[Sync] Use finally to clean up temp files (#337)

This commit is contained in:
Tong Gao 2023-09-04 15:20:16 +08:00 committed by GitHub
parent 2cd994c3d1
commit ce65d3393b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 233 additions and 230 deletions

View File

@ -86,65 +86,70 @@ class DLCRunner(BaseRunner):
# Dump task config to file
mmengine.mkdir_or_exist('tmp/')
param_file = f'tmp/{os.getpid()}_params.py'
task_cfg.dump(param_file)
try:
task_cfg.dump(param_file)
# Build up DLC command
pwd = os.getcwd()
shell_cmd = (f'source {self.aliyun_cfg["bashrc_path"]}; '
f'conda activate {self.aliyun_cfg["conda_env_name"]}; '
f'cd {pwd}; '
'{task_cmd}')
# Build up DLC command
pwd = os.getcwd()
shell_cmd = (
f'source {self.aliyun_cfg["bashrc_path"]}; '
f'conda activate {self.aliyun_cfg["conda_env_name"]}; '
f'cd {pwd}; '
'{task_cmd}')
tmpl = ('dlc create job'
f" --command '{shell_cmd}'"
f' --name {task_name[:512]}'
' --kind BatchJob'
f" -c {self.aliyun_cfg['dlc_config_path']}"
f" --workspace_id {self.aliyun_cfg['workspace_id']}"
' --worker_count 1'
f' --worker_cpu {max(num_gpus * 6, 8)}'
f' --worker_gpu {num_gpus}'
f' --worker_memory {max(num_gpus * 32, 48)}'
f" --worker_image {self.aliyun_cfg['worker_image']}"
' --interactive')
get_cmd = partial(task.get_command, cfg_path=param_file, template=tmpl)
cmd = get_cmd()
tmpl = ('dlc create job'
f" --command '{shell_cmd}'"
f' --name {task_name[:512]}'
' --kind BatchJob'
f" -c {self.aliyun_cfg['dlc_config_path']}"
f" --workspace_id {self.aliyun_cfg['workspace_id']}"
' --worker_count 1'
f' --worker_cpu {max(num_gpus * 6, 8)}'
f' --worker_gpu {num_gpus}'
f' --worker_memory {max(num_gpus * 32, 48)}'
f" --worker_image {self.aliyun_cfg['worker_image']}"
' --interactive')
get_cmd = partial(task.get_command,
cfg_path=param_file,
template=tmpl)
cmd = get_cmd()
logger = get_logger()
logger.debug(f'Running command: {cmd}')
logger = get_logger()
logger.debug(f'Running command: {cmd}')
# Run command with retry
if self.debug:
stdout = None
else:
out_path = task.get_log_path(file_extension='out')
mmengine.mkdir_or_exist(osp.split(out_path)[0])
stdout = open(out_path, 'w', encoding='utf-8')
# Run command with retry
if self.debug:
stdout = None
else:
out_path = task.get_log_path(file_extension='out')
mmengine.mkdir_or_exist(osp.split(out_path)[0])
stdout = open(out_path, 'w', encoding='utf-8')
if random_sleep:
time.sleep(random.randint(0, 10))
result = subprocess.run(cmd,
shell=True,
text=True,
stdout=stdout,
stderr=stdout)
retry = self.retry
output_paths = task.get_output_paths()
while self._job_failed(result.returncode, output_paths) and retry > 0:
retry -= 1
if random_sleep:
time.sleep(random.randint(0, 10))
# Re-generate command to refresh ports.
cmd = get_cmd()
result = subprocess.run(cmd,
shell=True,
text=True,
stdout=stdout,
stderr=stdout)
# Clean up
os.remove(param_file)
retry = self.retry
output_paths = task.get_output_paths()
while self._job_failed(result.returncode,
output_paths) and retry > 0:
retry -= 1
if random_sleep:
time.sleep(random.randint(0, 10))
# Re-generate command to refresh ports.
cmd = get_cmd()
result = subprocess.run(cmd,
shell=True,
text=True,
stdout=stdout,
stderr=stdout)
finally:
# Clean up
os.remove(param_file)
return task_name, result.returncode
def _job_failed(self, return_code: int, output_paths: List[str]) -> bool:

View File

@ -62,15 +62,17 @@ class LocalRunner(BaseRunner):
# get cmd
mmengine.mkdir_or_exist('tmp/')
param_file = f'tmp/{os.getpid()}_params.py'
task.cfg.dump(param_file)
cmd = task.get_command(cfg_path=param_file,
template='{task_cmd}')
# run in subprocess if starts with torchrun etc.
if cmd.startswith('python'):
task.run()
else:
subprocess.run(cmd, shell=True, text=True)
os.remove(param_file)
try:
task.cfg.dump(param_file)
cmd = task.get_command(cfg_path=param_file,
template='{task_cmd}')
# run in subprocess if starts with torchrun etc.
if cmd.startswith('python'):
task.run()
else:
subprocess.run(cmd, shell=True, text=True)
finally:
os.remove(param_file)
status.append((task_name, 0))
else:
import torch
@ -141,31 +143,34 @@ class LocalRunner(BaseRunner):
# Dump task config to file
mmengine.mkdir_or_exist('tmp/')
param_file = f'tmp/{os.getpid()}_{index}_params.py'
task.cfg.dump(param_file)
try:
task.cfg.dump(param_file)
# Build up slurm command
tmpl = 'CUDA_VISIBLE_DEVICES=' + ','.join(str(i) for i in gpu_ids)
tmpl += ' {task_cmd}'
get_cmd = partial(task.get_command, cfg_path=param_file, template=tmpl)
cmd = get_cmd()
# Build up slurm command
tmpl = 'CUDA_VISIBLE_DEVICES=' + ','.join(str(i) for i in gpu_ids)
tmpl += ' {task_cmd}'
get_cmd = partial(task.get_command,
cfg_path=param_file,
template=tmpl)
cmd = get_cmd()
logger = get_logger()
logger.debug(f'Running command: {cmd}')
logger = get_logger()
logger.debug(f'Running command: {cmd}')
# Run command
out_path = task.get_log_path(file_extension='out')
mmengine.mkdir_or_exist(osp.split(out_path)[0])
stdout = open(out_path, 'w', encoding='utf-8')
# Run command
out_path = task.get_log_path(file_extension='out')
mmengine.mkdir_or_exist(osp.split(out_path)[0])
stdout = open(out_path, 'w', encoding='utf-8')
result = subprocess.run(cmd,
shell=True,
text=True,
stdout=stdout,
stderr=stdout)
result = subprocess.run(cmd,
shell=True,
text=True,
stdout=stdout,
stderr=stdout)
if result.returncode != 0:
logger.warning(f'task {task_name} fail, see\n{out_path}')
# Clean up
os.remove(param_file)
if result.returncode != 0:
logger.warning(f'task {task_name} fail, see\n{out_path}')
finally:
# Clean up
os.remove(param_file)
return task_name, result.returncode

