Merge branch 'open-compass:main' into f14-baseinferencer

This commit is contained in:
Francesco Bertolotti 2025-05-21 13:00:32 +02:00 committed by GitHub
commit b199be89d7
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
151 changed files with 6990 additions and 550 deletions

View File

@ -9,7 +9,7 @@ internlm2_5-7b_hf:
race-high_accuracy: 90.02
internlm2_5-7b-chat-lmdeploy:
demo_gsm8k_accuracy: 87.50
demo_gsm8k_accuracy: 84.38
race-middle_accuracy: 92.76
race-high_accuracy: 90.54
@ -24,7 +24,7 @@ internlm3-8b-instruct_hf-lmdeploy:
race-high_accuracy: 90.34
internlm3-8b-instruct_hf-vllm:
demo_gsm8k_accuracy: 81.25
demo_gsm8k_accuracy: 78.12
race-middle_accuracy: 92.20
race-high_accuracy: 89.88
@ -34,6 +34,6 @@ internlm2_5-7b-chat_hf:
race-high_accuracy: 90.48
lmdeploy-api-test:
gsm8k_accuracy: 56.25
gsm8k_accuracy: 68.75
race-middle_accuracy: 93.75
race-high_accuracy: 93.75

View File

@ -39,15 +39,15 @@ internlm2_5-7b-chat-hf_fullbench:
college_knowledge_naive_average: 87.5
subjective:
alignment_bench_v1_1_总分: 0.66
alpaca_eval_total: 0
arenahard_score: 50
alpaca_eval_total: 20.00
arenahard_score: 56.82
Followbench_naive_average: 1
CompassArena_naive_average: 43
mtbench101_avg: 7.8
wildbench_average: -15.56
simpleqa_accuracy_given_attempted: 0
chinese_simpleqa_given_attempted_accuracy: 1
alignment_bench_v1_1_专业能力: 8.00
mtbench101_avg: 7.60
wildbench_average: -14.58
simpleqa_accuracy_given_attempted: 1.00
chinese_simpleqa_given_attempted_accuracy: 0.90
alignment_bench_v1_1_专业能力: 7.90
alignment_bench_v1_1_数学计算: 0
alignment_bench_v1_1_基本任务: 0
alignment_bench_v1_1_逻辑推理: 0
@ -55,11 +55,11 @@ internlm2_5-7b-chat-hf_fullbench:
alignment_bench_v1_1_文本写作: 0
alignment_bench_v1_1_角色扮演: 0
alignment_bench_v1_1_综合问答: 0
alpaca_eval_helpful_base: 0
alpaca_eval_helpful_base: 20.00
compassarena_language_naive_average: 35
compassarena_knowledge_naive_average: 55
compassarena_knowledge_naive_average: 60.00
compassarena_reason_v2_naive_average: 40
compassarena_math_v2_naive_average: 55
compassarena_math_v2_naive_average: 50.00
compassarena_creationv2_zh_naive_average: 30
followbench_llmeval_en_HSR_AVG: 1
followbench_llmeval_en_SSR_AVG: 1
@ -73,58 +73,58 @@ internlm2_5-7b-chat-hf_fullbench:
followbench_llmeval_en_SSR_L3: 1
followbench_llmeval_en_SSR_L4: 1
followbench_llmeval_en_SSR_L5: 1
simpleqa_f1: 0
simpleqa_f1: 0.12
internlm2_5-7b-chat-turbomind_fullbench:
objective:
race-high_accuracy: 93.75
ARC-c_accuracy: 87.50
BoolQ_accuracy: 68.75
ARC-c_accuracy: 93.75
BoolQ_accuracy: 75.00
triviaqa_wiki_1shot_score: 50
nq_open_1shot_score: 25
IFEval_Prompt-level-strict-accuracy: 56.25
drop_accuracy: 75
GPQA_diamond_accuracy: 31.25
hellaswag_accuracy: 87.5
GPQA_diamond_accuracy: 37.50
hellaswag_accuracy: 81.25
TheoremQA_score: 12.5
musr_average_naive_average: 39.58
korbench_single_naive_average: 40
gsm8k_accuracy: 62.5
math_accuracy: 75
gsm8k_accuracy: 68.75
math_accuracy: 68.75
cmo_fib_accuracy: 6.25
aime2024_accuracy: 6.25
wikibench-wiki-single_choice_cncircular_perf_4: 25
sanitized_mbpp_score: 68.75
ds1000_naive_average: 17.86
ds1000_naive_average: 15.18
lcb_code_generation_pass@1: 12.5
lcb_code_execution_pass@1: 43.75
lcb_test_output_pass@1: 18.75
bbh-logical_deduction_seven_objects_score: 56.25
bbh-multistep_arithmetic_two_score: 75
mmlu-other_accuracy: 72.6
cmmlu-china-specific_accuracy: 78.33
mmlu_pro_math_accuracy: 31.25
ds1000_Pandas_accuracy: 12.5
lcb_test_output_pass@1: 0.00
bbh-logical_deduction_seven_objects_score: 62.50
bbh-multistep_arithmetic_two_score: 62.50
mmlu-other_accuracy: 73.08
cmmlu-china-specific_accuracy: 75.42
mmlu_pro_math_accuracy: 25.00
ds1000_Pandas_accuracy: 0.00
ds1000_Numpy_accuracy: 0
ds1000_Tensorflow_accuracy: 12.5
ds1000_Scipy_accuracy: 25
ds1000_Scipy_accuracy: 18.75
ds1000_Sklearn_accuracy: 18.75
ds1000_Pytorch_accuracy: 6.25
ds1000_Matplotlib_accuracy: 50.00
ds1000_Pytorch_accuracy: 12.50
ds1000_Matplotlib_accuracy: 43.75
openai_mmmlu_lite_AR-XY_accuracy: 37.5
college_naive_average: 12.50
college_knowledge_naive_average: 87.5
subjective:
alignment_bench_v1_1_总分: 0.66
alpaca_eval_total: 0
arenahard_score: 50
alignment_bench_v1_1_总分: 0.72
alpaca_eval_total: 20.00
arenahard_score: 55.77
Followbench_naive_average: 1
CompassArena_naive_average: 40
mtbench101_avg: 8
wildbench_average: -6.81
simpleqa_accuracy_given_attempted: 0
CompassArena_naive_average: 39.00
mtbench101_avg: 7.90
wildbench_average: 0.00
simpleqa_accuracy_given_attempted: 1.00
chinese_simpleqa_given_attempted_accuracy: 1
alignment_bench_v1_1_专业能力: 7.9
alignment_bench_v1_1_专业能力: 8.70
alignment_bench_v1_1_数学计算: 0
alignment_bench_v1_1_基本任务: 0
alignment_bench_v1_1_逻辑推理: 0
@ -132,12 +132,12 @@ internlm2_5-7b-chat-turbomind_fullbench:
alignment_bench_v1_1_文本写作: 0
alignment_bench_v1_1_角色扮演: 0
alignment_bench_v1_1_综合问答: 0
alpaca_eval_helpful_base: 0
compassarena_language_naive_average: 35
compassarena_knowledge_naive_average: 45
compassarena_reason_v2_naive_average: 25
compassarena_math_v2_naive_average: 60
compassarena_creationv2_zh_naive_average: 35
alpaca_eval_helpful_base: 20.00
compassarena_language_naive_average: 25.00
compassarena_knowledge_naive_average: 55.00
compassarena_reason_v2_naive_average: 35.00
compassarena_math_v2_naive_average: 55.00
compassarena_creationv2_zh_naive_average: 25.00
followbench_llmeval_en_HSR_AVG: 1
followbench_llmeval_en_SSR_AVG: 1
followbench_llmeval_en_HSR_L1: 1
@ -150,7 +150,7 @@ internlm2_5-7b-chat-turbomind_fullbench:
followbench_llmeval_en_SSR_L3: 1
followbench_llmeval_en_SSR_L4: 1
followbench_llmeval_en_SSR_L5: 1
simpleqa_f1: 0
simpleqa_f1: 0.12
internlm2_5-7b-hf_fullbench:
objective:
@ -162,7 +162,7 @@ internlm2_5-7b-hf_fullbench:
drop_accuracy: 62.5
GPQA_diamond_accuracy: 62.5
hellaswag_accuracy: 93.75
TheoremQA_score: 12.50
TheoremQA_score: 18.75
winogrande_accuracy: 75
gsm8k_accuracy: 37.5
GaokaoBench_2010-2022_Math_II_MCQs_score: 62.5
@ -188,23 +188,23 @@ internlm2_5-7b-turbomind_fullbench:
triviaqa_wiki_1shot_score: 43.75
nq_open_1shot_score: 43.75
drop_accuracy: 62.5
GPQA_diamond_accuracy: 62.5
GPQA_diamond_accuracy: 68.75
hellaswag_accuracy: 93.75
TheoremQA_score: 12.50
TheoremQA_score: 18.75
winogrande_accuracy: 87.5
gsm8k_accuracy: 56.25
GaokaoBench_2010-2022_Math_II_MCQs_score: 68.75
gsm8k_accuracy: 62.50
GaokaoBench_2010-2022_Math_II_MCQs_score: 93.75
GaokaoBench_2010-2022_Math_II_Fill-in-the-Blank_score: 0
math_accuracy: 18.75
wikibench-wiki-single_choice_cncircular_perf_4: 25
math_accuracy: 6.25
wikibench-wiki-single_choice_cncircular_perf_4: 0.00
sanitized_mbpp_score: 62.50
dingo_en_192_score: 50.00
dingo_zh_170_score: 93.75
mmlu-other_accuracy: 76.92
cmmlu-china-specific_accuracy: 84.17
dingo_en_192_score: 37.50
dingo_zh_170_score: 100.00
mmlu-other_accuracy: 78.37
cmmlu-china-specific_accuracy: 83.33
mmlu_pro_math_accuracy: 18.75
bbh-logical_deduction_seven_objects_score: 43.75
bbh-multistep_arithmetic_two_score: 56.25
bbh-logical_deduction_seven_objects_score: 62.50
bbh-multistep_arithmetic_two_score: 50.00
college_naive_average: 12.5
college_knowledge_naive_average: 87.5
@ -230,7 +230,7 @@ internlm2_5-7b-turbomind:
mmlu_naive_average: 71.44
mmlu_pro_naive_average: 38.18
openai_humaneval_humaneval_pass@1: 59.76
openai_humaneval_v2_humaneval_pass@1: 51.22
openai_humaneval_v2_humaneval_pass@1: 57.93
sanitized_mbpp_score: 55.25
dingo_en_192_score: 60.94
dingo_zh_170_score: 67.65
@ -257,17 +257,17 @@ internlm2_5-7b-turbomind:
mmlu_pro_physics_accuracy: 26.02
mmlu_pro_psychology_accuracy: 52.76
mmlu_pro_other_accuracy: 42.21
college_naive_average: 10.67
college_naive_average: 7.00
high_naive_average: 6.67
middle_naive_average: 26.67
primary_naive_average: 60
primary_naive_average: 64.00
arithmetic_naive_average: 55
mathbench-a (average)_naive_average: 31.8
college_knowledge_naive_average: 62.34
high_knowledge_naive_average: 59.83
college_knowledge_naive_average: 58.23
high_knowledge_naive_average: 52.51
middle_knowledge_naive_average: 71.15
primary_knowledge_naive_average: 66.55
mathbench-t (average)_naive_average: 64.97
primary_knowledge_naive_average: 60.48
mathbench-t (average)_naive_average: 60.19
long_context:
Single-Needle-Retrieval(S-RT)-32000_naive_average: 100
Single-Needle-Retrieval-EN-32000_naive_average: 100
@ -309,7 +309,7 @@ internlm2_5-7b-chat-turbomind:
GaokaoBench_weighted_average: 78.6
math_accuracy: 61
cmo_fib_accuracy: 11
aime2024_accuracy: 6.67
aime2024_accuracy: 3.33
Mathbench_naive_average: 64.23
wikibench-wiki-single_choice_cncircular_perf_4: 31.32
cmmlu_naive_average: 74.3
@ -322,7 +322,7 @@ internlm2_5-7b-chat-turbomind:
lcb_code_generation_pass@1: 17.75
lcb_code_execution_pass@1: 32.57
lcb_test_output_pass@1: 26.13
bigcodebench_hard_instruct_pass@1: 8.45
bigcodebench_hard_instruct_pass@1: 3.38
bigcodebench_hard_complete_pass@1: 5.06
teval_naive_average: 80
SciCode_sub_accuracy: 5.56
@ -384,7 +384,7 @@ internlm2_5-7b-chat-turbomind:
college_knowledge_naive_average: 67.1
high_knowledge_naive_average: 70
middle_knowledge_naive_average: 80
primary_knowledge_naive_average: 87
primary_knowledge_naive_average: 90.12
mathbench-t (average)_naive_average: 76
subjective:
alignment_bench_v1_1_总分: 5.68
@ -409,11 +409,11 @@ internlm2_5-7b-chat-turbomind:
alpaca_eval_koala: 28.21
alpaca_eval_oasst: 23.4
alpaca_eval_selfinstruct: 30.95
alpaca_eval_vicuna: 33.75
compassarena_language_naive_average: 58.50
alpaca_eval_vicuna: 25.00
compassarena_language_naive_average: 53.00
compassarena_knowledge_naive_average: 36
compassarena_reason_v2_naive_average: 35
compassarena_math_v2_naive_average: 25.95
compassarena_math_v2_naive_average: 16.07
compassarena_creationv2_zh_naive_average: 43.64
fofo_test_prompts_overall: 0.35
fofo_test_prompts_cn_overall: 0.41
@ -524,7 +524,7 @@ qwen2.5-7b-instruct-turbomind:
humanevalx-python_pass@1: 50
humanevalx-cpp_pass@1: 42.07
humanevalx-go_pass@1: 0
humanevalx-java_pass@1: 74.39
humanevalx-java_pass@1: 53.05
humanevalx-js_pass@1: 75
ds1000_Pandas_accuracy: 14.09
ds1000_Numpy_accuracy: 8.18
@ -548,7 +548,7 @@ qwen2.5-7b-instruct-turbomind:
openai_mmmlu_lite_SW-KE_accuracy: 36.42
openai_mmmlu_lite_YO-NG_accuracy: 32.14
openai_mmmlu_lite_ZH-CN_accuracy: 69.61
college_naive_average: 48
college_naive_average: 44.33
high_naive_average: 59
middle_naive_average: 78
primary_naive_average: 85.67
@ -658,7 +658,7 @@ internlm2_5-7b-chat-pytorch:
college_naive_average: 21
high_naive_average: 47
middle_naive_average: 59.67
primary_naive_average: 76
primary_naive_average: 72.33
arithmetic_naive_average: 62
mathbench-a (average)_naive_average: 53.13
college_knowledge_naive_average: 68.99
@ -688,7 +688,7 @@ qwen2.5-7b-instruct-pytorch:
gsm8k_accuracy: 91.66
GaokaoBench_weighted_average: 80.02
math_accuracy: 73.74
cmo_fib_accuracy: 26.44
cmo_fib_accuracy: 22.60
aime2024_accuracy: 13.33
Mathbench_naive_average: 77.08
wikibench-wiki-single_choice_cncircular_perf_4: 34
@ -793,8 +793,8 @@ internlm3-8b-instruct-turbomind:
gsm8k_accuracy: 91.28
GaokaoBench_weighted_average: 86.59
math_accuracy: 76.96
cmo_fib_accuracy: 35.1
aime2024_accuracy: 16.67
cmo_fib_accuracy: 38.46
aime2024_accuracy: 13.33
Mathbench_naive_average: 78.96
wikibench-wiki-single_choice_cncircular_perf_4: 37.45
cmmlu_naive_average: 83.33
@ -841,7 +841,7 @@ internlm3-8b-instruct-turbomind:
humanevalx-python_pass@1: 43.9
humanevalx-cpp_pass@1: 20.12
humanevalx-go_pass@1: 0
humanevalx-java_pass@1: 74.39
humanevalx-java_pass@1: 40.85
humanevalx-js_pass@1: 65.24
ds1000_Pandas_accuracy: 16.49
ds1000_Numpy_accuracy: 34.09
@ -907,7 +907,7 @@ internlm3-8b-instruct-pytorch:
mmlu_pro_naive_average: 58.16
openai_humaneval_humaneval_pass@1: 82.32
sanitized_mbpp_score: 70.04
humanevalx_naive_average: 39.76
humanevalx_naive_average: 25.49
ds1000_naive_average: 27.84
lcb_code_generation_pass@1: 34.5
lcb_code_execution_pass@1: 48.02
@ -946,7 +946,7 @@ internlm3-8b-instruct-pytorch:
humanevalx-python_pass@1: 42.68
humanevalx-cpp_pass@1: 19.51
humanevalx-go_pass@1: 0
humanevalx-java_pass@1: 72.56
humanevalx-java_pass@1: 0.00
humanevalx-js_pass@1: 64.02
ds1000_Pandas_accuracy: 14.09
ds1000_Numpy_accuracy: 35

