[Feature] support download from modelscope (#534)

* [Feature] download from modelscope

* [Feature] download from modelscope

* minor fix

---------

Co-authored-by: yingfhu <yingfhu@gmail.com>
This commit is contained in:
Kevin Wang 2023-11-22 15:32:21 +08:00 committed by GitHub
parent 048775192b
commit c0785e53d8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 276 additions and 0 deletions

View File

@ -0,0 +1,30 @@
from opencompass.models import ModelScopeCausalLM
_meta_template = dict(
round=[
dict(role='HUMAN', begin='<|User|>:', end='<eoh>\n'),
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
],
)
models = [
dict(
type=ModelScopeCausalLM,
abbr='internlm-chat-7b-8k-ms',
path='Shanghai_AI_Laboratory/internlm-chat-7b-8k',
tokenizer_path='Shanghai_AI_Laboratory/internlm-chat-7b-8k',
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
use_fast=False,
trust_remote_code=True,
),
max_out_len=100,
max_seq_len=2048,
batch_size=8,
meta_template=_meta_template,
model_kwargs=dict(trust_remote_code=True, device_map='auto'),
run_cfg=dict(num_gpus=1, num_procs=1),
)
]

View File

@ -0,0 +1,30 @@
from opencompass.models import ModelScopeCausalLM
_meta_template = dict(
round=[
dict(role="HUMAN", begin='\n<|im_start|>user\n', end='<|im_end|>'),
dict(role="BOT", begin="\n<|im_start|>assistant\n", end='<|im_end|>', generate=True),
],
)
models = [
dict(
type=ModelScopeCausalLM,
abbr='qwen-7b-chat-ms',
path="qwen/Qwen-7B-Chat",
tokenizer_path='qwen/Qwen-7B-Chat',
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=False,),
pad_token_id=151643,
max_out_len=100,
max_seq_len=2048,
batch_size=8,
meta_template=_meta_template,
model_kwargs=dict(device_map='auto', trust_remote_code=True),
run_cfg=dict(num_gpus=1, num_procs=1),
)
]

View File

@ -14,6 +14,7 @@ from .intern_model import InternLM # noqa: F401, F403
from .lightllm_api import LightllmAPI # noqa: F401 from .lightllm_api import LightllmAPI # noqa: F401
from .llama2 import Llama2, Llama2Chat # noqa: F401, F403 from .llama2 import Llama2, Llama2Chat # noqa: F401, F403
from .minimax_api import MiniMax # noqa: F401 from .minimax_api import MiniMax # noqa: F401
from .modelscope import ModelScope, ModelScopeCausalLM # noqa: F401, F403
from .openai_api import OpenAI # noqa: F401 from .openai_api import OpenAI # noqa: F401
from .pangu_api import PanGu # noqa: F401 from .pangu_api import PanGu # noqa: F401
from .sensetime_api import SenseTime # noqa: F401 from .sensetime_api import SenseTime # noqa: F401

