs-on: volc_cu12 runs-on: volc_cu12
environment: 'prod'
timeout-minutes: 480 #6hours timeout-minutes: 480 #6hours
steps: steps:
- name: Clone repository - name: Clone repository
@ -339,7 +343,6 @@ jobs:
needs: [daily_run_test_volc, daily_run_test_local, fullbench_run_test] needs: [daily_run_test_volc, daily_run_test_local, fullbench_run_test]
timeout-minutes: 5 timeout-minutes: 5
runs-on: self-hosted runs-on: self-hosted
environment: 'prod'
steps: steps:
- name: notify - name: notify
run: | run: |

View File

@ -45,7 +45,7 @@ jobs:
. ${{env.CONDA_PATH}}/bin/activate . ${{env.CONDA_PATH}}/bin/activate
conda activate ${{env.CONDA_ENV}} conda activate ${{env.CONDA_ENV}}
python3 -m pip uninstall opencompass -y python3 -m pip uninstall opencompass -y
python3 -m pip install -e . --cache-dir ${{env.PIP_CACHE_PATH}} python3 -m pip install -e ".[full]" --cache-dir ${{env.PIP_CACHE_PATH}}
conda info --envs conda info --envs
- name: conda env - name: conda env
run: | run: |

102
README.md
View File

@ -176,69 +176,83 @@ Some third-party features, like Humaneval and Llama, may require additional step
After ensuring that OpenCompass is installed correctly according to the above steps and the datasets are prepared. Now you can start your first evaluation using OpenCompass! After ensuring that OpenCompass is installed correctly according to the above steps and the datasets are prepared. Now you can start your first evaluation using OpenCompass!
- Your first evaluation with OpenCompass! ### Your first evaluation with OpenCompass!
OpenCompass support setting your configs via CLI or a python script. For simple evaluation settings we recommend using CLI, for more complex evaluation, it is suggested using the script way. You can find more example scripts under the configs folder. OpenCompass support setting your configs via CLI or a python script. For simple evaluation settings we recommend using CLI, for more complex evaluation, it is suggested using the script way. You can find more example scripts under the configs folder.
```bash ```bash
# CLI # CLI
opencompass --models hf_internlm2_5_1_8b_chat --datasets demo_gsm8k_chat_gen opencompass --models hf_internlm2_5_1_8b_chat --datasets demo_gsm8k_chat_gen
# Python scripts # Python scripts
opencompass examples/eval_chat_demo.py opencompass examples/eval_chat_demo.py
``` ```
You can find more script examples under [examples](./examples) folder. You can find more script examples under [examples](./examples) folder.
- API evaluation ### API evaluation
OpenCompass, by its design, does not really discriminate between open-source models and API models. You can evaluate both model types in the same way or even in one settings. OpenCompass, by its design, does not really discriminate between open-source models and API models. You can evaluate both model types in the same way or even in one settings.
```bash ```bash
export OPENAI_API_KEY="YOUR_OPEN_API_KEY" export OPENAI_API_KEY="YOUR_OPEN_API_KEY"
# CLI # CLI
opencompass --models gpt_4o_2024_05_13 --datasets demo_gsm8k_chat_gen opencompass --models gpt_4o_2024_05_13 --datasets demo_gsm8k_chat_gen
# Python scripts # Python scripts
opencompass examples/eval_api_demo.py opencompass examples/eval_api_demo.py
# You can use o1_mini_2024_09_12/o1_preview_2024_09_12 for o1 models, we set max_completion_tokens=8192 as default. # You can use o1_mini_2024_09_12/o1_preview_2024_09_12 for o1 models, we set max_completion_tokens=8192 as default.
``` ```
- Accelerated Evaluation ### Accelerated Evaluation
Additionally, if you want to use an inference backend other than HuggingFace for accelerated evaluation, such as LMDeploy or vLLM, you can do so with the command below. Please ensure that you have installed the necessary packages for the chosen backend and that your model supports accelerated inference with it. For more information, see the documentation on inference acceleration backends [here](docs/en/advanced_guides/accelerator_intro.md). Below is an example using LMDeploy: Additionally, if you want to use an inference backend other than HuggingFace for accelerated evaluation, such as LMDeploy or vLLM, you can do so with the command below. Please ensure that you have installed the necessary packages for the chosen backend and that your model supports accelerated inference with it. For more information, see the documentation on inference acceleration backends [here](docs/en/advanced_guides/accelerator_intro.md). Below is an example using LMDeploy:
```bash ```bash
# CLI # CLI
opencompass --models hf_internlm2_5_1_8b_chat --datasets demo_gsm8k_chat_gen -a lmdeploy opencompass --models hf_internlm2_5_1_8b_chat --datasets demo_gsm8k_chat_gen -a lmdeploy
# Python scripts # Python scripts
opencompass examples/eval_lmdeploy_demo.py opencompass examples/eval_lmdeploy_demo.py
``` ```
- Supported Models ### Supported Models and Datasets
OpenCompass has predefined configurations for many models and datasets. You can list all available model and dataset configurations using the [tools](./docs/en/tools.md#list-configs). OpenCompass has predefined configurations for many models and datasets. You can list all available model and dataset configurations using the [tools](./docs/en/tools.md#list-configs).
```bash ```bash
# List all configurations # List all configurations
python tools/list_configs.py python tools/list_configs.py
# List all configurations related to llama and mmlu # List all configurations related to llama and mmlu
python tools/list_configs.py llama mmlu python tools/list_configs.py llama mmlu
``` ```
If the model is not on the list but supported by Huggingface AutoModel class, you can also evaluate it with OpenCompass. You are welcome to contribute to the maintenance of the OpenCompass supported model and dataset lists. #### Supported Models
```bash If the model is not on the list but supported by Huggingface AutoModel class or encapsulation of inference engine based on OpenAI interface (see [docs](https://opencompass.readthedocs.io/en/latest/advanced_guides/new_model.html) for details), you can also evaluate it with OpenCompass. You are welcome to contribute to the maintenance of the OpenCompass supported model and dataset lists.
opencompass --datasets demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm2_5-1_8b-chat
```
If you want to use multiple GPUs to evaluate the model in data parallel, you can use `--max-num-worker`. ```bash
opencompass --datasets demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm2_5-1_8b-chat
```
```bash #### Supported Datasets
CUDA_VISIBLE_DEVICES=0,1 opencompass --datasets demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm2_5-1_8b-chat --max-num-worker 2
``` Currently, OpenCompass have provided standard recommended configurations for datasets. Generally, config files ending with `_gen.py` or `_llm_judge_gen.py` will point to the recommended config we provide for this dataset. You can refer to [docs](https://opencompass.readthedocs.io/en/latest/dataset_statistics.html) for more details.
```bash
# Recommended Evaluation Config based on Rules
opencompass --datasets aime2024_gen --models hf_internlm2_5_1_8b_chat
# Recommended Evaluation Config based on LLM Judge
opencompass --datasets aime2024_llm_judge_gen --models hf_internlm2_5_1_8b_chat
```
If you want to use multiple GPUs to evaluate the model in data parallel, you can use `--max-num-worker`.
```bash
CUDA_VISIBLE_DEVICES=0,1 opencompass --datasets demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm2_5-1_8b-chat --max-num-worker 2
```
> \[!TIP\] > \[!TIP\]
> >
@ -288,7 +302,7 @@ You can quickly find the dataset you need from the list through sorting, filteri
In addition, we provide a recommended configuration for each dataset, and some datasets also support LLM Judge-based configurations. In addition, we provide a recommended configuration for each dataset, and some datasets also support LLM Judge-based configurations.
Please refer to the dataset statistics chapter of [official document](https://opencompass.org.cn/doc) for details. Please refer to the dataset statistics chapter of [docs](https://opencompass.readthedocs.io/en/latest/dataset_statistics.html) for details.
