mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
[Feature] Add support of qwen api (#735)
This commit is contained in:
parent
33f8df1ca3
commit
ba027eeeac
40
configs/api_examples/eval_api_qwen.py
Normal file
40
configs/api_examples/eval_api_qwen.py
Normal file
@ -0,0 +1,40 @@
|
||||
from mmengine.config import read_base
|
||||
from opencompass.models import Qwen
|
||||
from opencompass.partitioners import NaivePartitioner
|
||||
from opencompass.runners.local_api import LocalAPIRunner
|
||||
from opencompass.tasks import OpenICLInferTask
|
||||
|
||||
with read_base():
|
||||
from ..summarizers.medium import summarizer
|
||||
from ..datasets.ceval.ceval_gen import ceval_datasets
|
||||
|
||||
datasets = [
|
||||
*ceval_datasets,
|
||||
]
|
||||
|
||||
models = [
|
||||
dict(
|
||||
abbr='qwen-max',
|
||||
type=Qwen,
|
||||
path='qwen-max',
|
||||
key='xxxxxxxxxxxxxxxx', # please give you key
|
||||
generation_kwargs={
|
||||
'enable_search': False,
|
||||
},
|
||||
query_per_second=1,
|
||||
max_out_len=2048,
|
||||
max_seq_len=2048,
|
||||
batch_size=8
|
||||
),
|
||||
]
|
||||
|
||||
infer = dict(
|
||||
partitioner=dict(type=NaivePartitioner),
|
||||
runner=dict(
|
||||
type=LocalAPIRunner,
|
||||
max_num_workers=1,
|
||||
concurrent_users=1,
|
||||
task=dict(type=OpenICLInferTask)),
|
||||
)
|
||||
|
||||
work_dir = "outputs/api_qwen/"
|
@ -19,6 +19,7 @@ from .modelscope import ModelScope, ModelScopeCausalLM # noqa: F401, F403
|
||||
from .moonshot_api import MoonShot # noqa: F401
|
||||
from .openai_api import OpenAI # noqa: F401
|
||||
from .pangu_api import PanGu # noqa: F401
|
||||
from .qwen_api import Qwen # noqa: F401
|
||||
from .sensetime_api import SenseTime # noqa: F401
|
||||
from .turbomind import TurboMindModel # noqa: F401
|
||||
from .turbomind_tis import TurboMindTisModel # noqa: F401
|
||||
|
153
opencompass/models/qwen_api.py
Normal file
153
opencompass/models/qwen_api.py
Normal file
@ -0,0 +1,153 @@
|
||||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
from opencompass.utils.prompt import PromptList
|
||||
|
||||
from .base_api import BaseAPIModel
|
||||
|
||||
PromptType = Union[PromptList, str]
|
||||
|
||||
|
||||
class Qwen(BaseAPIModel):
|
||||
"""Model wrapper around Qwen.
|
||||
|
||||
Documentation:
|
||||
https://help.aliyun.com/zh/dashscope/developer-reference/tongyi-thousand-questions/
|
||||
|
||||
Args:
|
||||
path (str): The name of qwen model.
|
||||
e.g. `qwen-max`
|
||||
key (str): Authorization key.
|
||||
query_per_second (int): The maximum queries allowed per second
|
||||
between two consecutive calls of the API. Defaults to 1.
|
||||
max_seq_len (int): Unused here.
|
||||
meta_template (Dict, optional): The model's meta prompt
|
||||
template if needed, in case the requirement of injecting or
|
||||
wrapping of any meta instructions.