View File

@ -12,13 +12,13 @@ chat:
gsm8k_accuracy: 46.88
race-high_accuracy: 81.25
deepseek-r1-distill-llama-8b-turbomind:
gsm8k_accuracy: 31.25
gsm8k_accuracy: 34.38
race-high_accuracy: 81.25
deepseek-r1-distill-qwen-1_5b-turbomind:
gsm8k_accuracy: 37.5
gsm8k_accuracy: 28.12
race-high_accuracy: 53.12
deepseek-7b-chat-vllm:
gsm8k_accuracy: 43.75
gsm8k_accuracy: 56.25
race-high_accuracy: 78.12
gemma2-2b-it-hf:
gsm8k_accuracy: 50
@ -33,13 +33,13 @@ chat:
gsm8k_accuracy: 40.62
race-high_accuracy: 68.75
gemma-2-9b-it-turbomind:
gsm8k_accuracy: 71.88
gsm8k_accuracy: 68.75
race-high_accuracy: 84.38
gemma-2-27b-it-turbomind:
gsm8k_accuracy: 78.12
race-high_accuracy: 93.75
gemma-7b-it-vllm:
gsm8k_accuracy: 31.25
gsm8k_accuracy: 28.12
race-high_accuracy: 68.75
internlm2_5-7b-chat-hf:
gsm8k_accuracy: 84.38
@ -48,25 +48,25 @@ chat:
gsm8k_accuracy: 65.62
race-high_accuracy: 87.5
internlm2_5-7b-chat-turbomind:
gsm8k_accuracy: 84.38
gsm8k_accuracy: 81.25
race-high_accuracy: 90.62
internlm2-chat-1.8b-turbomind:
gsm8k_accuracy: 28.12
gsm8k_accuracy: 25.00
race-high_accuracy: 84.38
internlm2-chat-1.8b-sft-turbomind:
gsm8k_accuracy: 31.25
gsm8k_accuracy: 34.38
race-high_accuracy: 84.38
internlm2-chat-7b-lmdeploy:
gsm8k_accuracy: 59.38
race-high_accuracy: 84.38
race-high_accuracy: 87.50
internlm2-chat-7b-sft-turbomind:
gsm8k_accuracy: 56.25
race-high_accuracy: 90.62
race-high_accuracy: 87.50
internlm3-8b-instruct-turbomind:
gsm8k_accuracy: 68.75
gsm8k_accuracy: 65.62
race-high_accuracy: 87.5
internlm2-chat-7b-vllm:
gsm8k_accuracy: 59.38
gsm8k_accuracy: 53.12
race-high_accuracy: 87.50
llama-3_1-8b-instruct-hf:
gsm8k_accuracy: 84.38
@ -81,13 +81,13 @@ chat:
gsm8k_accuracy: 18.75
race-high_accuracy: 46.88
llama-3_1-8b-instruct-turbomind:
gsm8k_accuracy: 81.25
gsm8k_accuracy: 84.38
race-high_accuracy: 90.62
llama-3_2-3b-instruct-turbomind:
gsm8k_accuracy: 68.75
gsm8k_accuracy: 65.62
race-high_accuracy: 81.25
llama-3-8b-instruct-turbomind:
gsm8k_accuracy: 68.75
gsm8k_accuracy: 65.62
race-high_accuracy: 84.38
mistral-7b-instruct-v0.2-hf:
gsm8k_accuracy: 40.62
@ -100,12 +100,12 @@ chat:
race-high_accuracy: 81.25
mistral-nemo-instruct-2407-turbomind:
gsm8k_accuracy: 71.88
race-high_accuracy: 78.12
race-high_accuracy: 75
mistral-7b-instruct-v0.1-vllm:
gsm8k_accuracy: 34.38
race-high_accuracy: 65.62
mistral-7b-instruct-v0.2-vllm:
gsm8k_accuracy: 21.88
gsm8k_accuracy: 28.12
race-high_accuracy: 78.12
qwen2.5-0.5b-instruct-hf:
gsm8k_accuracy: 34.38
@ -114,7 +114,7 @@ chat:
gsm8k_accuracy: 53.12
race-high_accuracy: 90.62
qwen2.5-0.5b-instruct-turbomind:
gsm8k_accuracy: 31.25
gsm8k_accuracy: 28.12
race-high_accuracy: 43.75
qwen2.5-3b-instruct-turbomind:
gsm8k_accuracy: 56.25
@ -132,10 +132,10 @@ chat:
gsm8k_accuracy: 56.25
race-high_accuracy: 84.38
qwen2-7b-instruct-turbomind:
gsm8k_accuracy: 81.25
gsm8k_accuracy: 75.00
race-high_accuracy: 87.50
qwen1.5-0.5b-chat-vllm:
gsm8k_accuracy: 3.12
gsm8k_accuracy: 6.25
race-high_accuracy: 53.12
yi-1.5-6b-chat-hf:
gsm8k_accuracy: 65.62
@ -144,13 +144,13 @@ chat:
gsm8k_accuracy: 75
race-high_accuracy: 93.75
yi-1.5-6b-chat-turbomind:
gsm8k_accuracy: 62.5
gsm8k_accuracy: 59.38
race-high_accuracy: 84.38
yi-1.5-9b-chat-turbomind:
gsm8k_accuracy: 71.88
gsm8k_accuracy: 78.12
race-high_accuracy: 93.75
deepseek-v2_lite-chat-turbomind:
gsm8k_accuracy: 37.5
gsm8k_accuracy: 43.75
race-high_accuracy: 71.88
gemma2-27b-it-hf:
gsm8k_accuracy: 71.88
@ -165,7 +165,7 @@ chat:
gsm8k_accuracy: 81.25
race-high_accuracy: 87.50
mistral-small-instruct-2409-turbomind:
gsm8k_accuracy: 81.25
gsm8k_accuracy: 78.12
race-high_accuracy: 87.50
phi-4:
gsm8k_accuracy: 81.25
@ -174,16 +174,16 @@ chat:
gsm8k_accuracy: 71.88
race-high_accuracy: 96.88
qwen2.5-14b-instruct-turbomind:
gsm8k_accuracy: 68.75
race-high_accuracy: 93.75
gsm8k_accuracy: 71.88
race-high_accuracy: 96.88
yi-1.5-34b-chat-turbomind:
gsm8k_accuracy: 75.00
gsm8k_accuracy: 71.88
race-high_accuracy: 93.75
deepseek-67b-chat-turbomind:
gsm8k_accuracy: 75.00
race-high_accuracy: 78.12
gsm8k_accuracy: 71.88
race-high_accuracy: 75.00
deepseek-r1-distill-qwen-32b-turbomind:
gsm8k_accuracy: 25
gsm8k_accuracy: 31.25
race-high_accuracy: 90.62
llama-3_3-70b-instruct-turbomind:
gsm8k_accuracy: 93.75
@ -192,19 +192,19 @@ chat:
gsm8k_accuracy: 87.50
race-high_accuracy: 93.75
nvidia-3_1-Nemotron-70b-instruct-HF-turbomind:
gsm8k_accuracy: 93.75
race-high_accuracy: 50.00
gsm8k_accuracy: 90.62
race-high_accuracy: 53.12
qwen2.5-72b-instruct-turbomind:
gsm8k_accuracy: 81.25
gsm8k_accuracy: 78.12
race-high_accuracy: 90.62
deepseek-r1-distill-llama-70b-turbomind:
gsm8k_accuracy: 40.62
race-high_accuracy: 90.62
gsm8k_accuracy: 50.00
race-high_accuracy: 87.50
deepseek-v2_5-1210-turbomind:
gsm8k_accuracy: 90.62
race-high_accuracy: 84.38
mixtral-8x22b-instruct-v0.1-turbomind:
gsm8k_accuracy: 78.12
gsm8k_accuracy: 75.00
race-high_accuracy: 78.12
mixtral-8x22b-instruct-v0.1-vllm:
gsm8k_accuracy: 78.12
@ -222,11 +222,11 @@ base:
winogrande_accuracy: 71.88
deepseek-7b-base-turbomind:
gsm8k_accuracy: 18.75
GPQA_diamond_accuracy: 0
race-high_accuracy: 43.75
GPQA_diamond_accuracy: 3.12
race-high_accuracy: 50.00
winogrande_accuracy: 84.38
deepseek-moe-16b-base-vllm:
gsm8k_accuracy: 21.88
gsm8k_accuracy: 25.00
GPQA_diamond_accuracy: 0
race-high_accuracy: 25
winogrande_accuracy: 68.75
@ -253,15 +253,15 @@ base:
gemma-2-9b-turbomind:
gsm8k_accuracy: 68.75
GPQA_diamond_accuracy: 0
race-high_accuracy: 18.75
winogrande_accuracy: 46.88
race-high_accuracy: 84.38
winogrande_accuracy: 81.25
gemma-2b-vllm:
gsm8k_accuracy: 15.62
GPQA_diamond_accuracy: 3.12
race-high_accuracy: 28.12
winogrande_accuracy: 68.75
gemma-7b-vllm:
gsm8k_accuracy: 43.75
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 6.25
race-high_accuracy: 81.25
winogrande_accuracy: 81.25
@ -276,8 +276,8 @@ base:
race-high_accuracy: 62.5
winogrande_accuracy: 78.12
internlm2-1.8b-turbomind:
gsm8k_accuracy: 6.25
GPQA_diamond_accuracy: 12.5
gsm8k_accuracy: 12.50
GPQA_diamond_accuracy: 9.38
race-high_accuracy: 71.88
winogrande_accuracy: 75
internlm2_5-7b-turbomind:
@ -286,13 +286,13 @@ base:
race-high_accuracy: 93.75
winogrande_accuracy: 87.5
internlm2-7b-turbomind:
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 34.38
gsm8k_accuracy: 53.12
GPQA_diamond_accuracy: 25.00
race-high_accuracy: 78.12
winogrande_accuracy: 71.88
internlm2-base-7b-turbomind:
gsm8k_accuracy: 28.12
GPQA_diamond_accuracy: 31.25
gsm8k_accuracy: 25.00
GPQA_diamond_accuracy: 34.38
race-high_accuracy: 71.88
winogrande_accuracy: 62.50
llama-2-7b-hf:
@ -311,8 +311,8 @@ base:
race-high_accuracy: 65.62
winogrande_accuracy: 65.62
llama-3.1-8b-turbomind:
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 15.62
gsm8k_accuracy: 56.25
GPQA_diamond_accuracy: 9.38
race-high_accuracy: 78.12
winogrande_accuracy: 78.12
llama-3-8b-turbomind:
@ -332,12 +332,12 @@ base:
winogrande_accuracy: 71.88
qwen2.5-1.5b-turbomind:
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 18.75
race-high_accuracy: 75
GPQA_diamond_accuracy: 21.88
race-high_accuracy: 78.12
winogrande_accuracy: 71.88
qwen2.5-7b-turbomind:
gsm8k_accuracy: 71.88
GPQA_diamond_accuracy: 18.75
gsm8k_accuracy: 78.12
GPQA_diamond_accuracy: 21.88
race-high_accuracy: 87.5
winogrande_accuracy: 75.00
qwen1.5-moe-a2.7b-hf:
@ -361,18 +361,18 @@ base:
race-high_accuracy: 87.5
winogrande_accuracy: 68.75
qwen2-1.5b-turbomind:
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 6.25
gsm8k_accuracy: 56.25
GPQA_diamond_accuracy: 12.50
race-high_accuracy: 81.25
winogrande_accuracy: 75
qwen2-7b-turbomind:
gsm8k_accuracy: 62.5
gsm8k_accuracy: 65.62
GPQA_diamond_accuracy: 12.5
race-high_accuracy: 87.5
winogrande_accuracy: 75
qwen1.5-0.5b-vllm:
gsm8k_accuracy: 9.38
GPQA_diamond_accuracy: 0
GPQA_diamond_accuracy: 3.12
race-high_accuracy: 56.25
winogrande_accuracy: 59.38
yi-1.5-6b-hf:
@ -386,7 +386,7 @@ base:
race-high_accuracy: 87.5
winogrande_accuracy: 59.38
yi-1.5-9b-turbomind:
gsm8k_accuracy: 78.12
gsm8k_accuracy: 75.00
GPQA_diamond_accuracy: 40.62
race-high_accuracy: 87.5
winogrande_accuracy: 65.62
@ -406,13 +406,13 @@ base:
race-high_accuracy: 93.75
winogrande_accuracy: 78.12
qwen2.5-32b-turbomind:
gsm8k_accuracy: 84.38
GPQA_diamond_accuracy: 28.12
gsm8k_accuracy: 90.62
GPQA_diamond_accuracy: 31.25
race-high_accuracy: 93.75
winogrande_accuracy: 81.25
deepseek-67b-base-turbomind:
gsm8k_accuracy: 59.38
GPQA_diamond_accuracy: 34.38
gsm8k_accuracy: 62.50
GPQA_diamond_accuracy: 31.25
race-high_accuracy: 78.12
winogrande_accuracy: 81.25
llama-3-70b-turbomind:
@ -422,11 +422,11 @@ base:
winogrande_accuracy: 84.38
qwen2.5-72b-turbomind:
gsm8k_accuracy: 84.38
GPQA_diamond_accuracy: 31.25
GPQA_diamond_accuracy: 40.62
race-high_accuracy: 93.75
winogrande_accuracy: 87.5
deepseek-v2-turbomind:
gsm8k_accuracy: 65.62
GPQA_diamond_accuracy: 9.38
GPQA_diamond_accuracy: 3.12
race-high_accuracy: 93.75
winogrande_accuracy: 81.25

