[Feature] Add support of qwen api (#735)

This commit is contained in:
HUANG Fei 2024-01-02 20:47:12 +08:00 committed by GitHub
parent 33f8df1ca3
commit ba027eeeac
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 194 additions and 0 deletions

View File

@ -0,0 +1,40 @@
from mmengine.config import read_base
from opencompass.models import Qwen
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='qwen-max',
type=Qwen,
path='qwen-max',
key='xxxxxxxxxxxxxxxx', # please give you key
generation_kwargs={
'enable_search': False,
},
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8
),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=1,
concurrent_users=1,
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_qwen/"

View File

@ -19,6 +19,7 @@ from .modelscope import ModelScope, ModelScopeCausalLM # noqa: F401, F403
from .moonshot_api import MoonShot # noqa: F401
from .openai_api import OpenAI # noqa: F401
from .pangu_api import PanGu # noqa: F401
from .qwen_api import Qwen # noqa: F401
from .sensetime_api import SenseTime # noqa: F401
from .turbomind import TurboMindModel # noqa: F401
from .turbomind_tis import TurboMindTisModel # noqa: F401

View File

@ -0,0 +1,153 @@
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union
from opencompass.utils.prompt import PromptList
from .base_api import BaseAPIModel
PromptType = Union[PromptList, str]
class Qwen(BaseAPIModel):
"""Model wrapper around Qwen.
Documentation:
https://help.aliyun.com/zh/dashscope/developer-reference/tongyi-thousand-questions/
Args:
path (str): The name of qwen model.
e.g. `qwen-max`
key (str): Authorization key.
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 1.
max_seq_len (int): Unused here.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
retry (int): Number of retires if the API call fails. Defaults to 2.
"""
def __init__(self,
path: str,
key: str,
query_per_second: int = 1,
max_seq_len: int = 2048,
meta_template: Optional[Dict] = None,
retry: int = 5,
generation_kwargs: Dict = {}):
super().__init__(path=path,
max_seq_len=max_seq_len,
query_per_second=query_per_second,
meta_template=meta_template,
retry=retry,
generation_kwargs=generation_kwargs)
import dashscope
dashscope.api_key = key
self.dashscope = dashscope
def generate(
self,
inputs: List[str or PromptList],
max_out_len: int = 512,
) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str or PromptList]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[max_out_len] * len(inputs)))
self.flush()
return results
def _generate(
self,
input: str or PromptList,
max_out_len: int = 512,
) -> str:
"""Generate results given an input.
Args:
inputs (str or PromptList): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
"""
{
"messages": [
{"role":"user","content":"请介绍一下你自己"},
{"role":"assistant","content":"我是通义千问"},
{"role":"user","content": "我在上海,周末可以去哪里玩?"},
{"role":"assistant","content": "上海是一个充满活力和文化氛围的城市"},
{"role":"user","content": "周末这里的天气怎么样?"}
]
}
"""
if isinstance(input, str):
messages = [{'role': 'user', 'content': input}]
else:
messages = []
for item in input:
msg = {'content': item['prompt']}
if item['role'] == 'HUMAN':
msg['role'] = 'user'
elif item['role'] == 'BOT':
msg['role'] = 'assistant'
messages.append(msg)
data = {'messages': messages}
data.update(self.generation_kwargs)
max_num_retries = 0
while max_num_retries < self.retry:
self.acquire()
response = self.dashscope.Generation.call(
model=self.path,
**data,
)
self.release()
if response is None:
print('Connection error, reconnect.')
# if connect error, frequent requests will casuse
# continuous unstable network, therefore wait here
# to slow down the request
self.wait()
continue
if response.status_code == 200:
try:
msg = response.output.text
return msg
except KeyError:
print(response)
self.logger.error(str(response.status_code))
time.sleep(1)
continue
if ('Range of input length should be ' in response.message
or # input too long
'Input data may contain inappropriate content.'
in response.message): # bad input
print(response.message)
return ''
print(response)
max_num_retries += 1
raise RuntimeError(response.message)