|
||||
retry (int): Number of retires if the API call fails. Defaults to 2.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
path: str,
|
||||
key: str,
|
||||
query_per_second: int = 1,
|
||||
max_seq_len: int = 2048,
|
||||
meta_template: Optional[Dict] = None,
|
||||
retry: int = 5,
|
||||
generation_kwargs: Dict = {}):
|
||||
super().__init__(path=path,
|
||||
max_seq_len=max_seq_len,
|
||||
query_per_second=query_per_second,
|
||||
meta_template=meta_template,
|
||||
retry=retry,
|
||||
generation_kwargs=generation_kwargs)
|
||||
import dashscope
|
||||
dashscope.api_key = key
|
||||
self.dashscope = dashscope
|
||||
|
||||
def generate(
|
||||
self,
|
||||
inputs: List[str or PromptList],
|
||||
max_out_len: int = 512,
|
||||
) -> List[str]:
|
||||
"""Generate results given a list of inputs.
|
||||
|
||||
Args:
|
||||
inputs (List[str or PromptList]): A list of strings or PromptDicts.
|
||||
The PromptDict should be organized in OpenCompass'
|
||||
API format.
|
||||
max_out_len (int): The maximum length of the output.
|
||||
|
||||
Returns:
|
||||
List[str]: A list of generated strings.
|
||||
"""
|
||||
with ThreadPoolExecutor() as executor:
|
||||
results = list(
|
||||
executor.map(self._generate, inputs,
|
||||
[max_out_len] * len(inputs)))
|
||||
self.flush()
|
||||
return results
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
input: str or PromptList,
|
||||
max_out_len: int = 512,
|
||||
) -> str:
|
||||
"""Generate results given an input.
|
||||
|
||||
Args:
|
||||
inputs (str or PromptList): A string or PromptDict.
|
||||
The PromptDict should be organized in OpenCompass'
|
||||
API format.
|
||||
max_out_len (int): The maximum length of the output.
|
||||
|
||||
Returns:
|
||||
str: The generated string.
|
||||
"""
|
||||
assert isinstance(input, (str, PromptList))
|
||||
"""
|
||||
{
|
||||
"messages": [
|
||||
{"role":"user","content":"请介绍一下你自己"},
|
||||
{"role":"assistant","content":"我是通义千问"},
|
||||
{"role":"user","content": "我在上海,周末可以去哪里玩?"},
|
||||
{"role":"assistant","content": "上海是一个充满活力和文化氛围的城市"},
|
||||
{"role":"user","content": "周末这里的天气怎么样?"}
|
||||
]
|
||||
}
|
||||
|
||||
"""
|
||||
|
||||
if isinstance(input, str):
|
||||
messages = [{'role': 'user', 'content': input}]
|
||||
else:
|
||||
messages = []
|
||||
for item in input:
|
||||
msg = {'content': item['prompt']}
|
||||
if item['role'] == 'HUMAN':
|
||||
msg['role'] = 'user'
|
||||
elif item['role'] == 'BOT':
|
||||
msg['role'] = 'assistant'
|
||||
|
||||
messages.append(msg)
|
||||
data = {'messages': messages}
|
||||
data.update(self.generation_kwargs)
|
||||
|
||||
max_num_retries = 0
|
||||
while max_num_retries < self.retry:
|
||||
self.acquire()
|
||||
response = self.dashscope.Generation.call(
|
||||
model=self.path,
|
||||
**data,
|
||||
)
|
||||
self.release()
|
||||
|
||||
if response is None:
|
||||
print('Connection error, reconnect.')
|
||||
# if connect error, frequent requests will casuse
|
||||
# continuous unstable network, therefore wait here
|
||||
# to slow down the request
|
||||
self.wait()
|
||||
continue
|
||||
|
||||
if response.status_code == 200:
|
||||
try:
|
||||
msg = response.output.text
|
||||
return msg
|
||||
except KeyError:
|
||||
print(response)
|
||||
self.logger.error(str(response.status_code))
|
||||
time.sleep(1)
|
||||
continue
|
||||
|
||||
if ('Range of input length should be ' in response.message
|
||||
or # input too long
|
||||
'Input data may contain inappropriate content.'
|
||||
in response.message): # bad input
|
||||
print(response.message)
|
||||
return ''
|
||||
print(response)
|
||||
max_num_retries += 1
|
||||
|
||||
raise RuntimeError(response.message)
|
Loading…
Reference in New Issue
Block a user