mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
feat result_station.py and lint
This commit is contained in:
parent
2aaab41dc9
commit
c3ad4b5603
@ -12,7 +12,8 @@ from mmengine.config import Config, DictAction
|
||||
from opencompass.registry import PARTITIONERS, RUNNERS, build_from_cfg
|
||||
from opencompass.runners import SlurmRunner
|
||||
from opencompass.summarizers import DefaultSummarizer
|
||||
from opencompass.utils import LarkReporter, get_logger, Save_To_Station
|
||||
from opencompass.utils import (LarkReporter, Read_From_Station,
|
||||
Save_To_Station, get_logger)
|
||||
from opencompass.utils.run import (fill_eval_cfg, fill_infer_cfg,
|
||||
get_config_from_arg)
|
||||
|
||||
@ -64,8 +65,9 @@ def parse_args():
|
||||
help='Running mode. You can choose "infer" if you '
|
||||
'only want the inference results, or "eval" if you '
|
||||
'already have the results and want to evaluate them, '
|
||||
'or "viz" if you want to visualize the results.',
|
||||
choices=['all', 'infer', 'eval', 'viz'],
|
||||
'or "viz" if you want to visualize the results,'
|
||||
'or "rs" if you want to search results from your station.',
|
||||
choices=['all', 'infer', 'eval', 'viz', 'rs'],
|
||||
default='all',
|
||||
type=str)
|
||||
parser.add_argument('-r',
|
||||
@ -133,13 +135,7 @@ def parse_args():
|
||||
'data station.',
|
||||
action='store_true',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--read-station',
|
||||
help='Whether to read the evaluation results from the '
|
||||
'data station.',
|
||||
action='store_true',
|
||||
)
|
||||
parser.add_argument(
|
||||
parser.add_argument('-sp',
|
||||
'--station-path',
|
||||
help='Path to your reuslts station.',
|
||||
type=str,
|
||||
@ -260,6 +256,8 @@ def main():
|
||||
else:
|
||||
dirs = os.listdir(cfg.work_dir)
|
||||
dir_time_str = sorted(dirs)[-1]
|
||||
elif args.reuse == 'station':
|
||||
Read_From_Station(cfg, args, dir_time_str)
|
||||
else:
|
||||
dir_time_str = args.reuse
|
||||
logger.info(f'Reusing experiements from {dir_time_str}')
|
||||
|
@ -14,5 +14,5 @@ from .model_postprocessors import * # noqa
|
||||
from .network import * # noqa
|
||||
from .postprocessors import * # noqa
|
||||
from .prompt import * # noqa
|
||||
from .text_postprocessors import * # noqa
|
||||
from .result_station import * # noqa
|
||||
from .text_postprocessors import * # noqa
|
||||
|
@ -1,27 +1,22 @@
|
||||
import json
|
||||
import os
|
||||
import os.path as osp
|
||||
from typing import List, Tuple, Union
|
||||
from mmengine.config import Config
|
||||
import json
|
||||
import re
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def Save_To_Station(cfg, args):
|
||||
from dotenv import load_dotenv
|
||||
load_dotenv()
|
||||
station_path = os.getenv('RESULTS_STATION_PATH')
|
||||
assert station_path != None or args.station_path != None
|
||||
station_path = args.station_path if station_path == None else station_path
|
||||
|
||||
assert args.station_path is not None or 'station_path' in cfg.keys(
|
||||
) and cfg['station_path'] is not None
|
||||
if 'station_path' in cfg.keys() and cfg['station_path'] is not None:
|
||||
station_path = cfg['station_path']
|
||||
else:
|
||||
station_path = args.station_path
|
||||
|
||||
work_dict = cfg['work_dir']
|
||||
model_list = [i['abbr'] for i in cfg['models']]
|
||||
dataset_list = [i['abbr'] for i in cfg['datasets']]
|
||||
|
||||
|
||||
for dataset in dataset_list:
|
||||
result_path = osp.join(station_path, dataset)
|
||||
if not osp.exists(result_path):
|
||||
@ -30,7 +25,8 @@ def Save_To_Station(cfg, args):
|
||||
for model in model_list:
|
||||
result_file_name = model + '.json'
|
||||
if osp.exists(osp.join(result_path, result_file_name)):
|
||||
print('result of {} with {} already exists'.format(dataset, model))
|
||||
print('result of {} with {} already exists'.format(
|
||||
dataset, model))
|
||||
continue
|
||||
else:
|
||||
|
||||
