[Update] Update dataset configuration with no max_out_len (#1754)

This commit is contained in:
Linchen Xiao 2024-12-11 18:20:29 +08:00 committed by GitHub
parent 1a5b3fc11e
commit bd7b705be4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 149 additions and 4 deletions

View File

@ -20,7 +20,7 @@ subjective_infer_cfg = dict(
template="""{dialogue}"""
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer, max_seq_len=32768, max_out_len=4096, infer_mode='last'),
inferencer=dict(type=ChatInferencer, max_seq_len=32768, infer_mode='last'),
)
subjective_eval_cfg = dict(

View File

@ -20,7 +20,7 @@ subjective_infer_cfg = dict(
template="""{dialogue}"""
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer, max_seq_len=32768, max_out_len=4096, infer_mode='last'),
inferencer=dict(type=ChatInferencer, max_seq_len=32768, infer_mode='last'),
)
subjective_eval_cfg = dict(

View File

@ -0,0 +1,33 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import IFEvalDataset, IFEvaluator
ifeval_reader_cfg = dict(
input_columns=['prompt'], output_column='reference')
ifeval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
ifeval_eval_cfg = dict(
evaluator=dict(type=IFEvaluator),
pred_role='BOT',
)
ifeval_datasets = [
dict(
abbr='IFEval',
type=IFEvalDataset,
path='data/ifeval/input_data.jsonl',
reader_cfg=ifeval_reader_cfg,
infer_cfg=ifeval_infer_cfg,
eval_cfg=ifeval_eval_cfg)
]

View File

@ -0,0 +1,36 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v2
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Read the following function signature and docstring, and fully implement the function described. Your response should only contain the code for this function.\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]

View File

@ -0,0 +1,41 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalXDataset, HumanevalXEvaluator
humanevalx_reader_cfg = dict(
input_columns=['prompt'], output_column='declaration', train_split='test')
humanevalx_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template='{prompt}'),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humanevalx_eval_cfg_dict = {
lang : dict(
evaluator=dict(
type=HumanevalXEvaluator,
language=lang,
ip_address=
'localhost', # replace to your code_eval_server ip_address, port
port=5001), # refer to https://opencompass.readthedocs.io/en/latest/advanced_guides/code_eval_service.html to launch a server
pred_role='BOT')
for lang in ['python', 'cpp', 'go', 'java', 'js'] # do not support rust now
}
# Please download the needed `xx.jsonl.gz` from
# https://github.com/THUDM/CodeGeeX2/tree/main/benchmark/humanevalx
# and move them into `data/humanevalx/` folder
humanevalx_datasets = [
dict(
type=HumanevalXDataset,
abbr=f'humanevalx-{lang}',
language=lang,
path='./data/humanevalx',
reader_cfg=humanevalx_reader_cfg,
infer_cfg=humanevalx_infer_cfg,
eval_cfg=humanevalx_eval_cfg_dict[lang])
for lang in ['python', 'cpp', 'go', 'java', 'js']
]

View File

@ -0,0 +1,35 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MATHDataset, MATHEvaluator, math_postprocess_v2, normalize_final_answer
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{problem}\nPlease reason step by step, and put your final answer within \\boxed{}.'),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# postprocess v2
math_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator, version='v2'), pred_postprocessor=dict(type=math_postprocess_v2),
)
math_datasets = [
dict(
type=MATHDataset,
abbr='math',
path='opencompass/math',
reader_cfg=math_reader_cfg,
infer_cfg=math_infer_cfg,
eval_cfg=math_eval_cfg,
)
]

View File

@ -20,7 +20,7 @@ subjective_infer_cfg = dict(
template="""{dialogue}"""
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer, max_seq_len=32768, max_out_len=4096, infer_mode='last'),
inferencer=dict(type=ChatInferencer, max_seq_len=32768, infer_mode='last'),
)
subjective_eval_cfg = dict(

View File

@ -20,7 +20,7 @@ subjective_infer_cfg = dict(
template="""{dialogue}"""
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer, max_seq_len=32768, max_out_len=4096, infer_mode='last'),
inferencer=dict(type=ChatInferencer, max_seq_len=32768, infer_mode='last'),
)
subjective_eval_cfg = dict(