View File

@ -17,7 +17,7 @@ on:
required: false
description: 'whether to build lmdeploy'
type: boolean
default: true
default: false
repo_org_lmdeploy:
required: false
description: 'Tested repository organization name. Default is internlm/lmdeploy'
@ -146,7 +146,7 @@ jobs:
- name: Prepare - create conda env and install torch - cu12
uses: nick-fields/retry@v3
with:
max_attempts: 1
max_attempts: 3
timeout_minutes: 120
command: |
. ${{env.CONDA_PATH}}/bin/activate
@ -182,7 +182,7 @@ jobs:
pip list
daily_run_test_volc:
if: ${{!cancelled()}}
if: ${{!cancelled() && contains(needs.prepare_env.result, 'success')}}
needs: prepare_env
strategy:
fail-fast: false
@ -222,7 +222,7 @@ jobs:
daily_run_test_local:
if: ${{!cancelled()}}
if: ${{!cancelled() && contains(needs.prepare_env.result, 'success')}}
needs: prepare_env
strategy:
fail-fast: false
@ -303,7 +303,7 @@ jobs:
python -m pytest -m ${{matrix.regression_func}} -s -v --color=yes .github/scripts/oc_score_assert.py
fullbench_run_test:
if: ${{!cancelled()}}
if: ${{!cancelled() && contains(needs.prepare_env.result, 'success')}}
needs: prepare_env
strategy:
fail-fast: false

View File

@ -115,9 +115,15 @@ repos:
args:
- --root_folder
- opencompass/configs/datasets
- repo: https://github.com/gitleaks/gitleaks
rev: v8.23.1
hooks:
- id: gitleaks
entry: "gitleaks dir"
args: ["--verbose", "--redact=50"]
# - repo: https://github.com/open-mmlab/pre-commit-hooks
# rev: v0.2.0 # Use the ref you want to point at
# hooks:
# - id: check-algo-readme
# - id: check-copyright
# args: ["mmocr", "tests", "tools"] # these directories will be checked
# args: ["mmocr", "tests", "tools"] # these directories will be checked

View File

@ -116,9 +116,15 @@ repos:
args:
- --root_folder
- opencompass/configs/datasets
- repo: https://github.com/gitleaks/gitleaks
rev: v8.23.1
hooks:
- id: gitleaks
entry: "gitleaks dir"
args: ["--verbose", "--redact=50"]
# - repo: https://github.com/open-mmlab/pre-commit-hooks
# rev: v0.2.0 # Use the ref you want to point at
# hooks:
# - id: check-algo-readme
# - id: check-copyright
# args: ["mmocr", "tests", "tools"] # these directories will be checked
# args: ["mmocr", "tests", "tools"] # these directories will be checked

View File

@ -60,7 +60,7 @@ Just like a compass guides us on our journey, OpenCompass will guide you through
- **\[2025.04.01\]** OpenCompass now supports `CascadeEvaluator`, a flexible evaluation mechanism that allows multiple evaluators to work in sequence. This enables creating customized evaluation pipelines for complex assessment scenarios. Check out the [documentation](docs/en/advanced_guides/llm_judge.md) for more details! 🔥🔥🔥
- **\[2025.03.11\]** We have supported evaluation for `SuperGPQA` which is a great benchmark for measuring LLM knowledge ability 🔥🔥🔥
- **\[2025.02.28\]** We have added a tutorial for `DeepSeek-R1` series model, please check [Evaluating Reasoning Model](docs/en/user_guides/deepseek_r1.md) for more details! 🔥🔥🔥
- **\[2025.02.15\]** We have added two powerful evaluation tools: `GenericLLMEvaluator` for LLM-as-judge evaluations and `MATHEvaluator` for mathematical reasoning assessments. Check out the documentation for [LLM Judge](docs/en/advanced_guides/llm_judge.md) and [Math Evaluation](docs/en/advanced_guides/general_math.md) for more details! 🔥🔥🔥
- **\[2025.02.15\]** We have added two powerful evaluation tools: `GenericLLMEvaluator` for LLM-as-judge evaluations and `MATHVerifyEvaluator` for mathematical reasoning assessments. Check out the documentation for [LLM Judge](docs/en/advanced_guides/llm_judge.md) and [Math Evaluation](docs/en/advanced_guides/general_math.md) for more details! 🔥🔥🔥
- **\[2025.01.16\]** We now support the [InternLM3-8B-Instruct](https://huggingface.co/internlm/internlm3-8b-instruct) model which has enhanced performance on reasoning and knowledge-intensive tasks.
- **\[2024.12.17\]** We have provided the evaluation script for the December [CompassAcademic](examples/eval_academic_leaderboard_202412.py), which allows users to easily reproduce the official evaluation results by configuring it.
- **\[2024.11.14\]** OpenCompass now offers support for a sophisticated benchmark designed to evaluate complex reasoning skills — [MuSR](https://arxiv.org/pdf/2310.16049). Check out the [demo](examples/eval_musr.py) and give it a spin! 🔥🔥🔥
@ -246,7 +246,7 @@ Currently, OpenCompass have provided standard recommended configurations for dat
opencompass --datasets aime2024_gen --models hf_internlm2_5_1_8b_chat
# Recommended Evaluation Config based on LLM Judge
opencompass --datasets aime2024_llm_judge_gen --models hf_internlm2_5_1_8b_chat
opencompass --datasets aime2024_llmjudge_gen --models hf_internlm2_5_1_8b_chat
```
If you want to use multiple GPUs to evaluate the model in data parallel, you can use `--max-num-worker`.

View File

@ -60,7 +60,7 @@
- **\[2025.04.01\]** OpenCompass 现已支持 `CascadeEvaluator`,允许多个评估器按顺序工作,可以为更复杂的评估场景创建自定义评估流程,查看[文档](docs/zh_cn/advanced_guides/llm_judge.md)了解具体用法!🔥🔥🔥
- **\[2025.03.11\]** 现已支持 `SuperGPQA` 覆盖285 个研究生学科的知识能力评测,欢迎尝试!🔥🔥🔥
- **\[2025.02.28\]** 我们为 `DeepSeek-R1` 系列模型添加了教程,请查看 [评估推理模型](docs/zh_cn/user_guides/deepseek_r1.md) 了解更多详情!🔥🔥🔥
- **\[2025.02.15\]** 我们新增了两个实用的评测工具用于LLM作为评判器的`GenericLLMEvaluator`和用于数学推理评估的`MATHEvaluator`。查看[LLM评判器](docs/zh_cn/advanced_guides/llm_judge.md)和[数学能力评测](docs/zh_cn/advanced_guides/general_math.md)文档了解更多详情!🔥🔥🔥
- **\[2025.02.15\]** 我们新增了两个实用的评测工具用于LLM作为评判器的`GenericLLMEvaluator`和用于数学推理评估的`MATHVerifyEvaluator`。查看[LLM评判器](docs/zh_cn/advanced_guides/llm_judge.md)和[数学能力评测](docs/zh_cn/advanced_guides/general_math.md)文档了解更多详情!🔥🔥🔥
- **\[2025.01.16\]** 我们现已支持 [InternLM3-8B-Instruct](https://huggingface.co/internlm/internlm3-8b-instruct) 模型,该模型在推理、知识类任务上取得同量级最优性能,欢迎尝试。
- **\[2024.12.17\]** 我们提供了12月CompassAcademic学术榜单评估脚本 [CompassAcademic](configs/eval_academic_leaderboard_202412.py),你可以通过简单地配置复现官方评测结果。
- **\[2024.10.14\]** 现已支持OpenAI多语言问答数据集[MMMLU](https://huggingface.co/datasets/openai/MMMLU),欢迎尝试! 🔥🔥🔥
@ -237,7 +237,7 @@ humaneval, triviaqa, commonsenseqa, tydiqa, strategyqa, cmmlu, lambada, piqa, ce
opencompass --datasets aime2024_gen --models hf_internlm2_5_1_8b_chat
# 基于LLM Judge的推荐配置
opencompass --datasets aime2024_llm_judge_gen --models hf_internlm2_5_1_8b_chat
opencompass --datasets aime2024_llmjudge_gen --models hf_internlm2_5_1_8b_chat
```
此外,如果你想在多块 GPU 上使用模型进行推理,您可以使用 `--max-num-worker` 参数。

