mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
[Feature] Add support of qwen api (#735)
This commit is contained in:
parent
33f8df1ca3
commit
ba027eeeac
40
configs/api_examples/eval_api_qwen.py
Normal file
40
configs/api_examples/eval_api_qwen.py
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
from mmengine.config import read_base
|
||||||
|
from opencompass.models import Qwen
|
||||||
|
from opencompass.partitioners import NaivePartitioner
|
||||||
|
from opencompass.runners.local_api import LocalAPIRunner
|
||||||
|
from opencompass.tasks import OpenICLInferTask
|
||||||
|
|
||||||
|
with read_base():
|
||||||
|
from ..summarizers.medium import summarizer
|
||||||
|
from ..datasets.ceval.ceval_gen import ceval_datasets
|
||||||
|
|
||||||
|
datasets = [
|
||||||
|
*ceval_datasets,
|
||||||
|
]
|
||||||
|
|
||||||
|
models = [
|
||||||
|
dict(
|
||||||
|
abbr='qwen-max',
|
||||||
|
type=Qwen,
|
||||||
|
path='qwen-max',
|
||||||
|
key='xxxxxxxxxxxxxxxx', # please give you key
|
||||||
|
generation_kwargs={
|
||||||
|
'enable_search': False,
|
||||||
|
},
|
||||||
|
query_per_second=1,
|
||||||
|
max_out_len=2048,
|
||||||
|
max_seq_len=2048,
|
||||||
|
batch_size=8
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
infer = dict(
|
||||||
|
partitioner=dict(type=NaivePartitioner),
|
||||||
|
runner=dict(
|
||||||
|
type=LocalAPIRunner,
|
||||||
|
max_num_workers=1,
|
||||||
|
concurrent_users=1,
|
||||||
|
task=dict(type=OpenICLInferTask)),
|
||||||
|
)
|
||||||
|
|
||||||
|
work_dir = "outputs/api_qwen/"
|
@ -19,6 +19,7 @@ from .modelscope import ModelScope, ModelScopeCausalLM # noqa: F401, F403
|
|||||||
from .moonshot_api import MoonShot # noqa: F401
|
from .moonshot_api import MoonShot # noqa: F401
|
||||||
from .openai_api import OpenAI # noqa: F401
|
from .openai_api import OpenAI # noqa: F401
|
||||||
from .pangu_api import PanGu # noqa: F401
|
from .pangu_api import PanGu # noqa: F401
|
||||||
|
from .qwen_api import Qwen # noqa: F401
|
||||||
from .sensetime_api import SenseTime # noqa: F401
|
from .sensetime_api import SenseTime # noqa: F401
|
||||||
from .turbomind import TurboMindModel # noqa: F401
|
from .turbomind import TurboMindModel # noqa: F401
|
||||||
from .turbomind_tis import TurboMindTisModel # noqa: F401
|
from .turbomind_tis import TurboMindTisModel # noqa: F401
|
||||||
|
153
opencompass/models/qwen_api.py
Normal file
153
opencompass/models/qwen_api.py
Normal file
@ -0,0 +1,153 @@
|
|||||||
|
import time
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
from typing import Dict, List, Optional, Union
|
||||||
|
|
||||||
|
from opencompass.utils.prompt import PromptList
|
||||||
|
|
||||||
|
from .base_api import BaseAPIModel
|
||||||
|
|
||||||
|
PromptType = Union[PromptList, str]
|
||||||
|
|
||||||
|
|
||||||
|
class Qwen(BaseAPIModel):
|
||||||
|
"""Model wrapper around Qwen.
|
||||||
|
|
||||||
|
Documentation:
|
||||||
|
https://help.aliyun.com/zh/dashscope/developer-reference/tongyi-thousand-questions/
|
||||||
|
|
||||||
|
Args:
|
||||||
|
path (str): The name of qwen model.
|
||||||
|
e.g. `qwen-max`
|
||||||
|
key (str): Authorization key.
|
||||||
|
query_per_second (int): The maximum queries allowed per second
|
||||||
|
between two consecutive calls of the API. Defaults to 1.
|
||||||
|
max_seq_len (int): Unused here.
|
||||||
|
meta_template (Dict, optional): The model's meta prompt
|
||||||
|
template if needed, in case the requirement of injecting or
|
||||||
|
wrapping of any meta instructions.
