[Feature] Support InternSandbox (#2049)

* internsandbox init

* internsandbox

* dataset_index

* dataset_index_add
This commit is contained in:
Dongsheng Zhu 2025-05-07 16:42:09 +08:00 committed by GitHub
parent 43b2c4ed76
commit ba0e32292c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 148 additions and 0 deletions

View File

@ -1023,3 +1023,9 @@
paper: https://arxiv.org/pdf/2402.09391 paper: https://arxiv.org/pdf/2402.09391
configpath: opencompass/configs/datasets/SmolInstruct/smolinstruct_gen.py configpath: opencompass/configs/datasets/SmolInstruct/smolinstruct_gen.py
configpath_llmjudge: '' configpath_llmjudge: ''
- internsandbox:
name: InternSandbox
category: Reasoning/Code/Agent
paper: ''
configpath: opencompass/configs/datasets/internsandbox/internsandbox_gen_44b982.py
configpath_llmjudge: ''

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .internsandbox_gen_44b982 import internsandbox_datasets

View File

@ -0,0 +1,59 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import InternSandboxDataset, InternSandboxEvaluator
_SANDBOXS_ = ['aquarium', 'arc', 'arrowmaze', 'bbehboardgameqa', 'bbehbooleanexpressions', 'BbehDyckLanguages', 'BbehGeometricShapes', 'BbehMultistepArithmetic', 'bbehobjectcounting', 'bbehobjectproperties', 'bbehshuffobject', 'BbehWebOfLies', 'BbehWordSorting', 'binairo', 'calcudoku', 'campsite', 'cipher', 'cryptomath', 'dominosa', 'futoshiki', 'galaxies', 'game24', 'kakurasu', 'korLogicAnalogicalReasoning', 'korLogicCanonicalPropositions', 'korLogicCooperativePrinciple', 'korLogicDefinitions', 'korLogicDerivativeReasoningOfPropositionalLogic', 'korLogicDisjunctiveNormalFormAndConjunctiveNormalForm', 'korLogicDynamicLogic', 'korLogicEnumerativeInductiveReasoning', 'korLogicEpistemicLogic', 'korLogicEquivalenceCalculus', 'korLogicFigureOfTheSyllogism', 'korLogicFormalFallacies', 'korLogicInductionParadox', 'korLogicLogicalMethodsForExploringCauseAndEffectRelationships', 'korLogicPredicateLogicFormalization', 'korLogicPropositionalLogicConcepts', 'korLogicPropositionalLogicFormalization', 'korLogicResolution', 'korLogicSpeechActs', 'korLogicStatisticalReasoning', 'korLogicTemporalPropositions', 'korLogicTruthValueModalPropositions', 'korOperationUnicode20ac', 'korOperationUnicode2295', 'korOperationUnicode25a0', 'korOperationUnicode25a1', 'korOperationUnicode25b3', 'korOperationUnicode25bd', 'korOperationUnicode25cb', 'korOperationUnicode25ce', 'korOperationUnicode25cf', 'korOperationUnicode2605', 'korOperationUnicodeffe0', 'korOperationUnicodeffe1', 'korPuzzle24Points', 'korPuzzleArrowMaze', 'korPuzzleCalcudoko', 'korPuzzleCampsite', 'korPuzzleConnectWords', 'korPuzzleCryptoMath', 'korPuzzleKukurasu', 'korPuzzleLogicPuzzle', 'korPuzzleSkyscrapers', 'korPuzzleWordBrainTeasers', 'korPuzzleWordLadder', 'korPuzzleWordRootsAndAffixes', 'korPuzzleWordscapes', 'korPuzzleWordSearch', 'LightUp', 'maze', 'minesweeper', 'nonograms', 'starbattle', 'stitches', 'sudoku', 'tents', 'thermometers']
internsandbox_reader_cfg = dict(
input_columns=['prompt'],
output_column='ground_truth'
)
internsandbox_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt='You are a helpful assistant.',
)
],
round=[
dict(
role='HUMAN',
prompt='{prompt}'
),
],
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer)
)
internsandbox_eval_cfg = {
sandbox: dict(
evaluator=dict(
type=InternSandboxEvaluator,
short_penalty=False,
format_penalty=False,
),
pred_role='BOT',
) for sandbox in _SANDBOXS_
}
internsandbox_datasets = [
dict(
type=InternSandboxDataset,
abbr=f'internsandbox-{sandbox}',
path='./data/InternSandboxBenchmark_verified_V0.3.1/',
local_mode=True,
sandbox=sandbox,
reader_cfg=internsandbox_reader_cfg,
infer_cfg=internsandbox_infer_cfg,
eval_cfg=internsandbox_eval_cfg[sandbox],
) for sandbox in _SANDBOXS_
]

View File

@ -68,6 +68,7 @@ from .hungarian_math import * # noqa: F401, F403
from .IFEval.ifeval import IFEvalDataset, IFEvaluator # noqa: F401, F403 from .IFEval.ifeval import IFEvalDataset, IFEvaluator # noqa: F401, F403
from .inference_ppl import InferencePPLDataset # noqa: F401, F403 from .inference_ppl import InferencePPLDataset # noqa: F401, F403
from .infinitebench import * # noqa: F401, F403 from .infinitebench import * # noqa: F401, F403
from .internsandbox import * # noqa: F401, F403
from .iwslt2017 import * # noqa: F401, F403 from .iwslt2017 import * # noqa: F401, F403
from .jigsawmultilingual import * # noqa: F401, F403 from .jigsawmultilingual import * # noqa: F401, F403
from .jsonl import JsonlDataset # noqa: F401, F403 from .jsonl import JsonlDataset # noqa: F401, F403

View File

@ -0,0 +1,78 @@
import importlib
import json
import os.path as osp
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
from opencompass.utils import get_data_path
from .base import BaseDataset
@LOAD_DATASET.register_module()
class InternSandboxDataset(BaseDataset):
@staticmethod
def load(path: str, sandbox: str, local_mode: bool = False):
path = get_data_path(path, local_mode=local_mode)
file_path = osp.join(path, f'{sandbox}.jsonl')
data = []
with open(file_path, 'r', encoding='utf-8') as f:
for line in f:
origin_data = json.loads(line)
origin_data['ground_truth'] = json.dumps(
origin_data['ground_truth'])
data.append(origin_data)
return Dataset.from_list(data)
@ICL_EVALUATORS.register_module()
class InternSandboxEvaluator(BaseEvaluator):
def __init__(self,
short_penalty: bool = False,
format_penalty: bool = False):
super().__init__()
self.short_penalty = short_penalty
self.format_penalty = format_penalty
def score(self, predictions, references, test_set):
if len(predictions) != len(references):
return {
'error':
'predictions and references have different '
f'length. len(predictions): {len(predictions)}, '
f'len(references): {len(references)}'
}
class_name = f"{test_set[0]['data_source']}Sandbox"
details = []
for pred, ref, ts in zip(predictions, references, test_set):
ref = json.loads(ref)
module = importlib.import_module('intern_sandbox')
score = getattr(module, class_name).verify_score(
pred,
ref,
short_penalty=self.short_penalty,
format_penalty=self.format_penalty)
try:
extracted = getattr(module, class_name).extract_output(pred)
except: # noqa: E722
extracted = None
res = {
'prompt': ts['prompt'],
'score': score,
'extracted_output': extracted,
'ground_truth': ref,
'output': pred,
}
details.append(res)
avg_score = sum(r['score'] for r in details) / len(details)
results = {'accuracy': avg_score, 'details': details}
return results