@ -38,25 +34,32 @@ def Save_To_Station(cfg, args):
|
||||
local_result_path = work_dict + '/results/' + model + '/'
|
||||
local_result_json = local_result_path + dataset + '.json'
|
||||
if not osp.exists(local_result_json):
|
||||
raise ValueError('invalid file: {}'.format(local_result_json))
|
||||
raise ValueError(
|
||||
'invalid file: {}'.format(local_result_json))
|
||||
with open(local_result_json, 'r') as f:
|
||||
this_result = json.load(f)
|
||||
f.close()
|
||||
|
||||
# get prediction list
|
||||
local_prediction_path = work_dict + '/predictions/' + model + '/'
|
||||
local_prediction_regex = rf"^{re.escape(dataset)}(?:_\d+)?\.json$"
|
||||
local_prediction_json = find_files_by_regex(local_prediction_path, local_prediction_regex)
|
||||
local_prediction_path = (work_dict + '/predictions/' + model +
|
||||
'/')
|
||||
local_prediction_regex = \
|
||||
rf'^{re.escape(dataset)}(?:_\d+)?\.json$'
|
||||
local_prediction_json = find_files_by_regex(
|
||||
local_prediction_path, local_prediction_regex)
|
||||
if not check_filenames(dataset, local_prediction_json):
|
||||
raise ValueError('invalid filelist: {}'.format(local_prediction_json))
|
||||
raise ValueError(
|
||||
'invalid filelist: {}'.format(local_prediction_json))
|
||||
|
||||
this_prediction = []
|
||||
for prediction_json in local_prediction_json:
|
||||
with open(local_prediction_path + prediction_json, 'r') as f:
|
||||
with open(local_prediction_path + prediction_json,
|
||||
'r') as f:
|
||||
this_prediction_load_json = json.load(f)
|
||||
f.close()
|
||||
for prekey in this_prediction_load_json.keys():
|
||||
this_prediction.append(this_prediction_load_json[prekey])
|
||||
this_prediction.append(
|
||||
this_prediction_load_json[prekey])
|
||||
|
||||
# dict combine
|
||||
data_model_results = {
|
||||
@ -64,9 +67,89 @@ def Save_To_Station(cfg, args):
|
||||
'results': this_result
|
||||
}
|
||||
with open(osp.join(result_path, result_file_name), 'w') as f:
|
||||
json.dump(data_model_results, f, ensure_ascii=False, indent=4)
|
||||
json.dump(data_model_results,
|
||||
f,
|
||||
ensure_ascii=False,
|
||||
indent=4)
|
||||
f.close()
|
||||
print('result of {} with {} already exists'.format(
|
||||
dataset, model))
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def Read_From_Station(cfg, args, dir_time_str):
|
||||
|
||||
assert args.station_path is not None or 'station_path' in cfg.keys(
|
||||
) and cfg['station_path'] is not None
|
||||
if 'station_path' in cfg.keys() and cfg['station_path'] is not None:
|
||||
station_path = cfg['station_path']
|
||||
else:
|
||||
station_path = args.station_path
|
||||
|
||||
work_dict = osp.join(cfg.work_dir, dir_time_str)
|
||||
model_list = [i['abbr'] for i in cfg['models']]
|
||||
dataset_list = [i['abbr'] for i in cfg['datasets']]
|
||||
|
||||
if not osp.exists(work_dict):
|
||||
os.makedirs(work_dict)
|
||||
local_prediction_path = osp.join(work_dict, 'predictions')
|
||||
if not osp.exists(local_prediction_path):
|
||||
os.makedirs(local_prediction_path)
|
||||
local_result_path = osp.join(work_dict, 'results')
|
||||
if not osp.exists(local_result_path):
|
||||
os.makedirs(local_result_path)
|
||||
|
||||
for model in model_list:
|
||||
|
||||
for data in dataset_list:
|
||||
result_file_path = osp.join(station_path, data, model + '.json')
|
||||
if not osp.exists(result_file_path):
|
||||
print('do not find result file: {} with {} at station'.format(
|
||||
model, data))
|
||||
continue
|
||||
else:
|
||||
print('find result file: {} with {} at station'.format(
|
||||
model, data))
|
||||
|
||||
with open(result_file_path, 'r') as f:
|
||||
download_json = json.load(f)
|
||||
f.close()
|
||||
|
||||
this_local_prediction_path = osp.join(local_prediction_path,
|
||||
model)
|
||||
if not osp.exists(this_local_prediction_path):
|
||||
os.makedirs(this_local_prediction_path)
|
||||
this_local_result_path = osp.join(local_result_path, model)
