mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
[Fix] Update Zhipu API and Fix issue min_out_len issue of API models (#847)
* Update zhipu api and fix min_out_len issue of API class * Update example * Update example
This commit is contained in:
parent
2801883351
commit
cdca59ff49
67
configs/api_examples/eval_api_zhipu_v2.py
Normal file
67
configs/api_examples/eval_api_zhipu_v2.py
Normal file
@ -0,0 +1,67 @@
|
||||
from mmengine.config import read_base
|
||||
from opencompass.models import ZhiPuV2AI
|
||||
from opencompass.partitioners import NaivePartitioner
|
||||
from opencompass.runners.local_api import LocalAPIRunner
|
||||
from opencompass.tasks import OpenICLInferTask
|
||||
|
||||
with read_base():
|
||||
# from .datasets.collections.chat_medium import datasets
|
||||
from ..summarizers.medium import summarizer
|
||||
from ..datasets.ceval.ceval_gen import ceval_datasets
|
||||
|
||||
datasets = [
|
||||
*ceval_datasets,
|
||||
]
|
||||
|
||||
# needs a special postprocessor for all
|
||||
# except 'gsm8k' and 'strategyqa'
|
||||
from opencompass.utils import general_eval_wrapper_postprocess
|
||||
for _dataset in datasets:
|
||||
if _dataset['abbr'] not in ['gsm8k', 'strategyqa']:
|
||||
if hasattr(_dataset['eval_cfg'], 'pred_postprocessor'):
|
||||
_dataset['eval_cfg']['pred_postprocessor']['postprocess'] = _dataset['eval_cfg']['pred_postprocessor']['type']
|
||||
_dataset['eval_cfg']['pred_postprocessor']['type'] = general_eval_wrapper_postprocess
|
||||
else:
|
||||
_dataset['eval_cfg']['pred_postprocessor'] = {'type': general_eval_wrapper_postprocess}
|
||||
|
||||
|
||||
api_meta_template = dict(
|
||||
round=[
|
||||
dict(role='HUMAN', api_role='HUMAN'),
|
||||
dict(role='BOT', api_role='BOT', generate=True),
|
||||
],
|
||||
)
|
||||
|
||||
models = [
|
||||
dict(
|
||||
abbr='glm4_notools',
|
||||
type=ZhiPuV2AI,
|
||||
path='glm-4',
|
||||
key='xxxxxx',
|
||||
generation_kwargs={
|
||||
'tools': [
|
||||
{
|
||||
'type': 'web_search',
|
||||
'web_search': {
|
||||
'enable': False # turn off the search
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
meta_template=api_meta_template,
|
||||
query_per_second=1,
|
||||
max_out_len=2048,
|
||||
max_seq_len=2048,
|
||||
batch_size=8)
|
||||
]
|
||||
|
||||
infer = dict(
|
||||
partitioner=dict(type=NaivePartitioner),
|
||||
runner=dict(
|
||||
type=LocalAPIRunner,
|
||||
max_num_workers=2,
|
||||
concurrent_users=2,
|
||||
task=dict(type=OpenICLInferTask)),
|
||||
)
|
||||
|
||||
work_dir = "outputs/api_zhipu_v2/"
|
@ -28,3 +28,4 @@ from .turbomind_tis import TurboMindTisModel # noqa: F401
|
||||
from .vllm import VLLM # noqa: F401
|
||||
from .xunfei_api import XunFei # noqa: F401
|
||||
from .zhipuai_api import ZhiPuAI # noqa: F401
|
||||
from .zhipuai_v2_api import ZhiPuV2AI # noqa: F401
|
||||
|
172
opencompass/models/zhipuai_v2_api.py
Normal file
172
opencompass/models/zhipuai_v2_api.py
Normal file
@ -0,0 +1,172 @@
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
from httpx import ProxyError
|
||||
|
||||
from opencompass.utils.prompt import PromptList
|
||||
|
||||
from .base_api import BaseAPIModel
|
||||
|
||||
try:
|
||||
from zhipuai.core._errors import APIStatusError, APITimeoutError
|
||||
except ImportError:
|
||||
APIStatusError = None
|
||||
APITimeoutError = None
|
||||
|
||||
PromptType = Union[PromptList, str]
|
||||
|
||||
|
||||
class ZhiPuV2AI(BaseAPIModel):
|
||||
"""Model wrapper around ZhiPuAI.
|
||||
|
||||
Args:
|
||||
path (str): The name of OpenAI's model.
|
||||
key (str): Authorization key.
|
||||
query_per_second (int): The maximum queries allowed per second
|
||||
between two consecutive calls of the API. Defaults to 1.
|
||||
max_seq_len (int): Unused here.
|
||||
meta_template (Dict, optional): The model's meta prompt
|
||||
template if needed, in case the requirement of injecting or
|
||||
wrapping of any meta instructions.
|
||||
retry (int): Number of retires if the API call fails. Defaults to 2.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
path: str,
|
||||
key: str,
|
||||
query_per_second: int = 2,
|
||||
max_seq_len: int = 2048,
|
||||
meta_template: Optional[Dict] = None,
|
||||
retry: int = 2,
|
||||
generation_kwargs: Dict = {
|
||||
'tools': [{
|
||||
'type': 'web_search',
|
||||
'enable': False
|
||||
}]
|
||||
}):
|
||||
super().__init__(path=path,
|
||||
max_seq_len=max_seq_len,
|
||||
query_per_second=query_per_second,
|
||||
meta_template=meta_template,
|
||||
retry=retry,
|
||||
generation_kwargs=generation_kwargs)
|
||||
from zhipuai import ZhipuAI
|
||||
|
||||
# self.zhipuai = zhipuai
|
||||
self.client = ZhipuAI(api_key=key)
|
||||
self.model = path
|
||||
|
||||
def generate(
|
||||
self,
|
||||
inputs: List[str or PromptList],
|
||||
max_out_len: int = 512,
|
||||
) -> List[str]:
|
||||
"""Generate results given a list of inputs.
|
||||
|
||||
Args:
|
||||
inputs (List[str or PromptList]): A list of strings or PromptDicts.
|
||||
The PromptDict should be organized in OpenCompass'
|
||||
API format.
|
||||
max_out_len (int): The maximum length of the output.
|
||||
|
||||
Returns:
|
||||
List[str]: A list of generated strings.
|
||||
"""
|
||||
with ThreadPoolExecutor() as executor:
|
||||
results = list(
|
||||
executor.map(self._generate, inputs,
|
||||
[max_out_len] * len(inputs)))
|
||||
self.flush()
|
||||
return results
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
input: str or PromptList,
|
||||
max_out_len: int = 512,
|
||||
) -> str:
|
||||
"""Generate results given an input.
|
||||
|
||||
Args:
|
||||
inputs (str or PromptList): A string or PromptDict.
|
||||
The PromptDict should be organized in OpenCompass'
|
||||
API format.
|
||||
max_out_len (int): The maximum length of the output.
|
||||
|
||||
Returns:
|
||||
str: The generated string.
|
||||
"""
|
||||
assert isinstance(input, (str, PromptList))
|
||||
|
||||
if isinstance(input, str):
|
||||
messages = [{'role': 'user', 'content': input}]
|
||||
else:
|
||||
messages = []
|
||||
for item in input:
|
||||
msg = {'content': item['prompt']}
|
||||
if item['role'] == 'HUMAN':
|
||||
msg['role'] = 'user'
|
||||
elif item['role'] == 'BOT':
|
||||
msg['role'] = 'assistant'
|
||||
elif item['role'] == 'SYSTEM':
|
||||
msg['role'] = 'system'
|
||||
messages.append(msg)
|
||||
|
||||
data = {'model': self.model, 'messages': messages}
|
||||
data.update(self.generation_kwargs)
|
||||
|
||||
max_num_retries = 0
|
||||
while max_num_retries < self.retry:
|
||||
self.acquire()
|
||||
|
||||
try:
|
||||
response = self.client.chat.completions.create(**data)
|
||||
except APIStatusError as err:
|
||||
err_message = str(err.response.json()['error']['message'])
|
||||
status_code = str(err.status_code)
|
||||
err_code = str(err.response.json()['error']['code'])
|
||||
print('Error message:{}'.format(err_message))
|
||||
print('Statues code:{}'.format(status_code))
|
||||
print('Error code:{}'.format(err_code))
|
||||
|
||||
if err_code == '1301':
|
||||
return 'Sensitive content'
|
||||
elif err_code == '1302':
|
||||
print('Reach rate limit')
|
||||
time.sleep(1)
|
||||
continue
|
||||
except ProxyError as err:
|
||||
print('Proxy Error, try again. {}'.format(err))
|
||||
time.sleep(3)
|
||||
continue
|
||||
except APITimeoutError as err:
|
||||
print('APITimeoutError {}'.format(err))
|
||||
time.sleep(3)
|
||||
continue
|
||||
|
||||
self.release()
|
||||
|
||||
if response is None:
|
||||
print('Connection error, reconnect.')
|
||||
# if connect error, frequent requests will casuse
|
||||
# continuous unstable network, therefore wait here
|
||||
# to slow down the request
|
||||
self.wait()
|
||||
max_num_retries += 1
|
||||
continue
|
||||
|
||||
# if response['code'] == 200 and response['success']:
|
||||
# msg = response['data']['choices'][0]['content']
|
||||
else:
|
||||
msg = response.choices[0].message.content
|
||||
return msg
|
||||
# sensitive content, prompt overlength, network error
|
||||
# or illegal prompt
|
||||
if (response['code'] == 1301 or response['code'] == 1261
|
||||
or response['code'] == 1234 or response['code'] == 1214):
|
||||
print(response['msg'])
|
||||
return ''
|
||||
print(response)
|
||||
max_num_retries += 1
|
||||
|
||||
raise RuntimeError(response['msg'])
|
@ -28,6 +28,7 @@ def monkey_run(self, tokens: SyncManager.Semaphore):
|
||||
self.logger.info(f'Task {task_abbr_from_cfg(self.cfg)}')
|
||||
for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs):
|
||||
self.max_out_len = model_cfg.get('max_out_len', None)
|
||||
self.min_out_len = model_cfg.get('min_out_len', None)
|
||||
self.batch_size = model_cfg.get('batch_size', None)
|
||||
self.model = build_model_from_cfg(model_cfg)
|
||||
# add global tokens for concurrents
|
||||
|
Loading…
Reference in New Issue
Block a user