View File

@ -0,0 +1,215 @@
from typing import Dict, Optional, Union
import torch
from opencompass.utils.prompt import PromptList
from .huggingface import HuggingFace
PromptType = Union[PromptList, str]
class ModelScope(HuggingFace):
"""Model wrapper around ModelScope models.
Args:
path (str): The name or path to ModelScope's model.
ms_cache_dir: Set the cache dir to MS model cache dir. If None, it will
use the env variable MS_MODEL_HUB. Defaults to None.
max_seq_len (int): The maximum length of the input sequence. Defaults
to 2048.
tokenizer_path (str): The path to the tokenizer. Defaults to None.
tokenizer_kwargs (dict): Keyword arguments for the tokenizer.
Defaults to {}.
peft_path (str, optional): The name or path to the ModelScope's PEFT
model. If None, the original model will not be converted to PEFT.
Defaults to None.
tokenizer_only (bool): If True, only the tokenizer will be initialized.
Defaults to False.
model_kwargs (dict): Keyword arguments for the model, used in loader.
Defaults to dict(device_map='auto').
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
extract_pred_after_decode (bool): Whether to extract the prediction
string from the decoded output string, instead of extract the
prediction tokens before decoding. Defaults to False.
batch_padding (bool): If False, inference with be performed in for-loop
without batch padding.
pad_token_id (int): The id of the padding token. Defaults to None. Use
(#vocab + pad_token_id) if get negative value.
mode (str, optional): The method of input truncation when input length
exceeds max_seq_len. 'mid' represents the part of input to
truncate. Defaults to 'none'.
Note:
About ``extract_pred_after_decode``: Commonly, we should extract the
the prediction tokens before decoding. But for some tokenizers using
``sentencepiece``, like LLaMA, this behavior may change the number of
whitespaces, which is harmful for Python programming tasks.
"""
def __init__(self,
path: str,
ms_cache_dir: Optional[str] = None,
max_seq_len: int = 2048,
tokenizer_path: Optional[str] = None,
tokenizer_kwargs: dict = dict(),
peft_path: Optional[str] = None,
tokenizer_only: bool = False,
model_kwargs: dict = dict(device_map='auto'),
meta_template: Optional[Dict] = None,
extract_pred_after_decode: bool = False,
batch_padding: bool = False,
pad_token_id: Optional[int] = None,
mode: str = 'none'):
super().__init__(
path=path,
hf_cache_dir=ms_cache_dir,
max_seq_len=max_seq_len,
tokenizer_path=tokenizer_path,
tokenizer_kwargs=tokenizer_kwargs,
peft_path=peft_path,
tokenizer_only=tokenizer_only,
model_kwargs=model_kwargs,
meta_template=meta_template,
extract_pred_after_decode=extract_pred_after_decode,
batch_padding=batch_padding,
pad_token_id=pad_token_id,
mode=mode,
)
def _load_tokenizer(self, path: str, tokenizer_path: Optional[str],
tokenizer_kwargs: dict):
from modelscope import AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
tokenizer_path if tokenizer_path else path, **tokenizer_kwargs)
# A patch for some models without pad_token_id
if self.pad_token_id is not None:
if self.pad_token_id < 0:
self.pad_token_id += self.tokenizer.vocab_size
if self.tokenizer.pad_token_id is None:
self.logger.debug(f'Using {self.pad_token_id} as pad_token_id')
elif self.tokenizer.pad_token_id != self.pad_token_id:
self.logger.warning(
'pad_token_id is not consistent with the tokenizer. Using '
f'{self.pad_token_id} as pad_token_id')
self.tokenizer.pad_token_id = self.pad_token_id
elif self.tokenizer.pad_token_id is None:
self.logger.warning('pad_token_id is not set for the tokenizer.')
if self.tokenizer.eos_token is not None:
self.logger.warning(
f'Using eos_token_id {self.tokenizer.eos_token} '
'as pad_token_id.')
self.tokenizer.pad_token = self.tokenizer.eos_token
else:
from modelscope import GenerationConfig
gcfg = GenerationConfig.from_pretrained(path)
if gcfg.pad_token_id is not None:
self.logger.warning(
f'Using pad_token_id {gcfg.pad_token_id} '
'as pad_token_id.')
self.tokenizer.pad_token_id = gcfg.pad_token_id
else:
raise ValueError(
'pad_token_id is not set for this tokenizer. Try to '
'set pad_token_id via passing '
'`pad_token_id={PAD_TOKEN_ID}` in model_cfg.')
# A patch for llama when batch_padding = True
if 'decapoda-research/llama' in path or \
(tokenizer_path and
'decapoda-research/llama' in tokenizer_path):
self.logger.warning('We set new pad_token_id for LLaMA model')
# keep consistent with official LLaMA repo
# https://github.com/google/sentencepiece/blob/master/python/sentencepiece_python_module_example.ipynb # noqa
self.tokenizer.bos_token = '<s>'
self.tokenizer.eos_token = '</s>'
self.tokenizer.pad_token_id = 0
def _set_model_kwargs_torch_dtype(self, model_kwargs):
if 'torch_dtype' not in model_kwargs:
torch_dtype = torch.float16
else:
torch_dtype = {
'torch.float16': torch.float16,
'torch.bfloat16': torch.bfloat16,
'torch.float': torch.float,
'auto': 'auto',
'None': None
}.get(model_kwargs['torch_dtype'])
self.logger.debug(f'MS using torch_dtype: {torch_dtype}')
if torch_dtype is not None:
model_kwargs['torch_dtype'] = torch_dtype
def _load_model(self,
path: str,
model_kwargs: dict,
peft_path: Optional[str] = None):
from modelscope import AutoModel, AutoModelForCausalLM
self._set_model_kwargs_torch_dtype(model_kwargs)
try:
self.model = AutoModelForCausalLM.from_pretrained(
path, **model_kwargs)
except ValueError:
self.model = AutoModel.from_pretrained(path, **model_kwargs)
if peft_path is not None:
from peft import PeftModel
self.model = PeftModel.from_pretrained(self.model,
peft_path,
is_trainable=False)
self.model.eval()
self.model.generation_config.do_sample = False
# A patch for llama when batch_padding = True
if 'decapoda-research/llama' in path:
self.model.config.bos_token_id = 1
self.model.config.eos_token_id = 2
self.model.config.pad_token_id = self.tokenizer.pad_token_id
class ModelScopeCausalLM(ModelScope):
"""Model wrapper around ModelScope CausalLM.
Args:
path (str): The name or path to ModelScope's model.
ms_cache_dir: Set the cache dir to MS model cache dir. If None, it will
use the env variable MS_MODEL_HUB. Defaults to None.
max_seq_len (int): The maximum length of the input sequence. Defaults
to 2048.
tokenizer_path (str): The path to the tokenizer. Defaults to None.
tokenizer_kwargs (dict): Keyword arguments for the tokenizer.
Defaults to {}.
peft_path (str, optional): The name or path to the ModelScope's PEFT
model. If None, the original model will not be converted to PEFT.
Defaults to None.
tokenizer_only (bool): If True, only the tokenizer will be initialized.
Defaults to False.
model_kwargs (dict): Keyword arguments for the model, used in loader.
Defaults to dict(device_map='auto').
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
batch_padding (bool): If False, inference with be performed in for-loop
without batch padding.
"""
def _load_model(self,
path: str,
model_kwargs: dict,
peft_path: Optional[str] = None):
from modelscope import AutoModelForCausalLM
self._set_model_kwargs_torch_dtype(model_kwargs)
self.model = AutoModelForCausalLM.from_pretrained(path, **model_kwargs)
if peft_path is not None:
from peft import PeftModel
self.model = PeftModel.from_pretrained(self.model,
peft_path,
is_trainable=False)
self.model.eval()
self.model.generation_config.do_sample = False