|
||||
if not osp.exists(this_local_result_path):
|
||||
os.makedirs(this_local_result_path)
|
||||
|
||||
this_local_prediction_path = osp.join(
|
||||
this_local_prediction_path, data + '.json')
|
||||
this_local_result_path = osp.join(this_local_result_path,
|
||||
data + '.json')
|
||||
|
||||
download_json_prediction = download_json['predictions']
|
||||
download_json_result = download_json['results']
|
||||
|
||||
# save predictions
|
||||
local_prediction = {}
|
||||
for i in range(len(download_json_prediction)):
|
||||
local_prediction[str(i)] = download_json_prediction[i]
|
||||
with open(this_local_prediction_path, 'w') as f:
|
||||
json.dump(local_prediction,
|
||||
f,
|
||||
ensure_ascii=False,
|
||||
indent=4)
|
||||
f.close()
|
||||
|
||||
# save results
|
||||
with open(this_local_result_path, 'w') as f:
|
||||
json.dump(download_json_result,
|
||||
f,
|
||||
ensure_ascii=False,
|
||||
indent=4)
|
||||
f.close()
|
||||
return True
|
||||
|
||||
|
||||
@ -87,8 +170,8 @@ def check_filenames(x, filenames):
|
||||
if not filenames:
|
||||
return False
|
||||
|
||||
single_pattern = re.compile(rf"^{re.escape(x)}\.json$")
|
||||
numbered_pattern = re.compile(rf"^{re.escape(x)}_(\d+)\.json$")
|
||||
single_pattern = re.compile(rf'^{re.escape(x)}\.json$')
|
||||
numbered_pattern = re.compile(rf'^{re.escape(x)}_(\d+)\.json$')
|
||||
|
||||
is_single = all(single_pattern.match(name) for name in filenames)
|
||||
is_numbered = all(numbered_pattern.match(name) for name in filenames)
|
||||
|
@ -1,181 +0,0 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
|
||||
import yaml
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
RESULTS_STATION_PATH = os.getenv('RESULTS_STATION_PATH')
|
||||
|
||||
data_file_map = {
|
||||
'ifeval': 'IFEval',
|
||||
}
|
||||
|
||||
data_prefix_map = {}
|
||||
|
||||
with open('dataset-index.yml', 'r') as f1:
|
||||
data_list = yaml.load(f1, Loader=yaml.FullLoader)
|
||||
f1.close()
|
||||
data_searchable_list = [next(iter(i.keys())) for i in data_list]
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='connect to results station')
|
||||
|
||||
parser.add_argument('-sp',
|
||||
'--station-path',
|
||||
type=str,
|
||||
default=None,
|
||||
help='if no env path, use this.')
|
||||
parser.add_argument('-p',
|
||||
'--my-path',
|
||||
type=str,
|
||||
default=None,
|
||||
help='your operation path.')
|
||||
parser.add_argument(
|
||||
'-op',
|
||||
'--operation',
|
||||
type=str,
|
||||
default='d',
|
||||
help='u:update, d:download, ls: show dataset and model options')
|
||||
parser.add_argument('-d',
|
||||
'--dataset',
|
||||
type=str,
|
||||
default='mmlu_pro',
|
||||
help='target dataset name')
|
||||
parser.add_argument('-m',
|
||||
'--model',
|
||||
type=str,
|
||||
default='deepseek-v2_5-turbomind',
|
||||
help='target model name')
|
||||
# parser.add_argument('-all',
|
||||
# '--all-transfer',
|
||||
# action='store_true',
|
||||
# default=False,
|
||||
# help='transfer all files under the path')
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def read_json(path):
|
||||
results = []
|
||||
for i in path:
|
||||
with open(i, 'r') as f:
|
||||
results.append(json.load(f))
|
||||
f.close()
|
||||
return results
|
||||
|
||||
|
||||
def load_json_files_by_prefix(prefix, target_path):
|
||||
if prefix in data_file_map.keys():
|
||||
prefix = data_file_map[prefix]
|
||||
result_dict = {}
|
||||
for filename in os.listdir(target_path):
|
||||
if filename.startswith(prefix) and filename.endswith('.json'):
|
||||
file_path = os.path.join(target_path, filename)
|
||||
with open(file_path, 'r', encoding='utf-8') as file:
|
||||
json_data = json.load(file)
|
||||
result_dict[os.path.splitext(filename)[0]] = json_data
|
||||
return result_dict
|
||||
|
||||
|
||||
def main(path, mypath, args):
|
||||
|
||||
if args.dataset not in data_searchable_list:
|
||||
raise ValueError('invalid dataset input!')
|
||||
|
||||
update_path = path + args.dataset if path[
|
||||
-1] == '/' else path + '/' + args.dataset
|
||||
update_filename = args.dataset + '_' + args.model + '.json'
|
||||
update_goal = update_path + '/' + update_filename
|
||||
|
||||
# update from your path to result station
|
||||
if args.operation == 'u':
|
||||
mypath_prediction = (mypath + 'predictions/' +
|
||||
args.model) if mypath[-1] == '/' else (
|
||||
mypath + '/predictions/' + args.model)
|
||||
mypath_result = (mypath + 'results/' +
|
||||
args.model) if mypath[-1] == '/' else (mypath +
|
||||
'/results/' +
|
||||
args.model)
|
||||
|
||||
if os.path.exists(mypath_prediction) and os.path.exists(mypath_result):
|
||||
|
||||
result_dict = load_json_files_by_prefix(args.dataset,
|
||||
mypath_result)
|
||||
prediction_list = []
|
||||
for i in result_dict.keys():
|
||||
prediction_dict = load_json_files_by_prefix(
|
||||
i, mypath_prediction)
|
||||
for j in range(len(prediction_dict)):
|
||||
for k in prediction_dict[i + '_' + str(j)].keys():
|
||||
prediction_list.append({
|
||||
'prediction':
|
||||
prediction_dict[i + '_' + str(j)][k],
|
||||
'sub_category':
|
||||
i
|
||||
})
|
||||
update_dict = {
|
||||
'predictions': prediction_list,
|
||||
'results': result_dict,
|
||||
}
|
||||
|
||||
if not os.path.exists(update_path):
|
||||
os.makedirs(update_path)
|
||||
if os.path.exists(update_goal):
|
||||
input('This result exists! Press any key to continue...')
|
||||
with open(update_goal, 'w', encoding='utf-8') as f:
|
||||
json.dump(update_dict, f, ensure_ascii=False, indent=4)
|
||||
f.close()
|
||||
|
||||
# read from result station to your path
|
||||
if args.operation == 'd':
|
||||
if not os.path.exists(update_goal):
|
||||
raise ValueError('This result does not exist!')
|
||||
with open(update_goal, 'r', encoding='utf-8') as f:
|
||||
results = json.load(f)
|
||||
f.close()
|
||||
legal_key_set = {'predictions', 'results'}
|
||||
if set(results.keys()) == legal_key_set and isinstance(
|
||||
results['predictions'], list) and isinstance(
|
||||
results['results'], dict):
|
||||
print('Successfully download result from station!'
|
||||
"you've got a dict with format as follows:"
|
||||
"\n content['precitions', 'results']")
|
||||
else:
|
||||
raise ValueError('illegal format of the result!')
|
||||
save_path = args.my_path if args.my_path[
|
||||
-1] == '/' else args.my_path + '/'
|
||||
save_path += args.dataset + '/'
|
||||
if not os.path.exists(save_path):
|
||||
os.makedirs(save_path)
|
||||
with open(save_path + update_filename, 'w', encoding='utf-8') as f:
|
||||
json.dump(results, f, ensure_ascii=False, indent=4)
|
||||
f.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = parse_args()
|
||||
|
||||
if args.operation == 'ls':
|
||||
print('----DATASET LIST----')
|
||||
print(data_searchable_list)
|
||||
print('----MODEL LIST----')
|
||||
|
||||
else:
|
||||
if RESULTS_STATION_PATH is not None:
|
||||
path = RESULTS_STATION_PATH
|
||||
else:
|
||||
path = args.station_path
|
||||
if path is None:
|
||||
raise ValueError('Please appoint the path of results station!')
|
||||
if not os.path.exists(path):
|
||||
raise ValueError('Not a valid path of results station!')
|
||||
mypath = args.my_path
|
||||
if mypath is None:
|
||||
raise ValueError('Please appoint your own path!')
|
||||
if not os.path.exists(mypath):
|
||||
raise ValueError('Not a valid path of your own path!')
|
||||
main(path, mypath, args)
|
Loading…
Reference in New Issue
Block a user