View File

@ -122,12 +122,42 @@
paper: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10778138
configpath: opencompass/configs/datasets/MedBench/medbench_gen.py
configpath_llmjudge: ''
- MedCalc_Bench:
name: MedCalc_Bench
category: Knowledge / Medicine
paper: https://arxiv.org/abs/2406.12036
configpath: opencompass/configs/datasets/MedCalc_Bench/MedCalcBench_official_gen_a5155f.py
configpath_llmjudge: ''
- MedXpertQA:
name: MedQA
category: Knowledge / Medicine
paper: https://arxiv.org/abs/2009.13081
configpath: opencompass/configs/datasets/MedQA/MedQA_gen.py
configpath_llmjudge: opencompass/configs/datasets/MedQA/MedQA_llmjudge_gen.py
- MedXpertQA:
name: MedXpertQA
category: Knowledge / Medicine
paper: https://arxiv.org/abs/2501.18362
configpath: opencompass/configs/datasets/MedXpertQA/MedXpertQA_gen.py
configpath_llmjudge: opencompass/configs/datasets/MedXpertQA/MedXpertQA_llmjudge_gen.py
- ClinicBench:
name: ClinicBench
category: Knowledge / Medicine
paper: https://arxiv.org/abs/2405.00716
configpath: ''
configpath_llmjudge: opencompass/configs/datasets/ClinicBench/ClinicBench_llmjudge_gen.py
- ScienceQA:
name: ScienceQA
category: Knowledge / Medicine
paper: https://arxiv.org/abs/2209.09513
configpath: ''
configpath_llmjudge: opencompass/configs/datasets/ScienceQA/ScienceQA_llmjudge_gen.py
- PubMedQA:
name: PubMedQA
category: Knowledge / Medicine
paper: https://arxiv.org/abs/1909.06146
configpath: ''
configpath_llmjudge: opencompass/configs/datasets/PubMedQA/PubMedQA_llmjudge_gen.py
- musr:
name: MuSR
category: Reasoning
@ -273,7 +303,7 @@
category: Examination
paper: https://huggingface.co/datasets/Maxwell-Jia/AIME_2024
configpath: opencompass/configs/datasets/aime2024/aime2024_gen.py
configpath_llmjudge: opencompass/configs/datasets/aime2024/aime2024_llm_judge_gen.py
configpath_llmjudge: opencompass/configs/datasets/aime2024/aime2024_llmjudge_gen.py
- anli:
name: Adversarial NLI
category: Reasoning
@ -343,6 +373,12 @@
paper: https://arxiv.org/pdf/2004.05986
configpath: opencompass/configs/datasets/CLUE_C3/CLUE_C3_gen.py
configpath_llmjudge: ''
- CARDBiomedBench:
name: CARDBiomedBench
category: Knowledge / Medicine
paper: https://www.biorxiv.org/content/10.1101/2025.01.15.633272v1
configpath: opencompass/configs/datasets/CARDBiomedBench
configpath_llmjudge: 'opencompass/configs/datasets/CARDBiomedBench/CARDBiomedBench_llmjudge_gen_99a231.py'
- cb:
name: SuperGLUE / CB
category: Reasoning
@ -575,6 +611,12 @@
paper: https://dl.acm.org/doi/pdf/10.1145/3580305.3599790
configpath: opencompass/configs/datasets/humanevalx/humanevalx_gen.py
configpath_llmjudge: ''
- humaneval_pro:
name: HumanEval Pro
category: Code
paper: https://arxiv.org/abs/2412.21199
configpath: opencompass/configs/datasets/humaneval_pro/humaneval_pro_gen.py
configpath_llmjudge: ''
- hungarian_math:
name: Hungarian_Math
category: Math
@ -659,6 +701,12 @@
paper: ''
configpath: opencompass/configs/datasets/mbpp_plus/mbpp_plus_gen.py
configpath_llmjudge: ''
- mbpp_pro:
name: MBPP Pro
category: Code
paper: https://arxiv.org/abs/2412.21199
configpath: opencompass/configs/datasets/mbpp_pro/mbpp_pro_gen.py
configpath_llmjudge: ''
- mgsm:
name: MGSM
category: Language / Math
@ -671,6 +719,12 @@
paper: https://arxiv.org/pdf/2009.03300
configpath: opencompass/configs/datasets/mmlu/mmlu_gen.py
configpath_llmjudge: opencompass/configs/datasets/mmlu/mmlu_llm_judge_gen.py
- SciEval:
name: SciEval
category: Understanding
paper: https://arxiv.org/pdf/2308.13149
configpath: opencompass/configs/datasets/SciEval/SciEval_gen.py
configpath_llmjudge: opencompass/configs/datasets/SciEval/SciEval_llm_judge_gen.py
- mmlu_cf:
name: MMLU-CF
category: Understanding
@ -739,6 +793,12 @@
paper: https://arxiv.org/pdf/1911.11641v1
configpath: opencompass/configs/datasets/piqa/piqa_gen.py
configpath_llmjudge: ''
- ProteinLMBench:
name: ProteinLMBench
category: Knowledge / Biology (Protein)
paper: https://arxiv.org/abs/2406.05540
configpath: opencompass/configs/datasets/ProteinLMBench/ProteinLMBench_gen.py
configpath_llmjudge: opencompass/configs/datasets/ProteinLMBench/ProteinLMBench_llmjudge_gen.py
- py150:
name: py150
category: Code
@ -1023,3 +1083,33 @@
paper: https://arxiv.org/pdf/2402.09391
configpath: opencompass/configs/datasets/SmolInstruct/smolinstruct_gen.py
configpath_llmjudge: ''
- SciKnowEval:
name: SciKnowEval
category: Science
paper: https://arxiv.org/abs/2406.09098
configpath: opencompass/configs/datasets/SciKnowEval/SciKnowEval_gen_ebe47d.py
configpath_llmjudge: opencompass/configs/datasets/SciKnowEval/SciKnowEval_llmjudge_gen_ebe47d.py
- internsandbox:
name: InternSandbox
category: Reasoning/Code/Agent
paper: ''
configpath: opencompass/configs/datasets/internsandbox/internsandbox_gen_44b982.py
configpath_llmjudge: ''
- nejmaibench:
name: nejmaibench
category: Science /Medicine
paper: https://arxiv.org/pdf/2308.04709
configpath: opencompass/configs/datasets/nejm_ai_benchmark/nejmaibench_gen.py
configpath_llmjudge: opencompass/configs/datasets/nejm_ai_benchmark/nejmaibench_llmjudge_gen.py
- medbullets:
name: Medbullets
category: Science /Medicine
paper: https://arxiv.org/pdf/2402.18060
configpath: opencompass/configs/datasets/Medbullets/medbullets_gen.py
configpath_llmjudge: opencompass/configs/datasets/Medbullets/medbullets_llmjudge_gen.py
- medmcqa:
name: medmcqa
category: Science /Medicine
paper: https://arxiv.org/pdf/2203.14371
configpath: opencompass/configs/datasets/medmcqa/medmcqa_gen.py
configpath_llmjudge: opencompass/configs/datasets/medmcqa/medmcqa_llmjudge_gen.py

View File

@ -278,7 +278,7 @@ Here's an example of how to configure the CascadeEvaluator:
```python
# Define a rule-based evaluator
rule_evaluator = dict(type=MATHEvaluator)
rule_evaluator = dict(type=MATHVerifyEvaluator)
# Define an LLM judge evaluator
llm_judge_evaluator = dict(

View File

@ -2,7 +2,7 @@
## Introduction
Mathematical reasoning is a crucial capability for large language models (LLMs). To evaluate a model's mathematical abilities, we need to test its capability to solve mathematical problems step by step and provide accurate final answers. OpenCompass provides a convenient way to evaluate mathematical reasoning through the CustomDataset and MATHEvaluator components.
Mathematical reasoning is a crucial capability for large language models (LLMs). To evaluate a model's mathematical abilities, we need to test its capability to solve mathematical problems step by step and provide accurate final answers. OpenCompass provides a convenient way to evaluate mathematical reasoning through the CustomDataset and MATHVerifyEvaluator components.
## Dataset Format
@ -61,7 +61,7 @@ math_infer_cfg = dict(
```python
math_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator),
evaluator=dict(type=MATHVerifyEvaluator),
)
```
@ -86,11 +86,11 @@ math_datasets = [
]
```
## MATHEvaluator
## MATHVerifyEvaluator
The MATHEvaluator is specifically designed to evaluate mathematical answers. It is developed based on the math_verify library, which provides mathematical expression parsing and verification capabilities, supporting extraction and equivalence verification for both LaTeX and general expressions.
The MATHVerifyEvaluator is specifically designed to evaluate mathematical answers. It is developed based on the math_verify library, which provides mathematical expression parsing and verification capabilities, supporting extraction and equivalence verification for both LaTeX and general expressions.
The MATHEvaluator implements:
The MATHVerifyEvaluator implements:
1. Extracts answers from both predictions and references using LaTeX extraction
2. Handles various LaTeX formats and environments
@ -133,7 +133,7 @@ Here's a complete example of how to set up math evaluation:
from mmengine.config import read_base
from opencompass.models import TurboMindModelwithChatTemplate
from opencompass.datasets import CustomDataset
from opencompass.openicl.icl_evaluator.math_evaluator import MATHEvaluator
from opencompass.openicl.icl_evaluator.math_evaluator import MATHVerifyEvaluator
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
@ -160,7 +160,7 @@ math_infer_cfg = dict(
# Evaluation configuration
math_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator),
evaluator=dict(type=MATHVerifyEvaluator),
)
# Dataset configuration

View File

@ -277,7 +277,7 @@ OpenCompass还提供了级联评估器`CascadeEvaluator`,它结合了规则式
```python
# 定义规则式评估器
rule_evaluator = dict(type=MATHEvaluator)
rule_evaluator = dict(type=MATHVerifyEvaluator)
# 定义LLM评判器
llm_judge_evaluator = dict(

View File

@ -2,7 +2,7 @@
## 简介
数学推理能力是大语言模型(LLMs)的一项关键能力。为了评估模型的数学能力我们需要测试其逐步解决数学问题并提供准确最终答案的能力。OpenCompass 通过 CustomDataset 和 MATHEvaluator 组件提供了一种便捷的数学推理评测方式。
数学推理能力是大语言模型(LLMs)的一项关键能力。为了评估模型的数学能力我们需要测试其逐步解决数学问题并提供准确最终答案的能力。OpenCompass 通过 CustomDataset 和 MATHVerifyEvaluator 组件提供了一种便捷的数学推理评测方式。
## 数据集格式
@ -61,7 +61,7 @@ math_infer_cfg = dict(
```python
math_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator),
evaluator=dict(type=MATHVerifyEvaluator),
)
```
@ -86,11 +86,11 @@ math_datasets = [
]
```
## MATHEvaluator
## MATHVerifyEvaluator
MATHEvaluator 是专门设计用于评估数学答案的评测器。它基于 math_verify 库进行开发,该库提供了数学表达式解析和验证功能,支持 LaTeX 和一般表达式的提取与等价性验证。
MATHVerifyEvaluator 是专门设计用于评估数学答案的评测器。它基于 math_verify 库进行开发,该库提供了数学表达式解析和验证功能,支持 LaTeX 和一般表达式的提取与等价性验证。
MATHEvaluator 具有以下功能:
MATHVerifyEvaluator 具有以下功能:
1. 使用 LaTeX 提取器从预测和参考答案中提取答案
2. 处理各种 LaTeX 格式和环境
@ -133,7 +133,7 @@ MATHEvaluator 具有以下功能:
from mmengine.config import read_base
from opencompass.models import TurboMindModelwithChatTemplate
from opencompass.datasets import CustomDataset
from opencompass.openicl.icl_evaluator.math_evaluator import MATHEvaluator
from opencompass.evaluator import MATHVerifyEvaluator
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
@ -160,7 +160,7 @@ math_infer_cfg = dict(
# 评测配置
math_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator),
evaluator=dict(type=MATHVerifyEvaluator),
)
# 数据集配置

View File

@ -7,9 +7,12 @@ from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.evaluator import GenericLLMEvaluator, CascadeEvaluator
from opencompass.evaluator import (
GenericLLMEvaluator,
CascadeEvaluator,
MATHVerifyEvaluator,
)
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.openicl.icl_evaluator import MATHEvaluator
from opencompass.datasets import (
MATHDataset,
math_postprocess_v2,
@ -94,7 +97,7 @@ llm_judge_evaluator = dict(
judge_cfg=dict(),
)
rule_evaluator =dict(type=MATHEvaluator)
rule_evaluator =dict(type=MATHVerifyEvaluator)
cascade_evaluator = dict(type=CascadeEvaluator,
llm_evaluator=llm_judge_evaluator,
rule_evaluator=rule_evaluator,

View File

@ -0,0 +1,155 @@
# This config is used to test all the code benchmarks
from mmengine.config import read_base
import os.path as osp
from opencompass.runners import LocalRunner, VOLCRunner
from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask
with read_base():
# Datasets Part
# bigcodebench
from opencompass.configs.datasets.bigcodebench.bigcodebench_full_instruct_gen import (
bigcodebench_full_instruct_datasets
)
from opencompass.configs.datasets.bigcodebench.bigcodebench_hard_instruct_gen import (
bigcodebench_hard_instruct_datasets
)
# livecodebench code generation lite v5
from opencompass.configs.datasets.livecodebench.livecodebench_time_split_gen_a4f90b import (
LCB_datasets
)
# huamneval series
from opencompass.configs.datasets.humaneval.humaneval_openai_sample_evals_gen_dcae0e import (
humaneval_datasets
)
from opencompass.configs.datasets.humaneval_pro.humaneval_pro_gen import (
humanevalpro_datasets
)
from opencompass.configs.datasets.humanevalx.humanevalx_gen_620cfa import (
humanevalx_datasets
)
from opencompass.configs.datasets.humaneval_plus.humaneval_plus_gen import (
humaneval_plus_datasets
)
# mbpp series
from opencompass.configs.datasets.mbpp.mbpp_gen import (
mbpp_datasets
)
from opencompass.configs.datasets.mbpp_pro.mbpp_pro_gen import (
mbpppro_datasets
)
# multipl-e
from opencompass.configs.datasets.multipl_e.multiple_gen import (
multiple_datasets
)
# ds1000
from opencompass.configs.datasets.ds1000.ds1000_service_eval_gen_cbc84f import (
ds1000_datasets
)
# Models Part
from opencompass.configs.models.qwen2_5.lmdeploy_qwen2_5_7b_instruct import (
models as lmdeploy_qwen2_5_7b_instruct_model,
)
# Summary Groups
from opencompass.configs.summarizers.groups.ds1000 import (
ds1000_summary_groups,
)
from opencompass.configs.summarizers.groups.multipl_e import (
multiple_summary_groups,
)
from opencompass.configs.summarizers.groups.humanevalx import (
humanevalx_summary_groups,
)
# models config
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
for model in models:
model['max_seq_len'] = 16384
model['max_out_len'] = 8192
# datasets config
datasets = sum(
(v for k, v in locals().items() if k.endswith('_datasets')),
[],
)
for item in humanevalx_datasets:
item['eval_cfg']['evaluator'][
'ip_address'
] = 'codeeval.opencompass.org.cn/humanevalx'
item['eval_cfg']['evaluator']['port'] = ''
for item in ds1000_datasets:
item['eval_cfg']['evaluator'][
'ip_address'
] = 'codeeval.opencompass.org.cn/ds1000'
item['eval_cfg']['evaluator']['port'] = ''
for dataset in datasets:
dataset['infer_cfg']['inferencer']['max_out_len'] = 8192
# summary
summary_groups = sum(
[v for k, v in locals().items() if k.endswith('_summary_groups')], []
)
summary_groups.append(
{'name': 'humanevalx',
'subsets': ['humanevalx-python', 'humanevalx-cpp', 'humanevalx-java', 'humanevalx-js']}
)
summarizer = dict(
dataset_abbrs = [
['bigcodebench_hard_instruct', 'pass@1'],
['bigcodebench_full_instruct', 'pass@1'],
['lcb_code_generation', 'pass@1'],
['openai_humaneval', 'humaneval_pass@1'],
['mbpp', 'score'],
['humaneval_pro', 'pass@1'],
['mbpp_pro', 'pass@1'],
['humaneval_plus', 'humaneval_plus_pass@1'],
['multiple', 'naive_average'],
['humanevalx', 'naive_average'],
['ds1000', 'naive_average'],
'',
'humanevalx-python',
'humanevalx-cpp',
'humanevalx-java',
'humanevalx-js',
'',
'ds1000_Pandas',
'ds1000_Numpy',
'ds1000_Tensorflow',
'ds1000_Scipy',
'ds1000_Sklearn',
'ds1000_Pytorch',
'ds1000_Matplotlib',
'',
'humaneval-multiple-cpp',
'humaneval-multiple-cs',
'humaneval-multiple-go',
'humaneval-multiple-java',
'humaneval-multiple-rb',
'humaneval-multiple-js',
'humaneval-multiple-php',
'humaneval-multiple-r',
'humaneval-multiple-rs',
'humaneval-multiple-sh',
'',
'mbpp-multiple-cpp',
'mbpp-multiple-cs',
'mbpp-multiple-go',
'mbpp-multiple-java',
'mbpp-multiple-rb',
'mbpp-multiple-js',
'mbpp-multiple-php',
'mbpp-multiple-r',
'mbpp-multiple-rs',
'mbpp-multiple-sh'
],
summary_groups=summary_groups,
)
work_dir = 'outputs/code'

View File

@ -0,0 +1,61 @@
from mmengine.config import read_base
with read_base():
from opencompass.configs.datasets.judge.judgerbenchv2 import get_judgerbenchv2_dataset as get_judgerbenchv2_datasets
from opencompass.configs.datasets.judge.rmb import get_rmb_dataset as get_rmb_datasets
from opencompass.configs.datasets.judge.rewardbench import get_rewardbench_datasets
from opencompass.configs.datasets.judge.judgebench import get_judgebench_datasets
from opencompass.configs.summarizers.judgedataset_all import summarizer
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner, NumWorkerPartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.partitioners.sub_num_worker import SubjectiveNumWorkerPartitioner
from opencompass.runners import LocalRunner, DLCRunner, VOLCRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask
from opencompass.models import TurboMindModelwithChatTemplate
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
datasets = sum(
(v for k, v in locals().items() if k.endswith('_datasets')),
[],
)
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='qwen-7b-hf',
path='Qwen/Qwen-7B',
engine_config=dict(session_len=16384, max_batch_size=16, tp=1),
gen_config=dict(top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=2048),
max_seq_len=16384,
max_out_len=2048,
batch_size=16,
run_cfg=dict(num_gpus=1),
),
]
infer = dict(
partitioner=dict(type=NumWorkerPartitioner, num_worker=8),
runner=dict(
type=LocalRunner,
max_num_workers=72,
task=dict(type=OpenICLInferTask),
),
)
work_dir = './outputs/judge_dataset_all/'

142
examples/eval_qwen3.py Normal file
View File

@ -0,0 +1,142 @@
import os.path as osp
from opencompass.models import OpenAISDK
from mmengine.config import read_base
from opencompass.utils.text_postprocessors import extract_non_reasoning_content
from opencompass.runners import LocalRunner
from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask
with read_base():
from opencompass.configs.datasets.aime2024.aime2024_cascade_eval_gen_5e9f4f import aime2024_datasets
from opencompass.configs.datasets.aime2025.aime2025_cascade_eval_gen_5e9f4f import aime2025_datasets
from opencompass.configs.datasets.math.math_500_cascade_eval_gen_6ff468 import math_datasets
#######################################################################
# PART 0 Meta Info #
#######################################################################
api_meta_template = dict(round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
)
judge_cfg = dict(
abbr='qwen2-5-32B-Instruct',
type=OpenAISDK,
path='Qwen/Qwen2.5-32B-Instruct',
key='sk-1234',
openai_api_base=[
'http://x.x.x.x:4000/v1',
],
meta_template=api_meta_template,
query_per_second=8,
batch_size=256,
temperature=0.001,
# max_completion_tokens=32768,
tokenizer_path='gpt-4o-2024-05-13',
# verbose=True,
max_out_len=16384,
max_seq_len=32768,
# max_seq_len=49152,
mode='mid',
retry=10
)
#######################################################################
# PART 1 Datasets List #
#######################################################################
repeated_info = [
(math_datasets, 4),
(aime2024_datasets, 32),
(aime2025_datasets, 32),
]
for datasets_, num in repeated_info:
for dataset_ in datasets_:
dataset_['n'] = num
datasets = sum(
(v for k, v in locals().items() if k.endswith('_datasets')),
[],
)
for item in datasets:
item['infer_cfg']['inferencer']['max_out_len'] = 32768
try:
if 'judge_cfg' in item['eval_cfg']['evaluator']:
item['eval_cfg']['evaluator']['judge_cfg'] = judge_cfg
elif'judge_cfg' in item['eval_cfg']['evaluator']['llm_evaluator']:
item['eval_cfg']['evaluator']['llm_evaluator']['judge_cfg'] = judge_cfg
except:
pass
#######################################################################
# PART 2 Dataset Summarizer #
#######################################################################
summarizer = dict(
dataset_abbrs=[
'MATH',
['math_prm800k_500', 'accuracy (4 runs average)'],
['aime2024', 'accuracy (32 runs average)'],
['aime2025', 'accuracy (32 runs average)'],
['livemathbench_hard', 'naive_average'],
['OlympiadBenchMath', 'accuracy'],
['olymmath', 'naive_average'],
],
summary_groups = sum(
[v for k, v in locals().items() if k.endswith('_summary_groups')], []
),
)
#######################################################################
# PART 3 Models List #
#######################################################################
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
models += [
dict(
abbr='Qwen_Qwen3-235B-A22B',
type=OpenAISDK,
path='Qwen/Qwen3-235B-A22B',
key='sk-admin',
openai_api_base=[
'http://106.15.231.215:40007/v1/',
],
meta_template=dict(
# begin=dict(role='SYSTEM', api_role='SYSTEM', prompt=''),
round=[
dict(role='HUMAN', api_role='HUMAN'),
# XXX: all system roles are mapped to human in purpose
dict(role='BOT', api_role='BOT', generate=True),
]
),
query_per_second=16,
batch_size=128,
# batch_size=1,
temperature=0.6,
# max_completion_tokens=32768,
tokenizer_path='gpt-4',
# verbose=True,
max_out_len=32768,
max_seq_len=32768,
pred_postprocessor=dict(type=extract_non_reasoning_content)
),
]
infer = dict(
partitioner=dict(type=NumWorkerPartitioner, num_worker=8),
runner=dict(type=LocalRunner, task=dict(type=OpenICLInferTask)),
)
eval = dict(
partitioner=dict(type=NaivePartitioner, n=8),
runner=dict(type=LocalRunner, task=dict(type=OpenICLEvalTask)),
)
base_exp_dir = 'outputs/qwen3_reasoning'
work_dir = osp.join(base_exp_dir, 'chat_objective')

View File

@ -12,8 +12,8 @@ from mmengine.config import Config, DictAction
from opencompass.registry import PARTITIONERS, RUNNERS, build_from_cfg
from opencompass.runners import SlurmRunner
from opencompass.summarizers import DefaultSummarizer
from opencompass.utils import (LarkReporter, get_logger, read_from_station,
save_to_station)
from opencompass.utils import (LarkReporter, get_logger, pretty_print_config,
read_from_station, save_to_station)
from opencompass.utils.run import (fill_eval_cfg, fill_infer_cfg,
get_config_from_arg)
@ -94,6 +94,11 @@ def parse_args():
help='Use the custom config directory instead of config/ to '
'search the configs for datasets, models and summarizers',
type=str)
parser.add_argument(
'--config-verbose',
default=False,
action='store_true',
help='Whether to print the config in verbose mode.')
parser.add_argument('-l',
'--lark',
help='Report the running status to lark bot',
@ -131,7 +136,7 @@ def parse_args():
'correctness of each sample, bpb, etc.',
action='store_true',
)
# for the results persistence
parser.add_argument('-sp',
'--station-path',
help='Path to your results station.',
@ -150,7 +155,12 @@ def parse_args():
'data station.',
action='store_true',
)
# for evaluation with multiple runs
parser.add_argument('--dataset-num-runs',
help='How many runs for one dataset',
type=int,
default=1,
)
# set srun args
slurm_parser = parser.add_argument_group('slurm_args')
@ -299,6 +309,11 @@ def main():
content = f'{getpass.getuser()}\'s task has been launched!'
LarkReporter(cfg['lark_bot_url']).post(content)
# print config if specified --config-verbose
if args.config_verbose:
pretty_print_config(cfg)
# infer
if args.mode in ['all', 'infer']:
# When user have specified --slurm or --dlc, or have not set

View File

@ -0,0 +1,101 @@
from opencompass.datasets import CARDBiomedBenchDataset
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.evaluator import GenericLLMEvaluator
ZERO_SHOT_PROMPT = 'You are an expert in {expert}.\n{question}\n'
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: Q: You are an expert in {expert}.\n{question}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
# Reader configuration
reader_cfg = dict(
input_columns=[
'question',
'answer',
'Bio_Category',
'SQL_Category',
'uuid',
'template uuid',
'expert',
],
output_column='answer',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=ZERO_SHOT_PROMPT, # prompt mode: zero-shot
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=CARDBiomedBenchDataset,
path='NIH-CARD/CARDBiomedBench',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
cardbiomedbench_dataset = dict(
type=CARDBiomedBenchDataset,
abbr='cardbiomedbench',
path='NIH-CARD/CARDBiomedBench',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
cardbiomedbench_datasets = [cardbiomedbench_dataset]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .ClinicBench_llmjudge_gen_d09668 import ClinicBench_datasets

View File

@ -0,0 +1,100 @@
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets.ClinicBench import ClinicBenchDataset
QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of Options(e.g. one of ABCDEFGHIJKLMNOP). Think step by step before answering.
Question:\n
{question}
Options:\n
{choices}
""".strip()
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: {question}\n {choices} \n<Original Question End>\n\n
<Gold Target Begin>: \n{label}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
ClinicBench_datasets = []
ClinicBench_reader_cfg = dict(
input_columns=['question', 'choices'],
output_column='label',
)
ClinicBench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
ClinicBench_eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=ClinicBenchDataset,
path='xuxuxuxuxu/Pharmacology-QA',
reader_cfg=ClinicBench_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
ClinicBench_datasets.append(
dict(
abbr=f'ClinicBench',
type=ClinicBenchDataset,
path='xuxuxuxuxu/Pharmacology-QA',
reader_cfg=ClinicBench_reader_cfg,
infer_cfg=ClinicBench_infer_cfg,
eval_cfg=ClinicBench_eval_cfg,
)
)

View File

@ -1,31 +1,27 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import Aime2024Dataset, MATHEvaluator, math_postprocess_v2
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.utils import xml_tag_postprocessor
from opencompass.datasets import HLEDataset
aime2024_reader_cfg = dict(
input_columns=['question'],
output_column='answer'
)
# ----------------------------- Detailed Config -----------------------------
math_reader_cfg = dict(input_columns=['problem'], output_column='answer')
aime2024_infer_cfg = dict(
math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{question}\nRemember to put your final answer within \\boxed{}.'),
],
)
dict(role='HUMAN', prompt='{problem}\nRemember to put your final answer within \\boxed{}.'),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=2048)
inferencer=dict(type=GenInferencer),
)
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
@ -35,23 +31,20 @@ GRADER_TEMPLATE = """
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: \n{question}\n<Original Question End>\n\n
<Original Question Begin>: \n{problem}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
aime2024_eval_cfg = dict(
# Evaluation configuration
math_eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
@ -71,25 +64,25 @@ aime2024_eval_cfg = dict(
]),
),
dataset_cfg=dict(
type=Aime2024Dataset,
path='opencompass/aime2024',
reader_cfg=aime2024_reader_cfg,
type=HLEDataset,
path='cais/hle',
reader_cfg=math_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
pred_postprocessor=dict(type=xml_tag_postprocessor, tag='<conclude>'),
),
pred_role='BOT',
)
aime2024_datasets = [
hle_datasets = [
dict(
abbr='aime2024',
type=Aime2024Dataset,
path='opencompass/aime2024',
reader_cfg=aime2024_reader_cfg,
infer_cfg=aime2024_infer_cfg,
eval_cfg=aime2024_eval_cfg,
mode='singlescore',
type=HLEDataset,
abbr='hle_llmjudge',
path='cais/hle',
category='Biology/Medicine',
reader_cfg=math_reader_cfg,
infer_cfg=math_infer_cfg,
eval_cfg=math_eval_cfg,
)
]

View File

@ -0,0 +1,57 @@
from opencompass.datasets import MedCalc_BenchDataset, MedCalcOfficial_Evaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
ZERO_SHOT_PROMPT = 'You are a helpful assistant for calculating a score for a given patient note. Please think step-by-step to solve the question and then generate the required score. Your output should only contain a JSON dict formatted as {"step_by_step_thinking": str(your_step_by_step_thinking_procress_to_solve_the_question), "answer": str(short_and_direct_answer_of_the_question)}. \n Here is the patient note:\n{patient_note}\n\nHere is the task:\n{question}\n\nPlease directly output the JSON dict formatted as {"step_by_step_thinking": str(your_step_by_step_thinking_procress_to_solve_the_question), "answer": str(short_and_direct_answer_of_the_question)}:'
# Reader configuration
reader_cfg = dict(
input_columns=[
'row_number',
'calculator_id',
'calculator_name',
'category',
'note_id',
'output_type',
'note_type',
'patient_note',
'question',
'relevant_entities',
'ground_truth_answer',
'lower_limit',
'upper_limit',
'ground_truth_explanation'
],
output_column='ground_truth_answer',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN',prompt=ZERO_SHOT_PROMPT),
])
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(type=MedCalcOfficial_Evaluator),
pred_role='BOT',
)
medcal_bench_dataset = dict(
type=MedCalc_BenchDataset,
abbr='medcal_bench_official_zero_shot_eval',
path='ncbi/MedCalc-Bench-v1.0',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
medcal_bench_datasets = [medcal_bench_dataset]