View File

@ -91,60 +91,64 @@ class SlurmRunner(BaseRunner):
# Dump task config to file
mmengine.mkdir_or_exist('tmp/')
param_file = f'tmp/{os.getpid()}_params.py'
task_cfg.dump(param_file)
try:
task_cfg.dump(param_file)
# Build up slurm command
tmpl = 'srun'
if self.partition:
tmpl += f' -p {self.partition}'
if self.quotatype:
tmpl += f' --quotatype={self.quotatype}'
if self.qos:
tmpl += f' --qos={self.qos}'
if num_gpus > 0:
tmpl += f' --gres=gpu:{num_gpus}'
tmpl += f" -N1 -J '{task_name[:512]}'" + ' {task_cmd}'
get_cmd = partial(task.get_command, cfg_path=param_file, template=tmpl)
cmd = get_cmd()
# Build up slurm command
tmpl = 'srun'
if self.partition:
tmpl += f' -p {self.partition}'
if self.quotatype:
tmpl += f' --quotatype={self.quotatype}'
if self.qos:
tmpl += f' --qos={self.qos}'
if num_gpus > 0:
tmpl += f' --gres=gpu:{num_gpus}'
tmpl += f" -N1 -J '{task_name[:512]}'" + ' {task_cmd}'
get_cmd = partial(task.get_command,
cfg_path=param_file,
template=tmpl)
cmd = get_cmd()
logger = get_logger()
logger.debug(f'Running command: {cmd}')
logger = get_logger()
logger.debug(f'Running command: {cmd}')
# Run command with retry
if self.debug:
stdout = None
else:
out_path = task.get_log_path(file_extension='out')
mmengine.mkdir_or_exist(osp.split(out_path)[0])
stdout = open(out_path, 'w', encoding='utf-8')
# Run command with retry
if self.debug:
stdout = None
else:
out_path = task.get_log_path(file_extension='out')
mmengine.mkdir_or_exist(osp.split(out_path)[0])
stdout = open(out_path, 'w', encoding='utf-8')
if random_sleep:
time.sleep(random.randint(0, 10))
result = subprocess.run(cmd,
shell=True,
text=True,
stdout=stdout,
stderr=stdout)
retry = self.retry
output_paths = task.get_output_paths()
while self._job_failed(result.returncode, output_paths) and retry > 0:
retry -= 1
if random_sleep:
time.sleep(random.randint(0, 10))
# Re-generate command to refresh ports.
cmd = get_cmd()
result = subprocess.run(cmd,
shell=True,
text=True,
stdout=stdout,
stderr=stdout)
if result.returncode != 0 and not self.debug:
logger.warning(f'task {task_name} fail, see\n{out_path}')
retry = self.retry
output_paths = task.get_output_paths()
while self._job_failed(result.returncode,
output_paths) and retry > 0:
retry -= 1
if random_sleep:
time.sleep(random.randint(0, 10))
# Re-generate command to refresh ports.
cmd = get_cmd()
result = subprocess.run(cmd,
shell=True,
text=True,
stdout=stdout,
stderr=stdout)
# Clean up
os.remove(param_file)
if result.returncode != 0 and not self.debug:
logger.warning(f'task {task_name} fail, see\n{out_path}')
finally:
# Clean up
os.remove(param_file)
return task_name, result.returncode
def _job_failed(self, return_code: int, output_paths: List[str]) -> bool:

View File

@ -3,7 +3,9 @@ from typing import List, Union
import tabulate
from mmengine.config import Config
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.runners import DLCRunner, LocalRunner, SlurmRunner
from opencompass.tasks import OpenICLEvalTask, OpenICLInferTask
from opencompass.utils import get_logger, match_files
@ -118,54 +120,61 @@ def exec_mm_infer_runner(tasks, args, cfg):
runner(tasks)
def exec_infer_runner(tasks, args, cfg):
"""execute infer runner according to args."""
if args.slurm:
runner = SlurmRunner(dict(type='OpenICLInferTask'),
max_num_workers=args.max_num_workers,
partition=args.partition,
quotatype=args.quotatype,
qos=args.qos,
retry=args.retry,
debug=args.debug,
lark_bot_url=cfg['lark_bot_url'])
elif args.dlc:
runner = DLCRunner(dict(type='OpenICLInferTask'),
max_num_workers=args.max_num_workers,
aliyun_cfg=Config.fromfile(args.aliyun_cfg),
retry=args.retry,
debug=args.debug,
lark_bot_url=cfg['lark_bot_url'])
else:
runner = LocalRunner(task=dict(type='OpenICLInferTask'),
max_num_workers=args.max_num_workers,
max_workers_per_gpu=args.max_workers_per_gpu,
debug=args.debug,
lark_bot_url=cfg['lark_bot_url'])
runner(tasks)
def get_config_type(obj) -> str:
return f'{obj.__module__}.{obj.__name__}'
def exec_eval_runner(tasks, args, cfg):
"""execute infer runner according to args."""
def fill_infer_cfg(cfg, args):
new_cfg = dict(infer=dict(
partitioner=dict(type=get_config_type(SizePartitioner),
max_task_size=args.max_partition_size,
gen_task_coef=args.gen_task_coef),
runner=dict(
max_num_workers=args.max_num_workers,
debug=args.debug,
task=dict(type=get_config_type(OpenICLInferTask)),
lark_bot_url=cfg['lark_bot_url'],
)), )
if args.slurm:
runner = SlurmRunner(dict(type='OpenICLEvalTask'),
max_num_workers=args.max_num_workers,
partition=args.partition,
quotatype=args.quotatype,
qos=args.qos,
retry=args.retry,
debug=args.debug,
lark_bot_url=cfg['lark_bot_url'])
new_cfg['infer']['runner']['type'] = get_config_type(SlurmRunner)
new_cfg['infer']['runner']['partition'] = args.partition
new_cfg['infer']['runner']['quotatype'] = args.quotatype
new_cfg['infer']['runner']['qos'] = args.qos
new_cfg['infer']['runner']['retry'] = args.retry
elif args.dlc:
runner = DLCRunner(dict(type='OpenICLEvalTask'),
max_num_workers=args.max_num_workers,
aliyun_cfg=Config.fromfile(args.aliyun_cfg),
retry=args.retry,
debug=args.debug,
lark_bot_url=cfg['lark_bot_url'])
new_cfg['infer']['runner']['type'] = get_config_type(DLCRunner)
new_cfg['infer']['runner']['aliyun_cfg'] = Config.fromfile(
args.aliyun_cfg)
new_cfg['infer']['runner']['retry'] = args.retry
else:
runner = LocalRunner(task=dict(type='OpenICLEvalTask'),
max_num_workers=args.max_num_workers,
debug=args.debug,
lark_bot_url=cfg['lark_bot_url'])
runner(tasks)
new_cfg['infer']['runner']['type'] = get_config_type(LocalRunner)
new_cfg['infer']['runner'][
'max_workers_per_gpu'] = args.max_workers_per_gpu
cfg.merge_from_dict(new_cfg)
def fill_eval_cfg(cfg, args):
new_cfg = dict(
eval=dict(partitioner=dict(type=get_config_type(NaivePartitioner)),
runner=dict(
max_num_workers=args.max_num_workers,
debug=args.debug,
task=dict(type=get_config_type(OpenICLEvalTask)),
lark_bot_url=cfg['lark_bot_url'],
)))
if args.slurm:
new_cfg['eval']['runner']['type'] = get_config_type(SlurmRunner)
new_cfg['eval']['runner']['partition'] = args.partition
new_cfg['eval']['runner']['quotatype'] = args.quotatype
new_cfg['eval']['runner']['qos'] = args.qos
new_cfg['eval']['runner']['retry'] = args.retry
elif args.dlc:
new_cfg['eval']['runner']['type'] = get_config_type(DLCRunner)
new_cfg['eval']['runner']['aliyun_cfg'] = Config.fromfile(
args.aliyun_cfg)
new_cfg['eval']['runner']['retry'] = args.retry
else:
new_cfg['eval']['runner']['type'] = get_config_type(LocalRunner)
new_cfg['eval']['runner'][
'max_workers_per_gpu'] = args.max_workers_per_gpu
cfg.merge_from_dict(new_cfg)