|
||||||
|
retry (int): Number of retires if the API call fails. Defaults to 2.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
path: str,
|
||||||
|
key: str,
|
||||||
|
query_per_second: int = 1,
|
||||||
|
max_seq_len: int = 2048,
|
||||||
|
meta_template: Optional[Dict] = None,
|
||||||
|
retry: int = 5,
|
||||||
|
generation_kwargs: Dict = {}):
|
||||||
|
super().__init__(path=path,
|
||||||
|
max_seq_len=max_seq_len,
|
||||||
|
query_per_second=query_per_second,
|
||||||
|
meta_template=meta_template,
|
||||||
|
retry=retry,
|
||||||
|
generation_kwargs=generation_kwargs)
|
||||||
|
import dashscope
|
||||||
|
dashscope.api_key = key
|
||||||
|
self.dashscope = dashscope
|
||||||
|
|
||||||
|
def generate(
|
||||||
|
self,
|
||||||
|
inputs: List[str or PromptList],
|
||||||
|
max_out_len: int = 512,
|
||||||
|
) -> List[str]:
|
||||||
|
"""Generate results given a list of inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
inputs (List[str or PromptList]): A list of strings or PromptDicts.
|
||||||
|
The PromptDict should be organized in OpenCompass'
|
||||||
|
API format.
|
||||||
|
max_out_len (int): The maximum length of the output.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List[str]: A list of generated strings.
|
||||||
|
"""
|
||||||
|
with ThreadPoolExecutor() as executor:
|
||||||
|
results = list(
|
||||||
|
executor.map(self._generate, inputs,
|
||||||
|
[max_out_len] * len(inputs)))
|
||||||
|
self.flush()
|
||||||
|
return results
|
||||||
|
|
||||||
|
def _generate(
|
||||||
|
self,
|
||||||
|
input: str or PromptList,
|
||||||
|
max_out_len: int = 512,
|
||||||
|
) -> str:
|
||||||
|
"""Generate results given an input.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
inputs (str or PromptList): A string or PromptDict.
|
||||||
|
The PromptDict should be organized in OpenCompass'
|
||||||
|
API format.
|
||||||
|
max_out_len (int): The maximum length of the output.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The generated string.
|
||||||
|
"""
|
||||||
|
assert isinstance(input, (str, PromptList))
|
||||||
|
"""
|
||||||
|
{
|
||||||
|
"messages": [
|
||||||
|
{"role":"user","content":"请介绍一下你自己"},
|
||||||
|
{"role":"assistant","content":"我是通义千问"},
|
||||||
|
{"role":"user","content": "我在上海,周末可以去哪里玩?"},
|
||||||
|
{"role":"assistant","content": "上海是一个充满活力和文化氛围的城市"},
|
||||||
|
{"role":"user","content": "周末这里的天气怎么样?"}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
if isinstance(input, str):
|
||||||
|
messages = [{'role': 'user', 'content': input}]
|
||||||
|
else:
|
||||||
|
messages = []
|
||||||
|
for item in input:
|
||||||
|
msg = {'content': item['prompt']}
|
||||||
|
if item['role'] == 'HUMAN':
|
||||||
|
msg['role'] = 'user'
|
||||||
|
elif item['role'] == 'BOT':
|
||||||
|
msg['role'] = 'assistant'
|
||||||
|
|
||||||
|
messages.append(msg)
|
||||||
|
data = {'messages': messages}
|
||||||
|
data.update(self.generation_kwargs)
|
||||||
|
|
||||||
|
max_num_retries = 0
|
||||||
|
while max_num_retries < self.retry:
|
||||||
|
self.acquire()
|
||||||
|
response = self.dashscope.Generation.call(
|
||||||
|
model=self.path,
|
||||||
|
**data,
|
||||||
|
)
|
||||||
|
self.release()
|
||||||
|
|
||||||
|
if response is None:
|
||||||
|
print('Connection error, reconnect.')
|
||||||
|
# if connect error, frequent requests will casuse
|
||||||
|
# continuous unstable network, therefore wait here
|
||||||
|
# to slow down the request
|
||||||
|
self.wait()
|
||||||
|
continue
|
||||||
|
|
||||||
|
if response.status_code == 200:
|
||||||
|
try:
|
||||||
|
msg = response.output.text
|
||||||
|
return msg
|
||||||
|
except KeyError:
|
||||||
|
print(response)
|
||||||
|
self.logger.error(str(response.status_code))
|
||||||
|
time.sleep(1)
|
||||||
|
continue
|
||||||
|
|
||||||
|
if ('Range of input length should be ' in response.message
|
||||||
|
or # input too long
|
||||||
|
'Input data may contain inappropriate content.'
|
||||||
|
in response.message): # bad input
|
||||||
|
print(response.message)
|
||||||
|
return ''
|
||||||
|
print(response)
|
||||||
|
max_num_retries += 1
|
||||||
|
|
||||||
|
raise RuntimeError(response.message)
|
Loading…
Reference in New Issue
Block a user