<p align="right"><a href="#top">🔝Back to top</a></p> <p align="right"><a href="#top">🔝Back to top</a></p>

View File

@ -208,9 +208,9 @@ humaneval, triviaqa, commonsenseqa, tydiqa, strategyqa, cmmlu, lambada, piqa, ce
opencompass --models hf_internlm2_5_1_8b_chat --datasets demo_gsm8k_chat_gen -a lmdeploy opencompass --models hf_internlm2_5_1_8b_chat --datasets demo_gsm8k_chat_gen -a lmdeploy
``` ```
OpenCompass 预定义了许多模型和数据集的配置,你可以通过 [工具](./docs/zh_cn/tools.md#ListConfigs) 列出所有可用的模型和数据集配置。 - ### 支持的模型与数据集
- ### 支持的模型 OpenCompass 预定义了许多模型和数据集的配置,你可以通过 [工具](./docs/zh_cn/tools.md#ListConfigs) 列出所有可用的模型和数据集配置。
```bash ```bash
# 列出所有配置 # 列出所有配置
@ -219,13 +219,27 @@ humaneval, triviaqa, commonsenseqa, tydiqa, strategyqa, cmmlu, lambada, piqa, ce
python tools/list_configs.py llama mmlu python tools/list_configs.py llama mmlu
``` ```
如果模型不在列表中但支持 Huggingface AutoModel 类,您仍然可以使用 OpenCompass 对其进行评估。欢迎您贡献维护 OpenCompass 支持的模型和数据集列表。 #### 支持的模型
如果模型不在列表中,但支持 Huggingface AutoModel 类或支持针对 OpenAI 接口的推理引擎封装(详见[官方文档](https://opencompass.readthedocs.io/zh-cn/latest/advanced_guides/new_model.html)),您仍然可以使用 OpenCompass 对其进行评估。欢迎您贡献维护 OpenCompass 支持的模型和数据集列表。
```bash ```bash
opencompass --datasets demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm2_5-1_8b-chat opencompass --datasets demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm2_5-1_8b-chat
``` ```
如果你想在多块 GPU 上使用模型进行推理,您可以使用 `--max-num-worker` 参数。 #### 支持的数据集
目前OpenCompass针对数据集给出了标准的推荐配置。通常`_gen.py`或`_llm_judge_gen.py`为结尾的配置文件将指向我们为该数据集提供的推荐配置。您可以参阅[官方文档](https://opencompass.readthedocs.io/zh-cn/latest/dataset_statistics.html) 的数据集统计章节来获取详细信息。
```bash
# 基于规则的推荐配置
opencompass --datasets aime2024_gen --models hf_internlm2_5_1_8b_chat
# 基于LLM Judge的推荐配置
opencompass --datasets aime2024_llm_judge_gen --models hf_internlm2_5_1_8b_chat
```
此外,如果你想在多块 GPU 上使用模型进行推理,您可以使用 `--max-num-worker` 参数。
```bash ```bash
CUDA_VISIBLE_DEVICES=0,1 opencompass --datasets demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm2_5-1_8b-chat --max-num-worker 2 CUDA_VISIBLE_DEVICES=0,1 opencompass --datasets demo_gsm8k_chat_gen --hf-type chat --hf-path internlm/internlm2_5-1_8b-chat --max-num-worker 2
@ -281,9 +295,7 @@ OpenCompass 是面向大模型评测的一站式平台。其主要特点如下
您可以通过排序、筛选和搜索等功能从列表中快速找到您需要的数据集。 您可以通过排序、筛选和搜索等功能从列表中快速找到您需要的数据集。
另外我们为每个数据集都提供了一种推荐配置部分数据集还支持了基于LLM Judge的配置。 详情请参阅 [官方文档](https://opencompass.readthedocs.io/zh-cn/latest/dataset_statistics.html) 的数据集统计章节。
详情请参阅 [官方文档](https://opencompass.org.cn/doc) 的数据集统计章节。
<p align="right"><a href="#top">🔝返回顶部</a></p> <p align="right"><a href="#top">🔝返回顶部</a></p>

View File

@ -121,7 +121,7 @@
category: Reasoning category: Reasoning
paper: https://arxiv.org/pdf/2310.16049 paper: https://arxiv.org/pdf/2310.16049
configpath: opencompass/configs/datasets/musr/musr_gen.py configpath: opencompass/configs/datasets/musr/musr_gen.py
configpath_llmjudge: opencompass/configs/datasets/mmlu/mmlu_llm_judge_gen.py configpath_llmjudge: opencompass/configs/datasets/musr/musr_llm_judge_gen.py
- needlebench: - needlebench:
name: NeedleBench name: NeedleBench
category: Long Context category: Long Context
@ -715,6 +715,12 @@
paper: https://arxiv.org/pdf/1809.02789v1 paper: https://arxiv.org/pdf/1809.02789v1
configpath: opencompass/configs/datasets/obqa/obqa_gen.py configpath: opencompass/configs/datasets/obqa/obqa_gen.py
configpath_llmjudge: '' configpath_llmjudge: ''
- olymmath:
name: OlymMATH
category: Math
paper: https://arxiv.org/abs/2503.21380
configpath: ''
configpath_llmjudge: opencompass/configs/datasets/OlymMATH/olymmath_llm_judeg_gen.py
- piqa: - piqa:
name: OpenBookQA name: OpenBookQA
category: Knowledge / Physics category: Knowledge / Physics

View File

@ -117,6 +117,10 @@ html_js_files = [
'js/custom.js' 'js/custom.js'
] ]
html_context = {
'github_version': 'main',
}
# -- Options for HTMLHelp output --------------------------------------------- # -- Options for HTMLHelp output ---------------------------------------------
# Output file base name for HTML help builder. # Output file base name for HTML help builder.

View File

@ -32,12 +32,23 @@ with open(load_path, 'r') as f2:
HEADER = ['name', 'category', 'paper', 'configpath', 'configpath_llmjudge'] HEADER = ['name', 'category', 'paper', 'configpath', 'configpath_llmjudge']
recommanded_dataset_list = [
'ifeval', 'aime2024', 'bbh', 'bigcodebench', 'cmmlu', 'drop', 'gpqa',
'hellaswag', 'humaneval', 'korbench', 'livecodebench', 'math', 'mmlu',
'mmlu_pro', 'musr'
]
def table_format(data_list): def table_format(data_list):
table_format_list = [] table_format_list = []
for i in data_list: for i in data_list:
table_format_list_sub = [] table_format_list_sub = []
for j in i: for j in i:
if j in recommanded_dataset_list:
link_token = '[link]('
else:
link_token = '[link(TBD)]('
for index in HEADER: for index in HEADER:
if index == 'paper': if index == 'paper':
table_format_list_sub.append('[link](' + i[j][index] + ')') table_format_list_sub.append('[link](' + i[j][index] + ')')
@ -45,18 +56,18 @@ def table_format(data_list):
if i[j][index] == '': if i[j][index] == '':
table_format_list_sub.append(i[j][index]) table_format_list_sub.append(i[j][index])
else: else:
table_format_list_sub.append('[link](' + table_format_list_sub.append(link_token +
GITHUB_PREFIX + GITHUB_PREFIX +
i[j][index] + ')') i[j][index] + ')')
elif index == 'configpath': elif index == 'configpath':
if isinstance(i[j][index], list): if isinstance(i[j][index], list):
sub_list_text = '' sub_list_text = ''
for k in i[j][index]: for k in i[j][index]:
sub_list_text += ('[link](' + GITHUB_PREFIX + k + sub_list_text += (link_token + GITHUB_PREFIX + k +
') / ') ') / ')
table_format_list_sub.append(sub_list_text[:-2]) table_format_list_sub.append(sub_list_text[:-2])
else: else:
table_format_list_sub.append('[link](' + table_format_list_sub.append(link_token +
GITHUB_PREFIX + GITHUB_PREFIX +
i[j][index] + ')') i[j][index] + ')')
else: else:

View File

@ -117,6 +117,10 @@ html_js_files = [
'js/custom.js' 'js/custom.js'
] ]
html_context = {
'github_version': 'main',
}
# -- Options for HTMLHelp output --------------------------------------------- # -- Options for HTMLHelp output ---------------------------------------------
# Output file base name for HTML help builder. # Output file base name for HTML help builder.

View File

@ -30,12 +30,23 @@ with open(load_path, 'r') as f2:
HEADER = ['name', 'category', 'paper', 'configpath', 'configpath_llmjudge'] HEADER = ['name', 'category', 'paper', 'configpath', 'configpath_llmjudge']
recommanded_dataset_list = [
'ifeval', 'aime2024', 'bbh', 'bigcodebench', 'cmmlu', 'drop', 'gpqa',
'hellaswag', 'humaneval', 'korbench', 'livecodebench', 'math', 'mmlu',
'mmlu_pro', 'musr'
]
def table_format(data_list): def table_format(data_list):
table_format_list = [] table_format_list = []
for i in data_list: for i in data_list:
table_format_list_sub = [] table_format_list_sub = []
for j in i: for j in i:
if j in recommanded_dataset_list:
link_token = '[链接]('
else:
link_token = '[链接(TBD)]('
for index in HEADER: for index in HEADER:
if index == 'paper': if index == 'paper':
table_format_list_sub.append('[链接](' + i[j][index] + ')') table_format_list_sub.append('[链接](' + i[j][index] + ')')
@ -43,17 +54,19 @@ def table_format(data_list):
if i[j][index] == '': if i[j][index] == '':
table_format_list_sub.append(i[j][index]) table_format_list_sub.append(i[j][index])
else: else:
table_format_list_sub.append('[链接](' + GITHUB_PREFIX + table_format_list_sub.append(link_token +
GITHUB_PREFIX +
i[j][index] + ')') i[j][index] + ')')
elif index == 'configpath': elif index == 'configpath':
if isinstance(i[j][index], list): if isinstance(i[j][index], list):
sub_list_text = '' sub_list_text = ''
for k in i[j][index]: for k in i[j][index]:
sub_list_text += ('[链接](' + GITHUB_PREFIX + k + sub_list_text += (link_token + GITHUB_PREFIX + k +
') / ') ') / ')
table_format_list_sub.append(sub_list_text[:-2]) table_format_list_sub.append(sub_list_text[:-2])
else: else:
table_format_list_sub.append('[链接](' + GITHUB_PREFIX + table_format_list_sub.append(link_token +
GITHUB_PREFIX +
i[j][index] + ')') i[j][index] + ')')
else: else:
table_format_list_sub.append(i[j][index]) table_format_list_sub.append(i[j][index])

View File

@ -1 +1 @@
__version__ = '0.4.1' __version__ = '0.4.2'

View File

@ -0,0 +1,60 @@
# OlymMATH
[GitHub Link](https://github.com/RUCAIBox/OlymMATH)
Dataset OlymMATH, please refer to the paper:
Challenging the Boundaries of Reasoning: An Olympiad-Level Math Benchmark for Large Language Models by Haoxiang Sun, Yingqian Min, Zhipeng Chen, Wayne Xin Zhao, Zheng Liu, Zhongyuan Wang, Lei Fang, and Ji-Rong Wen.
## How to eval OlymMATH with model judge
This is a simple example:
```python
from opencompass.models import OpenAISDK, OpenAI
from mmengine.config import read_base
with read_base():
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_7b_instruct import models as qwen2_5_7b_instruct_model
from opencompass.configs.datasets.OlymMATH.olymmath_gen import olymmath_datasets
################## Judge Config ##################
api_meta_template = dict(round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
], )
judge_cfg = dict(
# An API model with OpenAI API format is required for Judge
abbr='qwen2-5-32B-Instruct',
type=OpenAISDK,
path='Qwen/Qwen2.5-32B-Instruct',
key='sk-1234',
openai_api_base=[
'http://172.30.56.1:4000/v1',
],
meta_template=api_meta_template,
query_per_second=16,
batch_size=1024,
temperature=0.001,
max_completion_tokens=32768,
tokenizer_path='gpt-4o-2024-05-13',
verbose=True,
max_out_len=16384,
max_seq_len=32768,
)
################## Model Config ##################
models = [*qwen2_5_7b_instruct_model]
################## Dataset Config ##################
datasets = [*olymmath_datasets]
# Set judge_cfg for evaluation
for item in datasets:
item['infer_cfg']['inferencer']['max_out_len'] = 32768
if 'judge_cfg' in item['eval_cfg']['evaluator']:
item['eval_cfg']['evaluator']['judge_cfg'] = judge_cfg
work_dir = './outputs/olymmath_llm_eval'
```

View File

@ -0,0 +1,5 @@
from mmengine.config import read_base
with read_base():
# Default use LLM as a judge
from .olymmath_llmverify_gen_97b203 import olymmath_datasets # noqa: F401, F403

View File

@ -0,0 +1,99 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets import OlymMATHDataset
# ----------------------------- Detailed Config -----------------------------
math_reader_cfg = dict(input_columns=['problem'], output_column='answer', train_split='test')