112
run.py
View File

@ -6,13 +6,12 @@ from datetime import datetime
from mmengine.config import Config, DictAction
from opencompass.partitioners import (MultimodalNaivePartitioner,
NaivePartitioner, SizePartitioner)
from opencompass.partitioners import MultimodalNaivePartitioner
from opencompass.registry import PARTITIONERS, RUNNERS
from opencompass.runners import SlurmRunner
from opencompass.utils import LarkReporter, Summarizer, get_logger
from opencompass.utils.run import (exec_eval_runner, exec_infer_runner,
exec_mm_infer_runner, get_config_from_arg)
from opencompass.utils.run import (exec_mm_infer_runner, fill_eval_cfg,
fill_infer_cfg, get_config_from_arg)
def parse_args():
@ -245,39 +244,29 @@ def main():
tasks = partitioner(cfg)
exec_mm_infer_runner(tasks, args, cfg)
return
elif args.dlc or args.slurm or cfg.get('infer', None) is None:
# Use SizePartitioner to split into subtasks
partitioner = SizePartitioner(
osp.join(cfg['work_dir'], 'predictions/'),
max_task_size=args.max_partition_size,
gen_task_coef=args.gen_task_coef)
tasks = partitioner(cfg)
if args.dry_run:
return
# execute the infer subtasks
exec_infer_runner(tasks, args, cfg)
# If they have specified "infer" in config and haven't used --slurm
# or --dlc, just follow the config
if args.dlc or args.slurm or cfg.get('infer', None) is None:
fill_infer_cfg(cfg, args)
if args.partition is not None:
if RUNNERS.get(cfg.infer.runner.type) == SlurmRunner:
cfg.infer.runner.partition = args.partition
cfg.infer.runner.quotatype = args.quotatype
else:
if args.partition is not None:
if RUNNERS.get(cfg.infer.runner.type) == SlurmRunner:
cfg.infer.runner.partition = args.partition
cfg.infer.runner.quotatype = args.quotatype
else:
logger.warning('SlurmRunner is not used, so the partition '
'argument is ignored.')
if args.debug:
cfg.infer.runner.debug = True
if args.lark:
cfg.infer.runner.lark_bot_url = cfg['lark_bot_url']
cfg.infer.partitioner['out_dir'] = osp.join(
cfg['work_dir'], 'predictions/')
partitioner = PARTITIONERS.build(cfg.infer.partitioner)
tasks = partitioner(cfg)
if args.dry_run:
return
runner = RUNNERS.build(cfg.infer.runner)
runner(tasks)
logger.warning('SlurmRunner is not used, so the partition '
'argument is ignored.')
if args.debug:
cfg.infer.runner.debug = True
if args.lark:
cfg.infer.runner.lark_bot_url = cfg['lark_bot_url']
cfg.infer.partitioner['out_dir'] = osp.join(cfg['work_dir'],
'predictions/')
partitioner = PARTITIONERS.build(cfg.infer.partitioner)
tasks = partitioner(cfg)
if args.dry_run:
return
runner = RUNNERS.build(cfg.infer.runner)
runner(tasks)
# evaluate
if args.mode in ['all', 'eval']:
@ -289,37 +278,28 @@ def main():
'also specified --slurm or --dlc. '
'The "eval" configuration will be overridden by '
'your runtime arguments.')
if args.dlc or args.slurm or cfg.get('eval', None) is None:
# Use NaivePartitionernot split
partitioner = NaivePartitioner(
osp.join(cfg['work_dir'], 'results/'))
tasks = partitioner(cfg)
if args.dry_run:
return
# execute the eval tasks
exec_eval_runner(tasks, args, cfg)
# If they have specified "eval" in config and haven't used --slurm
# or --dlc, just follow the config
else:
if args.partition is not None:
if RUNNERS.get(cfg.infer.runner.type) == SlurmRunner:
cfg.eval.runner.partition = args.partition
cfg.eval.runner.quotatype = args.quotatype
else:
logger.warning('SlurmRunner is not used, so the partition '
'argument is ignored.')
if args.debug:
cfg.eval.runner.debug = True
if args.lark:
cfg.eval.runner.lark_bot_url = cfg['lark_bot_url']
cfg.eval.partitioner['out_dir'] = osp.join(cfg['work_dir'],
'results/')
partitioner = PARTITIONERS.build(cfg.eval.partitioner)
tasks = partitioner(cfg)
if args.dry_run:
return
runner = RUNNERS.build(cfg.eval.runner)
runner(tasks)
fill_eval_cfg(cfg, args)
if args.partition is not None:
if RUNNERS.get(cfg.infer.runner.type) == SlurmRunner:
cfg.eval.runner.partition = args.partition
cfg.eval.runner.quotatype = args.quotatype
else:
logger.warning('SlurmRunner is not used, so the partition '
'argument is ignored.')
if args.debug:
cfg.eval.runner.debug = True
if args.lark:
cfg.eval.runner.lark_bot_url = cfg['lark_bot_url']
cfg.eval.partitioner['out_dir'] = osp.join(cfg['work_dir'], 'results/')
partitioner = PARTITIONERS.build(cfg.eval.partitioner)
tasks = partitioner(cfg)
if args.dry_run:
return
runner = RUNNERS.build(cfg.eval.runner)
runner(tasks)
# visualize
if args.mode in ['all', 'eval', 'viz']: