mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
[Fix] Update Zhipu API and Fix issue min_out_len issue of API models (#847)
* Update zhipu api and fix min_out_len issue of API class * Update example * Update example
This commit is contained in:
parent
2801883351
commit
cdca59ff49
67
configs/api_examples/eval_api_zhipu_v2.py
Normal file
67
configs/api_examples/eval_api_zhipu_v2.py
Normal file
@ -0,0 +1,67 @@
|
|||||||
|
from mmengine.config import read_base
|
||||||
|
from opencompass.models import ZhiPuV2AI
|
||||||
|
from opencompass.partitioners import NaivePartitioner
|
||||||
|
from opencompass.runners.local_api import LocalAPIRunner
|
||||||
|
from opencompass.tasks import OpenICLInferTask
|
||||||
|
|
||||||
|
with read_base():
|
||||||
|
# from .datasets.collections.chat_medium import datasets
|
||||||
|
from ..summarizers.medium import summarizer
|
||||||
|
from ..datasets.ceval.ceval_gen import ceval_datasets
|
||||||
|
|
||||||
|
datasets = [
|
||||||
|
*ceval_datasets,
|
||||||
|
]
|
||||||
|
|
||||||
|
# needs a special postprocessor for all
|
||||||
|
# except 'gsm8k' and 'strategyqa'
|
||||||
|
from opencompass.utils import general_eval_wrapper_postprocess
|
||||||
|
for _dataset in datasets:
|
||||||
|
if _dataset['abbr'] not in ['gsm8k', 'strategyqa']:
|
||||||
|
if hasattr(_dataset['eval_cfg'], 'pred_postprocessor'):
|
||||||
|
_dataset['eval_cfg']['pred_postprocessor']['postprocess'] = _dataset['eval_cfg']['pred_postprocessor']['type']
|
||||||
|
_dataset['eval_cfg']['pred_postprocessor']['type'] = general_eval_wrapper_postprocess
|
||||||
|
else:
|
||||||
|
_dataset['eval_cfg']['pred_postprocessor'] = {'type': general_eval_wrapper_postprocess}
|
||||||
|
|
||||||
|
|
||||||
|
api_meta_template = dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', api_role='HUMAN'),
|
||||||
|
dict(role='BOT', api_role='BOT', generate=True),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
models = [
|
||||||
|
dict(
|
||||||
|
abbr='glm4_notools',
|
||||||
|
type=ZhiPuV2AI,
|
||||||
|
path='glm-4',
|
||||||
|
key='xxxxxx',
|
||||||
|
generation_kwargs={
|
||||||
|
'tools': [
|
||||||
|
{
|
||||||
|
'type': 'web_search',
|
||||||
|
'web_search': {
|
||||||
|
'enable': False # turn off the search
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
},
|
||||||
|
meta_template=api_meta_template,
|
||||||
|
query_per_second=1,
|
||||||
|
max_out_len=2048,
|
||||||
|
max_seq_len=2048,
|
||||||
|
batch_size=8)
|
||||||
|
]
|
||||||
|
|
||||||
|
infer = dict(
|
||||||
|
partitioner=dict(type=NaivePartitioner),
|
||||||
|
runner=dict(
|
||||||
|
type=LocalAPIRunner,
|
||||||
|
max_num_workers=2,
|
||||||
|
concurrent_users=2,
|
||||||
|
task=dict(type=OpenICLInferTask)),
|
||||||
|
)
|
||||||
|
|
||||||
|
work_dir = "outputs/api_zhipu_v2/"
|
@ -28,3 +28,4 @@ from .turbomind_tis import TurboMindTisModel # noqa: F401
|
|||||||
from .vllm import VLLM # noqa: F401
|
from .vllm import VLLM # noqa: F401
|
||||||
from .xunfei_api import XunFei # noqa: F401
|
from .xunfei_api import XunFei # noqa: F401
|
||||||
from .zhipuai_api import ZhiPuAI # noqa: F401
|
from .zhipuai_api import ZhiPuAI # noqa: F401
|
||||||
|
from .zhipuai_v2_api import ZhiPuV2AI # noqa: F401
|
||||||
|
172
opencompass/models/zhipuai_v2_api.py
Normal file
172
opencompass/models/zhipuai_v2_api.py
Normal file
@ -0,0 +1,172 @@
|
|||||||
|
import time
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
from typing import Dict, List, Optional, Union
|
||||||
|
|
||||||
|
from httpx import ProxyError
|
||||||
|
|
||||||
|
from opencompass.utils.prompt import PromptList
|
||||||
|
|
||||||
|
from .base_api import BaseAPIModel
|
||||||
|
|
||||||
|
try:
|
||||||
|
from zhipuai.core._errors import APIStatusError, APITimeoutError
|
||||||
|
except ImportError:
|
||||||
|
APIStatusError = None
|
||||||
|
APITimeoutError = None
|
||||||
|
|
||||||
|
PromptType = Union[PromptList, str]
|
||||||
|
|
||||||
|
|
||||||
|
class ZhiPuV2AI(BaseAPIModel):
|
||||||
|
"""Model wrapper around ZhiPuAI.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
path (str): The name of OpenAI's model.
|
||||||
|
key (str): Authorization key.
|
||||||
|
query_per_second (int): The maximum queries allowed per second
|
||||||
|
between two consecutive calls of the API. Defaults to 1.
|
||||||
|
max_seq_len (int): Unused here.
|
||||||
|
meta_template (Dict, optional): The model's meta prompt
|
||||||
|
template if needed, in case the requirement of injecting or
|
||||||
|
wrapping of any meta instructions.
|
||||||
|
retry (int): Number of retires if the API call fails. Defaults to 2.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
path: str,
|
||||||
|
key: str,
|
||||||
|
query_per_second: int = 2,
|
||||||
|
max_seq_len: int = 2048,
|
||||||
|
meta_template: Optional[Dict] = None,
|
||||||
|
retry: int = 2,
|
||||||
|
generation_kwargs: Dict = {
|
||||||
|
'tools': [{
|
||||||
|
'type': 'web_search',
|
||||||
|
'enable': False
|
||||||
|
}]
|
||||||
|
}):
|
||||||
|
super().__init__(path=path,
|
||||||
|
max_seq_len=max_seq_len,
|
||||||
|
query_per_second=query_per_second,
|
||||||
|
meta_template=meta_template,
|
||||||
|
retry=retry,
|
||||||
|
generation_kwargs=generation_kwargs)
|
||||||
|
from zhipuai import ZhipuAI
|
||||||
|
|
||||||
|
# self.zhipuai = zhipuai
|
||||||
|
self.client = ZhipuAI(api_key=key)
|
||||||
|
self.model = path
|
||||||
|
|
||||||
|
def generate(
|
||||||
|
self,
|
||||||
|
inputs: List[str or PromptList],
|
||||||
|
max_out_len: int = 512,
|
||||||
|
) -> List[str]:
|
||||||
|
"""Generate results given a list of inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
inputs (List[str or PromptList]): A list of strings or PromptDicts.
|
||||||
|
The PromptDict should be organized in OpenCompass'
|
||||||
|
API format.
|
||||||
|
max_out_len (int): The maximum length of the output.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List[str]: A list of generated strings.
|
||||||
|
"""
|
||||||
|
with ThreadPoolExecutor() as executor:
|
||||||
|
results = list(
|
||||||
|
executor.map(self._generate, inputs,
|
||||||
|
[max_out_len] * len(inputs)))
|
||||||
|
self.flush()
|
||||||
|
return results
|
||||||
|
|
||||||
|
def _generate(
|
||||||
|
self,
|
||||||
|
input: str or PromptList,
|
||||||
|
max_out_len: int = 512,
|
||||||
|
) -> str:
|
||||||
|
"""Generate results given an input.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
inputs (str or PromptList): A string or PromptDict.
|
||||||
|
The PromptDict should be organized in OpenCompass'
|
||||||
|
API format.
|
||||||
|
max_out_len (int): The maximum length of the output.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The generated string.