math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{problem}\nRemember to put your final answer within \\boxed{}.'),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
sub_sets = ['en-hard', 'zh-hard', 'en-easy', 'zh-easy']
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: \n{problem}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
# Evaluation configuration
olymmath_datasets = []
for sub_set in sub_sets:
math_eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt = GRADER_TEMPLATE
),
]),
),
dataset_cfg=dict(
type=OlymMATHDataset,
path='RUC-AIBOX/OlymMATH',
reader_cfg=math_reader_cfg,
subset=sub_set,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
pred_role='BOT',
)
olymmath_datasets.append(
dict(
type=OlymMATHDataset,
abbr=f'olymmath_llmjudge_{sub_set}',
path='RUC-AIBOX/OlymMATH',
reader_cfg=math_reader_cfg,
infer_cfg=math_infer_cfg,
eval_cfg=math_eval_cfg,
subset=sub_set,
)
)

View File

@ -1,15 +1,14 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import MATHEvaluator
from opencompass.datasets import ( from opencompass.datasets import (
MATHDataset, MATHDataset,
MATHEvaluator,
math_postprocess_v2, math_postprocess_v2,
normalize_final_answer, normalize_final_answer,
) )
math_reader_cfg = dict(input_columns=['problem'], output_column='solution') math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
math_infer_cfg = dict( math_infer_cfg = dict(
prompt_template=dict( prompt_template=dict(
type=PromptTemplate, type=PromptTemplate,
@ -28,7 +27,8 @@ math_infer_cfg = dict(
# postprocess v2 # postprocess v2
math_eval_cfg = dict( math_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator) evaluator=dict(type=MATHEvaluator, version='v2'),
pred_postprocessor=dict(type=math_postprocess_v2),
) )
math_datasets = [ math_datasets = [

View File

@ -0,0 +1,44 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import MATHEvaluator
from opencompass.datasets import (
MATHDataset,
math_postprocess_v2,
normalize_final_answer,
)
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt='{problem}\nPlease reason step by step, and put your final answer within \\boxed{}.',
),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# postprocess v2
math_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator)
)
math_datasets = [
dict(
type=MATHDataset,
abbr='math_prm800k_500',
path='opencompass/math',
file_name='test_prm800k_500.json',
reader_cfg=math_reader_cfg,
infer_cfg=math_infer_cfg,
eval_cfg=math_eval_cfg,
)
]

View File

@ -1,4 +1,4 @@
from mmengine.config import read_base from mmengine.config import read_base
with read_base(): with read_base():
from .math_prm800k_500_0shot_cot_gen import math_datasets # noqa: F401, F403 from .math_prm800k_500_0shot_cot_gen_11c4b5 import math_datasets # noqa: F401, F403

View File

@ -0,0 +1,22 @@
from opencompass.models import TurboMindModelwithChatTemplate
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='mixtral-8x22b-instruct-v0.1-turbomind',
path='mistralai/Mixtral-8x22B-Instruct-v0.1',
engine_config=dict(
session_len=32768,
max_batch_size=16,
tp=8,
cache_max_entry_count=0.7,
),
gen_config=dict(
top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=4096
),
max_seq_len=32768,
max_out_len=4096,
batch_size=8,
run_cfg=dict(num_gpus=8),
)
]

View File

@ -48,7 +48,7 @@ def clean_units(pred_str: str):
def number_it(num): def number_it(num):
from latex2sympy2 import latex2sympy from latex2sympy2_extended import latex2sympy
if isinstance(num, (int, float)): if isinstance(num, (int, float)):
return num return num

View File

@ -17,7 +17,7 @@ def time_limit(seconds: float):
def extract_theoremqa_answer(pred: str, answer_flag: bool = True): def extract_theoremqa_answer(pred: str, answer_flag: bool = True):
from latex2sympy2 import latex2sympy from latex2sympy2_extended import latex2sympy
if any([option in pred.lower() for option in ['yes', 'true']]): if any([option in pred.lower() for option in ['yes', 'true']]):
pred = 'True' pred = 'True'

View File

@ -106,6 +106,7 @@ from .natural_question import * # noqa: F401, F403
from .natural_question_cn import * # noqa: F401, F403 from .natural_question_cn import * # noqa: F401, F403
from .NPHardEval import * # noqa: F401, F403 from .NPHardEval import * # noqa: F401, F403
from .obqa import * # noqa: F401, F403 from .obqa import * # noqa: F401, F403
from .olymmath import * # noqa: F401, F403
from .OlympiadBench import * # noqa: F401, F403 from .OlympiadBench import * # noqa: F401, F403
from .OpenFinData import * # noqa: F401, F403 from .OpenFinData import * # noqa: F401, F403
from .piqa import * # noqa: F401, F403 from .piqa import * # noqa: F401, F403

View File

@ -0,0 +1,14 @@
from datasets import load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class OlymMATHDataset(BaseDataset):
@staticmethod
def load(path: str, subset: str):
dataset = load_dataset(path, subset)
return dataset

View File

@ -33,6 +33,7 @@ class ClaudeSDK(BaseAPIModel):
max_seq_len: int = 2048, max_seq_len: int = 2048,
meta_template: Optional[Dict] = None, meta_template: Optional[Dict] = None,
temperature: Optional[float] = 0.0, temperature: Optional[float] = 0.0,
thinking: Optional[Dict] = None,
retry: int = 2, retry: int = 2,
): ):
super().__init__(path=path, super().__init__(path=path,
@ -49,6 +50,7 @@ class ClaudeSDK(BaseAPIModel):
self.anthropic = Anthropic(api_key=key) self.anthropic = Anthropic(api_key=key)
self.model = path self.model = path
self.temperature = temperature self.temperature = temperature
self.thinking = thinking
def generate( def generate(
self, self,
@ -108,11 +110,26 @@ class ClaudeSDK(BaseAPIModel):
while num_retries < self.retry: while num_retries < self.retry:
self.wait() self.wait()
try: try:
responses = self.anthropic.messages.create( api_params = {
model=self.model, 'model': self.model,
max_tokens=max_out_len, 'max_tokens': max_out_len,
temperature=self.temperature, 'temperature': self.temperature,
messages=messages) 'messages': messages,
}
if self.thinking is not None:
api_params['thinking'] = self.thinking
api_params['stream'] = True
responses = self.anthropic.messages.create(**api_params)
# Handle new response format
for content in responses.content:
if content.type == 'text':
return content.text
# If no text type content is found, return the first
# content (backward compatibility)
return responses.content[0].text return responses.content[0].text
except Exception as e: except Exception as e:
self.logger.error(e) self.logger.error(e)

View File

@ -652,7 +652,6 @@ class OpenAISDK(OpenAI):
self.logger.info('Start calling OpenAI API') self.logger.info('Start calling OpenAI API')
responses = self.openai_client.chat.completions.create( responses = self.openai_client.chat.completions.create(
**query_data, timeout=timeout) # timeout in seconds **query_data, timeout=timeout) # timeout in seconds
if self.verbose: if self.verbose:
self.logger.info( self.logger.info(
'Successfully get response from OpenAI API') 'Successfully get response from OpenAI API')
@ -660,10 +659,18 @@ class OpenAISDK(OpenAI):
self.logger.info(responses) self.logger.info(responses)
except Exception: except Exception:
pass # noqa F841 pass # noqa F841
if not responses.choices:
# Check if response is empty or content is empty
if not responses.choices or not responses.choices[
0].message.content:
self.logger.error( self.logger.error(
'Response is empty, it is an internal server error \ 'API response is empty, it might be due to excessive '
from the API provider.') 'input length or an internal server error '
'from your API provider.')
num_retries += 1
# Continue to retry instead of returning empty response
continue
return responses.choices[0].message.content return responses.choices[0].message.content
except (BadRequestError, APIStatusError) as e: except (BadRequestError, APIStatusError) as e:

View File

@ -147,6 +147,5 @@ class CommonSummarizer(CompassArenaSummarizer):
f.write(','.join(new_header) + '\n') f.write(','.join(new_header) + '\n')
for line in new_table: for line in new_table:
f.write(','.join(map(str, line)) + '\n') f.write(','.join(map(str, line)) + '\n')
print(t)
print(output_file) print(output_file)
return {'qa_bench_' + show_dataset_abbr:json_result} return {'qa_bench_' + show_dataset_abbr:json_result}

View File

@ -11,12 +11,10 @@ faiss_gpu==1.7.2
-e git+https://github.com/open-compass/human-eval.git#egg=human-eval -e git+https://github.com/open-compass/human-eval.git#egg=human-eval
# IFEval # IFEval
langdetect langdetect
# TheoremQA
latex2sympy2==1.9.1
# Lawbench, leval # Lawbench, leval
ltp ltp
# Math # Math
math-verify math-verify[antlr4_11_0]
# Taco, apps Dataset # Taco, apps Dataset
pyext pyext
# Law Bench # Law Bench