View File

@ -0,0 +1,63 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.utils.text_postprocessors import first_option_postprocess
from opencompass.datasets.MedQA import MedQADataset
QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of Options(e.g. one of ABCDEFGHIJKLMNOP). Think step by step before answering.
Question:\n
{question}
Options:\n
{choices}
""".strip()
MedQA_datasets = []
MedQA_reader_cfg = dict(
input_columns=['question', 'choices'],
output_column='label',
)
MedQA_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
MedQA_subsets = {
'US': 'xuxuxuxuxu/MedQA_US_test',
'Mainland': 'xuxuxuxuxu/MedQA_Mainland_test',
'Taiwan': 'xuxuxuxuxu/MedQA_Taiwan_test',
}
for split in list(MedQA_subsets.keys()):
MedQA_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD')
)
MedQA_datasets.append(
dict(
abbr=f'MedQA_{split}',
type=MedQADataset,
path=MedQA_subsets[split],
reader_cfg=MedQA_reader_cfg,
infer_cfg=MedQA_infer_cfg,
eval_cfg=MedQA_eval_cfg,
)
)

View File

@ -0,0 +1,108 @@
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets.MedQA import MedQADataset
QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of Options(e.g. one of ABCDEFGHIJKLMNOP). Think step by step before answering.
Question:\n
{question}
Options:\n
{choices}
""".strip()
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: {question}\n {choices} \n<Original Question End>\n\n
<Gold Target Begin>: \n{label}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
MedQA_datasets = []
MedQA_reader_cfg = dict(
input_columns=['question', 'choices'],
output_column='label',
)
MedQA_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
MedQA_subsets = {
'US': 'xuxuxuxuxu/MedQA_US_test',
'Mainland': 'xuxuxuxuxu/MedQA_Mainland_test',
'Taiwan': 'xuxuxuxuxu/MedQA_Taiwan_test',
}
for split in list(MedQA_subsets.keys()):
MedQA_eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=MedQADataset,
path=MedQA_subsets[split],
reader_cfg=MedQA_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
MedQA_datasets.append(
dict(
abbr=f'MedQA_{split}',
type=MedQADataset,
path=MedQA_subsets[split],
reader_cfg=MedQA_reader_cfg,
infer_cfg=MedQA_infer_cfg,
eval_cfg=MedQA_eval_cfg,
)
)

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .medbullets_gen_60c8f5 import medbullets_datasets # noqa: F401, F403

View File

@ -0,0 +1,59 @@
from opencompass.datasets import MedbulletsDataset, MedbulletsEvaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
import os
SYSTEM_PROMPT = 'You are a helpful medical assistant.\n\n' # Where to put this?
ZERO_SHOT_PROMPT = 'Q: {question}\n Please select the correct answer from the options above and output only the corresponding letter (A, B, C, D, or E) without any explanation or additional text.\n'
# Reader configuration
reader_cfg = dict(
input_columns=[
'question',
'options',
'question_type',
'prompt_mode',
],
output_column='label',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(role='SYSTEM', fallback_role='HUMAN', prompt=SYSTEM_PROMPT),
],
round=[
dict(
role='HUMAN',
prompt=ZERO_SHOT_PROMPT, # prompt mode: zero-shot
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(type=MedbulletsEvaluator),
pred_role='BOT',
)
medbullets_dataset = dict(
type=MedbulletsDataset,
abbr='medbullets',
path='opencompass/medbullets',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
medbullets_datasets = [medbullets_dataset]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .medbullets_llmjudge_gen_60c8f5 import medbullets_datasets # noqa: F401, F403

View File

@ -0,0 +1,106 @@
from opencompass.datasets import MedbulletsDataset, medbullets_llmjudge_postprocess
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.evaluator import GenericLLMEvaluator
import os
SYSTEM_PROMPT = 'You are a helpful medical assistant.\n\n' # Where to put this?
ZERO_SHOT_PROMPT = 'Q: {question}\n Please select the correct answer from the options above and output only the corresponding letter (A, B, C, D, or E) without any explanation or additional text.\n'
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: Q: {question}\nPlease select the correct answer from the options above and output only the corresponding letter (A, B, C, D, or E) without any explanation or additional text.\n\n<Original Question End>\n\n
<Gold Target Begin>: \n{label}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
# Reader configuration
reader_cfg = dict(
input_columns=[
'question',
'options',
'question_type',
'prompt_mode',
],
output_column='label',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(role='SYSTEM', fallback_role='HUMAN', prompt=SYSTEM_PROMPT),
],
round=[
dict(
role='HUMAN',
prompt=ZERO_SHOT_PROMPT, # prompt mode: zero-shot
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=MedbulletsDataset,
path='opencompass/medbullets',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=medbullets_llmjudge_postprocess),
),
)
medbullets_dataset = dict(
type=MedbulletsDataset,
abbr='medbullets',
path='opencompass/medbullets',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
medbullets_datasets = [medbullets_dataset]

View File

@ -0,0 +1,109 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets import OlymMATHDataset
from opencompass.evaluator import (
CascadeEvaluator,
GenericLLMEvaluator,
MATHVerifyEvaluator
)
# ----------------------------- Detailed Config -----------------------------
math_reader_cfg = dict(input_columns=['problem'], output_column='answer', train_split='test')
math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{problem}\nRemember to put your final answer within \\boxed{}.'),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
sub_sets = ['en-hard', 'zh-hard', 'en-easy', 'zh-easy']
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: \n{problem}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
# Evaluation configuration
olymmath_datasets = []
for sub_set in sub_sets:
math_eval_cfg = dict(
evaluator=dict(
type=CascadeEvaluator,
rule_evaluator=dict(
type=MATHVerifyEvaluator,
),
llm_evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt = GRADER_TEMPLATE
),
]),
),
dataset_cfg=dict(
type=OlymMATHDataset,
path='RUC-AIBOX/OlymMATH',
reader_cfg=math_reader_cfg,
subset=sub_set,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
parallel=False,
),
)
olymmath_datasets.append(
dict(
type=OlymMATHDataset,
abbr=f'olymmath_{sub_set}',
path='RUC-AIBOX/OlymMATH',
reader_cfg=math_reader_cfg,
infer_cfg=math_infer_cfg,
eval_cfg=math_eval_cfg,
subset=sub_set,
n=1
)
)

View File

@ -0,0 +1,114 @@
from mmengine.config import read_base
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import OlympiadBenchDataset, OlympiadBenchEvaluator, olympiadbench_postprocess_v2
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.evaluator import (
GenericLLMEvaluator,
CascadeEvaluator,
MATHVerifyEvaluator
)
from opencompass.datasets import generic_llmjudge_postprocess
with read_base():
from .OlympiadBench_categories import categories
# Create prompter instance for problems
olympiadbench_prompter_cfg = dict(
type='OlympiadBenchPrompter'
)
olympiadbench_reader_cfg = dict(
input_columns=[
'problem', 'language', 'subject', 'question_type',
'answer_type', 'is_multiple_answer', 'unit', 'questions'
],
output_column='solution'
)
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: \n{problem}\n<Original Question End>\n\n
<Gold Target Begin>: \n{solution}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
olympiadbench_datasets = []
for _name in categories:
olympiadbench_infer_cfg = dict(
prompt_template=dict(
type='OlympiadBenchTemplate'
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
olympiadbench_eval_cfg = dict(
evaluator=dict(
type=CascadeEvaluator,
rule_evaluator=dict(
type=MATHVerifyEvaluator,
),
llm_evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt = GRADER_TEMPLATE
),
]),
),
dataset_cfg=dict(
type=OlympiadBenchDataset,
path='opencompass/OlympiadBench',
name=_name,
reader_cfg=olympiadbench_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
parallel=False
)
)
olympiadbench_datasets.append(
dict(
type=OlympiadBenchDataset,
abbr=f'OlympiadBench_{_name}',
path='opencompass/OlympiadBench',
name=_name,
reader_cfg=olympiadbench_reader_cfg,
infer_cfg=olympiadbench_infer_cfg,
eval_cfg=olympiadbench_eval_cfg,
n=1,
)
)

View File

@ -0,0 +1,46 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets.ProteinLMBench import ProteinLMBenchDataset, ProteinLMBenchEvaluator
QUERY_TEMPLATE = "Answer the following multiple choice question. There is only one correct answer. The last line of your response should be in the format 'Answer: $LETTER' (without quotes), where LETTER is the letter among {start} through {end}.\n{question}"
# Reader configuration
reader_cfg = dict(
input_columns=['question', 'start', 'end', 'options'],
output_column='label',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=QUERY_TEMPLATE
)
], ),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(type=ProteinLMBenchEvaluator),
)
proteinlmbench_dataset = dict(
abbr='ProteinLMBench',
type=ProteinLMBenchDataset,
path='tsynbio/ProteinLMBench',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg
)
proteinlmbench_datasets = [proteinlmbench_dataset]

View File

@ -0,0 +1,89 @@
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets.ProteinLMBench import ProteinLMBenchDataset
QUERY_TEMPLATE = "Answer the following multiple choice question. There is only one correct answer. The last line of your response should be in the format 'Answer: $LETTER' (without quotes), where LETTER is the letter among {start} through {end}.\n{question}"
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: {question}\n<Original Question End>\n\n
<Gold Target Begin>: \n{label}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
reader_cfg = dict(
input_columns=['question', 'start', 'end', 'options'],
output_column='label',
)
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=ProteinLMBenchDataset,
path='tsynbio/ProteinLMBench',
reader_cfg=reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
proteinlmbench_dataset = dict(
abbr='ProteinLMBench',
type=ProteinLMBenchDataset,
path='tsynbio/ProteinLMBench',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg
)
proteinlmbench_datasets = [proteinlmbench_dataset]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .PubMedQA_llmjudge_gen_f00302 import PubMedQA_datasets

View File

@ -0,0 +1,94 @@
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets.PubMedQA import PubMedQADataset
QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of Options(e.g. one of ABCDEFGHIJKLMNOP). Think step by step before answering.
Question:\n
{question}
Options:\n
{choices}
""".strip()
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: {question}\n {choices} \n<Original Question End>\n\n
<Gold Target Begin>: \n{label}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
PubMedQA_datasets = []
PubMedQA_reader_cfg = dict(
input_columns=['question', 'choices'],
output_column='label',
)
PubMedQA_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
PubMedQA_eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=PubMedQADataset,
path='qiaojin/PubMedQA',
reader_cfg=PubMedQA_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
PubMedQA_datasets.append(
dict(
abbr=f'PubMedQA',
type=PubMedQADataset,
path='qiaojin/PubMedQA',
reader_cfg=PubMedQA_reader_cfg,
infer_cfg=PubMedQA_infer_cfg,
eval_cfg=PubMedQA_eval_cfg,
)
)

View File

@ -0,0 +1,65 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccwithDetailsEvaluator
from opencompass.utils.text_postprocessors import first_option_postprocess
from opencompass.datasets import SciEvalDataset
# 只评测 biology + multiple-choice 的 test split
_hint = ('Given a question and four options, please select the right answer. '
"Your answer should be 'A', 'B', 'C' or 'D'.")
category = [
'biology',
]
scieval_reader_cfg = dict(
input_columns=['input', 'A', 'B', 'C', 'D'],
output_column='target',
train_split='test',
)
scieval_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=f'{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: '
),
dict(role='BOT', prompt='{target}\n')
]),
),
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin='</E>',
round=[
dict(
role='HUMAN',
prompt=f'{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: '
),
],
),
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=GenInferencer),
)
scieval_eval_cfg = dict(
evaluator=dict(type=AccwithDetailsEvaluator),
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'),
)
scieval_datasets = [
dict(
abbr='scieval_biology',
type=SciEvalDataset,
path='OpenDFM/SciEval',
name='default',
category=category,
reader_cfg=scieval_reader_cfg,
infer_cfg=scieval_infer_cfg,
eval_cfg=scieval_eval_cfg,
)
]

View File

@ -0,0 +1,130 @@
# SciEval_lifescience_llmjudge_gen.py
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.utils.text_postprocessors import match_answer_pattern
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets import SciEvalDataset
with read_base():
from .SciEval_lifescience_sets import SciEval_lifescience_subsets
category = [
'biology',
]
QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of ABCD.
{input}
A) {A}
B) {B}
C) {C}
D) {D}
""".strip()
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: {input}
A) {A}
B) {B}
C) {C}
D) {D}
<Original Question End>
<Gold Target Begin>:
{target}
<Gold Target End>
<Predicted Answer Begin>:
{prediction}
<Predicted End>
Judging the correctness of candidates' answers:
""".strip()
scieval_reader_cfg = dict(
input_columns=['input', 'A', 'B', 'C', 'D'],
output_column='target',
train_split='test',
)
scieval_datasets = []
for name in SciEval_lifescience_subsets:
scieval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
]
)
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=GenInferencer),
)
scieval_eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt=(
'You are a helpful assistant who evaluates the correctness '
"and quality of models' outputs."
),
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=SciEvalDataset,
path='OpenDFM/SciEval',
name='default',
reader_cfg=scieval_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
pred_role='BOT',
)
scieval_datasets.append(
dict(
abbr=f'scieval_lifescience_{name}_llmjudge',
type=SciEvalDataset,
path='OpenDFM/SciEval',
name='default',
category=category,
reader_cfg=scieval_reader_cfg,
infer_cfg=scieval_infer_cfg,
eval_cfg=scieval_eval_cfg,
mode='singlescore',
)
)