|
||||||
|
"""
|
||||||
|
assert isinstance(input, (str, PromptList))
|
||||||
|
|
||||||
|
if isinstance(input, str):
|
||||||
|
messages = [{'role': 'user', 'content': input}]
|
||||||
|
else:
|
||||||
|
messages = []
|
||||||
|
for item in input:
|
||||||
|
msg = {'content': item['prompt']}
|
||||||
|
if item['role'] == 'HUMAN':
|
||||||
|
msg['role'] = 'user'
|
||||||
|
elif item['role'] == 'BOT':
|
||||||
|
msg['role'] = 'assistant'
|
||||||
|
elif item['role'] == 'SYSTEM':
|
||||||
|
msg['role'] = 'system'
|
||||||
|
messages.append(msg)
|
||||||
|
|
||||||
|
data = {'model': self.model, 'messages': messages}
|
||||||
|
data.update(self.generation_kwargs)
|
||||||
|
|
||||||
|
max_num_retries = 0
|
||||||
|
while max_num_retries < self.retry:
|
||||||
|
self.acquire()
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = self.client.chat.completions.create(**data)
|
||||||
|
except APIStatusError as err:
|
||||||
|
err_message = str(err.response.json()['error']['message'])
|
||||||
|
status_code = str(err.status_code)
|
||||||
|
err_code = str(err.response.json()['error']['code'])
|
||||||
|
print('Error message:{}'.format(err_message))
|
||||||
|
print('Statues code:{}'.format(status_code))
|
||||||
|
print('Error code:{}'.format(err_code))
|
||||||
|
|
||||||
|
if err_code == '1301':
|
||||||
|
return 'Sensitive content'
|
||||||
|
elif err_code == '1302':
|
||||||
|
print('Reach rate limit')
|
||||||
|
time.sleep(1)
|
||||||
|
continue
|
||||||
|
except ProxyError as err:
|
||||||
|
print('Proxy Error, try again. {}'.format(err))
|
||||||
|
time.sleep(3)
|
||||||
|
continue
|
||||||
|
except APITimeoutError as err:
|
||||||
|
print('APITimeoutError {}'.format(err))
|
||||||
|
time.sleep(3)
|
||||||
|
continue
|
||||||
|
|
||||||
|
self.release()
|
||||||
|
|
||||||
|
if response is None:
|
||||||
|
print('Connection error, reconnect.')
|
||||||
|
# if connect error, frequent requests will casuse
|
||||||
|
# continuous unstable network, therefore wait here
|
||||||
|
# to slow down the request
|
||||||
|
self.wait()
|
||||||
|
max_num_retries += 1
|
||||||
|
continue
|
||||||
|
|
||||||
|
# if response['code'] == 200 and response['success']:
|
||||||
|
# msg = response['data']['choices'][0]['content']
|
||||||
|
else:
|
||||||
|
msg = response.choices[0].message.content
|
||||||
|
return msg
|
||||||
|
# sensitive content, prompt overlength, network error
|
||||||
|
# or illegal prompt
|
||||||
|
if (response['code'] == 1301 or response['code'] == 1261
|
||||||
|
or response['code'] == 1234 or response['code'] == 1214):
|
||||||
|
print(response['msg'])
|
||||||
|
return ''
|
||||||
|
print(response)
|
||||||
|
max_num_retries += 1
|
||||||
|
|
||||||
|
raise RuntimeError(response['msg'])
|
@ -28,6 +28,7 @@ def monkey_run(self, tokens: SyncManager.Semaphore):
|
|||||||
self.logger.info(f'Task {task_abbr_from_cfg(self.cfg)}')
|
self.logger.info(f'Task {task_abbr_from_cfg(self.cfg)}')
|
||||||
for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs):
|
for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs):
|
||||||
self.max_out_len = model_cfg.get('max_out_len', None)
|
self.max_out_len = model_cfg.get('max_out_len', None)
|
||||||
|
self.min_out_len = model_cfg.get('min_out_len', None)
|
||||||
self.batch_size = model_cfg.get('batch_size', None)
|
self.batch_size = model_cfg.get('batch_size', None)
|
||||||
self.model = build_model_from_cfg(model_cfg)
|
self.model = build_model_from_cfg(model_cfg)
|
||||||
# add global tokens for concurrents
|
# add global tokens for concurrents
|
||||||
|
Loading…
Reference in New Issue
Block a user