View File

@ -0,0 +1,6 @@
SciEval_lifescience_subsets = [
'biology', # 大学生物学
'physics',
'chemistry'
]

View File

@ -0,0 +1,92 @@
from opencompass.datasets import SciKnowEvalDataset, SciKnowEvalEvaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
ZERO_SHOT_PROMPT = '{q4}'
# Reader configuration
reader_cfg = dict(
input_columns=[
'prompt',
'question',
'choices',
'label',
'answerKey',
'type',
'domain',
'details',
'answer',
'q4'
],
output_column='answerKey',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=ZERO_SHOT_PROMPT, # prompt mode: zero-shot
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(type=SciKnowEvalEvaluator),
pred_role='BOT',
)
sciknoweval_dataset_biology = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_biology',
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
subset='biology',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
sciknoweval_dataset_chemistry = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_chemistry',
path='hicai-zju/SciKnowEval',
subset='chemistry',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
sciknoweval_dataset_material = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_material',
path='hicai-zju/SciKnowEval',
subset='material',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
sciknoweval_dataset_physics = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_physics',
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
subset='physics',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
sciknoweval_datasets = [sciknoweval_dataset_biology, sciknoweval_dataset_chemistry, sciknoweval_dataset_physics, sciknoweval_dataset_material]

View File

@ -0,0 +1,232 @@
from opencompass.datasets import SciKnowEvalDataset
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.evaluator import GenericLLMEvaluator
ZERO_SHOT_PROMPT = '{q4}'
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: Q: {q4}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answerKey}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
# Reader configuration
reader_cfg = dict(
input_columns=[
'prompt',
'question',
'choices',
'label',
'answerKey',
'type',
'domain',
'details',
'answer',
'q4'
],
output_column='answerKey',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=ZERO_SHOT_PROMPT, # prompt mode: zero-shot
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg_biology = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=SciKnowEvalDataset,
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
subset='biology',
reader_cfg=reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
eval_cfg_chemistry = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=SciKnowEvalDataset,
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
subset='chemistry',
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
eval_cfg_material = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=SciKnowEvalDataset,
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
subset='material',
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
eval_cfg_physics = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=SciKnowEvalDataset,
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
subset='physics',
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
sciknoweval_dataset_biology = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_biology_llmjudge',
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
subset='biology',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg_biology,
)
sciknoweval_dataset_chemistry = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_chemistry_llmjudge',
path='hicai-zju/SciKnowEval',
subset='chemistry',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg_chemistry,
)
sciknoweval_dataset_material = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_material_llmjudge',
path='hicai-zju/SciKnowEval',
subset='material',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg_material,
)
sciknoweval_dataset_physics = dict(
type=SciKnowEvalDataset,
abbr='sciknoweval_physics_llmjudge',
path='hicai-zju/SciKnowEval',
prompt_mode='zero-shot',
subset='physics',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg_physics,
)
sciknoweval_datasets = [sciknoweval_dataset_biology, sciknoweval_dataset_chemistry, sciknoweval_dataset_physics, sciknoweval_dataset_material]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .ScienceQA_llmjudge_gen_f00302 import ScienceQA_datasets

View File

@ -0,0 +1,94 @@
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets.ScienceQA import ScienceQADataset
QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of Options(e.g. one of ABCDEFGHIJKLMNOP). Think step by step before answering.
Question:\n
{question}
Options:\n
{choices}
""".strip()
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: {question}\n {choices} \n<Original Question End>\n\n
<Gold Target Begin>: \n{label}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
ScienceQA_datasets = []
ScienceQA_reader_cfg = dict(
input_columns=['question', 'choices'],
output_column='label',
)
ScienceQA_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
ScienceQA_eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=ScienceQADataset,
path='derek-thomas/ScienceQA',
reader_cfg=ScienceQA_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
ScienceQA_datasets.append(
dict(
abbr=f'ScienceQA',
type=ScienceQADataset,
path='derek-thomas/ScienceQA',
reader_cfg=ScienceQA_reader_cfg,
infer_cfg=ScienceQA_infer_cfg,
eval_cfg=ScienceQA_eval_cfg,
)
)

View File

@ -0,0 +1,118 @@
"""
Summary: A config for AIME-2024 Evaluation.
Setting:
Shot: 0-shot
Evaluator:
- CascadeEvaluator
- MATHVerifyEvaluator
- GenericLLMEvaluator
Repeat: 1
Avaliable Models:
- Instruct/Chat Models
"""
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets import Aime2024Dataset
from opencompass.evaluator import (
CascadeEvaluator,
GenericLLMEvaluator,
MATHVerifyEvaluator
)
aime2024_reader_cfg = dict(input_columns=['question'], output_column='answer')
aime2024_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt='{question}\nRemember to put your final answer within \\boxed{}.',
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: \n{question}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
cascade_evaluator = dict(
type=CascadeEvaluator,
rule_evaluator=dict(
type=MATHVerifyEvaluator,
),
llm_evaluator= dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=Aime2024Dataset,
path='opencompass/aime2024',
reader_cfg=aime2024_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
parallel=False,
)
aime2024_eval_cfg = dict(
evaluator=cascade_evaluator,
)
aime2024_datasets = [
dict(
abbr='aime2024',
type=Aime2024Dataset,
path='opencompass/aime2024',
reader_cfg=aime2024_reader_cfg,
infer_cfg=aime2024_infer_cfg,
eval_cfg=aime2024_eval_cfg,
n=1,# Evaluate the dataset with n times
)
]

View File

@ -0,0 +1,115 @@
"""
Summary: A config for AIME-2025 Evaluation.
Setting:
Shot: 0-shot
Evaluator:
- CascadeEvaluator
- MATHVerifyEvaluator
- GenericLLMEvaluator
Repeat: 1
Avaliable Models:
- Instruct/Chat Models
"""
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import CustomDataset
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.evaluator import (
CascadeEvaluator,
GenericLLMEvaluator,
MATHVerifyEvaluator
)
aime2025_reader_cfg = dict(input_columns=['question'], output_column='answer')
aime2025_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt='{question}\nRemember to put your final answer within \\boxed{}.',
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: \n{question}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
cascade_evaluator = dict(
type=CascadeEvaluator,
rule_evaluator=dict(
type=MATHVerifyEvaluator,
),
llm_evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=CustomDataset,
path='opencompass/aime2025',
reader_cfg=aime2025_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
parallel=False,
)
aime2025_eval_cfg = dict(
evaluator=cascade_evaluator,
)
aime2025_datasets = [
dict(
type=CustomDataset,
abbr='aime2025',
path='opencompass/aime2025',
reader_cfg=aime2025_reader_cfg,
infer_cfg=aime2025_infer_cfg,
eval_cfg=aime2025_eval_cfg,
n=1,
)
]

View File

@ -0,0 +1,44 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import (BigCodeBenchDataset, BigCodeBenchEvaluator)
bigcodebench_full_reader_cfg = dict(
input_columns=['instruct_prompt'],
output_column='test',
)
bigcodebench_full_infer_cfg = dict(prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[dict(role='system', fallback_role='HUMAN', prompt='')],
round=[
dict(role='HUMAN', prompt='{instruct_prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
bigcodebench_full_eval_cfg = dict(
evaluator=dict(
type=BigCodeBenchEvaluator,
release_version='v0.1.2',
eval_type='instruct',
# remote_execute_api='https://bigcode-bigcodebench-evaluator.hf.space/',
remote_execute_api=
'https://opencompass-opencompass-bigcodebench-evaluator.hf.space', # noqa: E501
dataset_version='full',
),
pred_role='BOT',
)
bigcodebench_full_instruct_datasets = [
dict(abbr='bigcodebench_full_instruct',
type=BigCodeBenchDataset,
path='opencompass/bigcodebench',
reader_cfg=bigcodebench_full_reader_cfg,
infer_cfg=bigcodebench_full_infer_cfg,
eval_cfg=bigcodebench_full_eval_cfg,
release_version='v0.1.2',
n=5,
k=3)
]

View File

@ -0,0 +1,48 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import (BigCodeBenchDataset, BigCodeBenchEvaluator)
bigcodebench_hard_reader_cfg = dict(
input_columns=['instruct_prompt'],
output_column='test',
)
bigcodebench_hard_infer_cfg = dict(prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[dict(role='system', fallback_role='HUMAN', prompt='')],
round=[
dict(role='HUMAN', prompt='{instruct_prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer)
)
bigcodebench_hard_eval_cfg = dict(
evaluator=dict(
type=BigCodeBenchEvaluator,
release_version='v0.1.2',
eval_type='instruct',
# remote_execute_api='https://bigcode-bigcodebench-evaluator.hf.space/',
remote_execute_api=
'https://opencompass-opencompass-bigcodebench-evaluator.hf.space', # noqa: E501
dataset_version='hard',
),
pred_role='BOT',
)
bigcodebench_hard_instruct_datasets = [
dict(
abbr='bigcodebench_hard_instruct',
type=BigCodeBenchDataset,
path='opencompass/bigcodebench',
reader_cfg=bigcodebench_hard_reader_cfg,
infer_cfg=bigcodebench_hard_infer_cfg,
eval_cfg=bigcodebench_hard_eval_cfg,
release_version='v0.1.2',
dataset_version='hard',
n=5,
k=3
)
]

View File

@ -0,0 +1,118 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import GPQADataset, GPQA_Simple_Eval_postprocess
from opencompass.evaluator import GenericLLMEvaluator, CascadeEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.utils.text_postprocessors import match_answer_pattern
# openai_simple_eval prompt
align_prompt = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of ABCD.
{question}
A) {A}
B) {B}
C) {C}
D) {D}
""".strip()
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: {question}\n A) {A}\n B) {B}\n C) {C}\n D) {D}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
gpqa_reader_cfg = dict(
input_columns=['question', 'A', 'B', 'C', 'D'],
output_column='answer')
gpqa_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=align_prompt),
], )),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
gpqa_datasets = []
gpqa_subsets = {
# 'extended': 'gpqa_extended.csv',
# 'main': 'gpqa_main.csv',
'diamond': 'gpqa_diamond.csv'
}
for split in list(gpqa_subsets.keys()):
gpqa_eval_cfg = dict(
evaluator=dict(
type=CascadeEvaluator,
rule_evaluator=dict(
type=AccEvaluator,
pred_postprocessor=dict(type=match_answer_pattern, answer_pattern=r'(?i)ANSWER\s*:\s*([A-D])'),
),
llm_evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt = GRADER_TEMPLATE
),
]),
),
dataset_cfg=dict(
type=GPQADataset,
path='./data/gpqa/',
name=gpqa_subsets[split],
reader_cfg=gpqa_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
parallel=False,
),
)
gpqa_datasets.append(
dict(
abbr='GPQA_' + split,
type=GPQADataset,
path='./data/gpqa/',
name=gpqa_subsets[split],
reader_cfg=gpqa_reader_cfg,
infer_cfg=gpqa_infer_cfg,
eval_cfg=gpqa_eval_cfg,
mode='singlescore',
)
)

View File

@ -0,0 +1,37 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalEvaluator, humaneval_postprocess_v2
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Read the following function signature and docstring, and fully implement the function described. Your response should only contain the code for this function.\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvalEvaluator),
pred_role='BOT',
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg,
n=5,
k=3)
]

View File

@ -0,0 +1,39 @@
# THIS SHALL ALSO BE DEPRECATED
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvalPlusEvaluator, humaneval_postprocess_v2
humaneval_plus_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_plus_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Complete the following python code:\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humaneval_plus_eval_cfg = dict(
evaluator=dict(type=HumanEvalPlusEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_plus_datasets = [
dict(
abbr='humaneval_plus',
type=HumanevalDataset,
path='opencompass/humaneval',
reader_cfg=humaneval_plus_reader_cfg,
infer_cfg=humaneval_plus_infer_cfg,
eval_cfg=humaneval_plus_eval_cfg,
n=5,
k=3)
]

View File

@ -0,0 +1,17 @@
# HumanEval pro
## OC results
| model | pass@1 |
|:--------------------------:|---------:|
|qwen2.5-coder-7b-instruct-hf| 65 |
| qwen2.5-14b-instruct-hf | 67 |
| deepseek-v2-lite-chat-hf | 35 |
## CodeEval-pro results
| model | pass@1 |
|:--------------------------:|---------:|
|qwen2.5-coder-7b-instruct-hf| 65 |
| qwen2.5-14b-instruct-hf | 65 |
| deepseek-v2-lite-chat-hf | 28 |

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .humaneval_pro_gen_3dc067 import humanevalpro_datasets # noqa: F401, F403

View File

@ -0,0 +1,46 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalevalProDataset, HumanevalProEvaluator, humaneval_postprocess_v2
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
humanevalpro_reader_cfg = dict(
input_columns=['raw_problem', 'new_problem'], output_column='test_code')
humanevalpro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=PROMPT_WRAPPER),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humanevalpro_eval_cfg = dict(
evaluator=dict(type=HumanevalProEvaluator,
ip_address='https://opencompass-multiple-evaluator.hf.space')
)
humanevalpro_datasets = [
dict(
abbr='humaneval_pro',
type=HumanevalevalProDataset,
path='opencompass/humaneval_pro',
reader_cfg=humanevalpro_reader_cfg,
infer_cfg=humanevalpro_infer_cfg,
eval_cfg=humanevalpro_eval_cfg,)
]

View File

@ -0,0 +1,48 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalevalProDataset, HumanevalProEvaluator, humaneval_postprocess_v2
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
humanevalpro_reader_cfg = dict(
input_columns=['raw_problem', 'new_problem'], output_column='test_code')
humanevalpro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=PROMPT_WRAPPER),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humanevalpro_eval_cfg = dict(
evaluator=dict(type=HumanevalProEvaluator,
ip_address='https://opencompass-multiple-evaluator.hf.space')
)
humanevalpro_datasets = [
dict(
abbr='humaneval_pro',
type=HumanevalevalProDataset,
path='opencompass/humaneval_pro',
reader_cfg=humanevalpro_reader_cfg,
infer_cfg=humanevalpro_infer_cfg,
eval_cfg=humanevalpro_eval_cfg,
n=5,
k=3)
]

View File

@ -0,0 +1,43 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalXDataset, HumanevalXEvaluator
humanevalx_reader_cfg = dict(
input_columns=['prompt'], output_column='declaration', train_split='test')
humanevalx_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template='{prompt}'),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
humanevalx_eval_cfg_dict = {
lang : dict(
evaluator=dict(
type=HumanevalXEvaluator,
language=lang,
ip_address=
'localhost', # replace to your code_eval_server ip_address, port
port=5001), # refer to https://opencompass.readthedocs.io/en/latest/advanced_guides/code_eval_service.html to launch a server
pred_role='BOT')
for lang in ['python', 'cpp', 'go', 'java', 'js'] # do not support rust now
}
# Please download the needed `xx.jsonl.gz` from
# https://github.com/THUDM/CodeGeeX2/tree/main/benchmark/humanevalx
# and move them into `data/humanevalx/` folder
humanevalx_datasets = [
dict(
type=HumanevalXDataset,
abbr=f'humanevalx-{lang}',
language=lang,
path='./data/humanevalx',
reader_cfg=humanevalx_reader_cfg,
infer_cfg=humanevalx_infer_cfg,
eval_cfg=humanevalx_eval_cfg_dict[lang],
n=5,
k=3)
for lang in ['python', 'cpp', 'go', 'java', 'js']
]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .internsandbox_gen_44b982 import internsandbox_datasets

View File

@ -0,0 +1,59 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import InternSandboxDataset, InternSandboxEvaluator
_SANDBOXS_ = ['aquarium', 'arc', 'arrowmaze', 'bbehboardgameqa', 'bbehbooleanexpressions', 'BbehDyckLanguages', 'BbehGeometricShapes', 'BbehMultistepArithmetic', 'bbehobjectcounting', 'bbehobjectproperties', 'bbehshuffobject', 'BbehWebOfLies', 'BbehWordSorting', 'binairo', 'calcudoku', 'campsite', 'cipher', 'cryptomath', 'dominosa', 'futoshiki', 'galaxies', 'game24', 'kakurasu', 'korLogicAnalogicalReasoning', 'korLogicCanonicalPropositions', 'korLogicCooperativePrinciple', 'korLogicDefinitions', 'korLogicDerivativeReasoningOfPropositionalLogic', 'korLogicDisjunctiveNormalFormAndConjunctiveNormalForm', 'korLogicDynamicLogic', 'korLogicEnumerativeInductiveReasoning', 'korLogicEpistemicLogic', 'korLogicEquivalenceCalculus', 'korLogicFigureOfTheSyllogism', 'korLogicFormalFallacies', 'korLogicInductionParadox', 'korLogicLogicalMethodsForExploringCauseAndEffectRelationships', 'korLogicPredicateLogicFormalization', 'korLogicPropositionalLogicConcepts', 'korLogicPropositionalLogicFormalization', 'korLogicResolution', 'korLogicSpeechActs', 'korLogicStatisticalReasoning', 'korLogicTemporalPropositions', 'korLogicTruthValueModalPropositions', 'korOperationUnicode20ac', 'korOperationUnicode2295', 'korOperationUnicode25a0', 'korOperationUnicode25a1', 'korOperationUnicode25b3', 'korOperationUnicode25bd', 'korOperationUnicode25cb', 'korOperationUnicode25ce', 'korOperationUnicode25cf', 'korOperationUnicode2605', 'korOperationUnicodeffe0', 'korOperationUnicodeffe1', 'korPuzzle24Points', 'korPuzzleArrowMaze', 'korPuzzleCalcudoko', 'korPuzzleCampsite', 'korPuzzleConnectWords', 'korPuzzleCryptoMath', 'korPuzzleKukurasu', 'korPuzzleLogicPuzzle', 'korPuzzleSkyscrapers', 'korPuzzleWordBrainTeasers', 'korPuzzleWordLadder', 'korPuzzleWordRootsAndAffixes', 'korPuzzleWordscapes', 'korPuzzleWordSearch', 'LightUp', 'maze', 'minesweeper', 'nonograms', 'starbattle', 'stitches', 'sudoku', 'tents', 'thermometers']
internsandbox_reader_cfg = dict(
input_columns=['prompt'],
output_column='ground_truth'
)
internsandbox_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt='You are a helpful assistant.',
)
],
round=[
dict(
role='HUMAN',
prompt='{prompt}'
),
],
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer)
)
internsandbox_eval_cfg = {
sandbox: dict(
evaluator=dict(
type=InternSandboxEvaluator,
short_penalty=False,
format_penalty=False,
),
pred_role='BOT',
) for sandbox in _SANDBOXS_
}
internsandbox_datasets = [
dict(
type=InternSandboxDataset,
abbr=f'internsandbox-{sandbox}',
path='./data/InternSandboxBenchmark_verified_V0.3.1/',
local_mode=True,
sandbox=sandbox,
reader_cfg=internsandbox_reader_cfg,
infer_cfg=internsandbox_infer_cfg,
eval_cfg=internsandbox_eval_cfg[sandbox],
) for sandbox in _SANDBOXS_
]

View File

@ -1,17 +1,28 @@
"""
Summary: A config for KoR-Bench Evaluation.
Setting:
Shot: 0-shot
Evaluator:
- CascadeEvaluator
- korbenchEvaluator
- GenericLLMEvaluator
Repeat: 1
Avaliable Models:
- Instruct/Chat Models
"""
from datasets import parallel
from opencompass.datasets.korbench.korbench import korbenchDataset, korbenchEvaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.evaluator import GenericLLMEvaluator, CascadeEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.utils import xml_tag_postprocessor
categories = ['cipher', 'counterfactual', 'logic', 'operation', 'puzzle']
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
@ -30,7 +41,7 @@ GRADER_TEMPLATE = """
<Original Question Begin>: \n{prompt}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
@ -50,7 +61,7 @@ for category in categories:
round=[
dict(
role='HUMAN',
prompt='{prompt}' # f-string
prompt='{prompt}' # f-string
)
]
)
@ -66,41 +77,46 @@ for category in categories:
infer_cfg = dict(
prompt_template=prompt_template,
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt = GRADER_TEMPLATE
),
]),
type=CascadeEvaluator,
rule_evaluator=dict(
type=korbenchEvaluator,
),
dataset_cfg=dict(
type=korbenchDataset,
path='opencompass/korbench',
prompt_mode='0_shot',
category=category,
reader_cfg=reader_cfg,
llm_evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt=GRADER_TEMPLATE
),
]),
),
dataset_cfg=dict(
type=korbenchDataset,
path='opencompass/korbench',
prompt_mode='0_shot',
category=category,
reader_cfg=reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
pred_postprocessor=dict(type=xml_tag_postprocessor, tag='<conclude>'),
),
pred_role='BOT',
parallel=False,
)
)
# Dataset
@ -113,7 +129,7 @@ for category in categories:
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
mode='singlescore',
n=1,
)
korbench_0shot_single_datasets.append(korbench_dataset)
korbench_0shot_single_datasets.append(korbench_dataset)

View File

@ -0,0 +1,166 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import (
LCBCodeGenerationDataset,
LCBCodeExecutionDataset,
LCBTestOutputPredictionDataset,
LCBCodeGenerationEvaluator,
LCBCodeExecutionEvaluator,
LCBTestOutputEvaluator
)
from opencompass.datasets.livecodebench import TestOutputPromptConstants
lcb_code_generation_reader_cfg = dict(
input_columns=[
'question_content',
'format_prompt',
],
# output_column='evaluation_sample',
output_column='question_id',
)
SYSTEM_MESSAGE_GENERIC = f'You are an expert Python programmer. You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests. You will NOT return anything except for the program.'
prompt_template = '### Question:\n{question_content}\n\n{format_prompt}' + \
'### Answer: (use the provided format with backticks)\n\n'
# Code Generation Tasks
lcb_code_generation_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=prompt_template
)
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer)
)
lcb_code_generation_eval_cfg = dict(
evaluator=dict(
type=LCBCodeGenerationEvaluator,
num_process_evaluate=4,
timeout=6,
),
pred_role='BOT',
)
LCBCodeGeneration_dataset = dict(
type=LCBCodeGenerationDataset,
abbr='lcb_code_generation',
path='opencompass/code_generation_lite',
reader_cfg=lcb_code_generation_reader_cfg,
infer_cfg=lcb_code_generation_infer_cfg,
eval_cfg=lcb_code_generation_eval_cfg,
n=5,
k=3
)
# Code Execution Dataset
lcb_code_execution_reader_cfg = dict(
input_columns=[
'prompt',
],
output_column='evaluation_sample',
)
lcb_code_execution_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt='You are an expert at Python programming, code execution, test case generation, and fuzzing.'
),
],
round=[
dict(
role='HUMAN',
prompt='{prompt}'
)
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer)
)
lcb_code_execution_eval_cfg = dict(
evaluator=dict(
type=LCBCodeExecutionEvaluator,
),
pred_role='BOT',
)
LCBCodeExecution_dataset = dict(
type=LCBCodeExecutionDataset,
abbr='lcb_code_execution',
path='opencompass/execution-v2',
reader_cfg=lcb_code_execution_reader_cfg,
infer_cfg=lcb_code_execution_infer_cfg,
eval_cfg=lcb_code_execution_eval_cfg,
)
# TestOuputput Dataset
lcb_test_output_reader_cfg = dict(
input_columns=[
'prompt',
],
output_column='evaluation_sample',
)
system_prompt = 'You are an expert Python programmer. You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests. You will NOT return anything except for the program.'
lcb_test_output_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
# begin=[
# dict(
# role='SYSTEM',
# prompt=system_prompt
# ),
# ],
round=[
dict(
role='HUMAN',
prompt='{prompt}'
)
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer)
)
lcb_test_output_eval_cfg = dict(
evaluator=dict(
type=LCBTestOutputEvaluator,
),
pred_role='BOT',
)
LCBTestOutput_dataset = dict(
type=LCBTestOutputPredictionDataset,
abbr='lcb_test_output',
path='opencompass/test_generation',
reader_cfg=lcb_test_output_reader_cfg,
infer_cfg=lcb_test_output_infer_cfg,
eval_cfg=lcb_test_output_eval_cfg,
)
LCB_datasets = [
LCBCodeGeneration_dataset,
# LCBCodeExecution_dataset,
# LCBTestOutput_dataset,
]

View File

@ -0,0 +1,120 @@
"""
Summary: A config for LiveMathBench-Hard-202412 Dataset Evaluation.
Setting:
Shot: 0-shot
Evaluator:
- CascadeEvaluator
- MATHVerifyEvaluator
- GenericLLMEvaluator
Repeat: 32
Avaliable Models:
- Instruct/Chat Models
"""
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import CustomDataset
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.evaluator import (
CascadeEvaluator,
GenericLLMEvaluator,
MATHVerifyEvaluator,
)
livemathbench_reader_cfg = dict(input_columns=['question'], output_column='answer')
# Inference configuration
livemathbench_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt='{question}\nRemember to put your final answer within \\boxed{}.',
),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Template for the LLM judge
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: \n{question}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
splits = ['hard_cn', 'hard_en']
# Dataset configuration
livemathbench_datasets = [
dict(
type=CustomDataset,
abbr=f'livemathbench_hard_custom_{split}',
path='data/LiveMathBench',
local_mode=True,
file_name=f'202412/{split}.jsonl',
reader_cfg=livemathbench_reader_cfg,
infer_cfg=livemathbench_infer_cfg,
eval_cfg=dict(
# Evaluation configuration using LLM as judge
evaluator=dict(
type=CascadeEvaluator,
rule_evaluator=dict(
type=MATHVerifyEvaluator,
),
llm_evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=CustomDataset,
path='data/LiveMathBench',
local_mode=True,
file_name=f'202412/{split}.jsonl',
reader_cfg=livemathbench_reader_cfg,
),
judge_cfg={},
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
parallel=False
),
),
n=1, # repeat n times
) for split in splits
]

View File

@ -4,7 +4,6 @@ from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import LiveReasonBenchDataset, livereasonbench_postprocess
from opencompass.utils import xml_tag_postprocessor
GRADER_TEMPLATE = """
@ -97,7 +96,7 @@ livereasonbench_infer_cfg = dict(
],
)),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=16384))
inferencer=dict(type=GenInferencer))
livereasonbench_eval_cfg = dict(
evaluator=dict(
@ -122,23 +121,22 @@ livereasonbench_eval_cfg = dict(
type=LiveReasonBenchDataset,
path='opencompass/LiveReasonBench',
reader_cfg=livereasonbench_reader_cfg,
version='livereasonbench-20250428',
),
judge_cfg=dict(),
dict_postprocessor=dict(type=livereasonbench_postprocess),
pred_postprocessor=dict(type=xml_tag_postprocessor, tag='<conclude>'),
),
pred_role='BOT',
)
livereasonbench_datasets = [
dict(
abbr='LiveReasonBench-20241202',
abbr='LiveReasonBench-20250428',
type=LiveReasonBenchDataset,
path='opencompass/LiveReasonBench',
reader_cfg=livereasonbench_reader_cfg,
infer_cfg=livereasonbench_infer_cfg,
eval_cfg=livereasonbench_eval_cfg,
version='livereasonbench-20241202',
mode='singlescore',
version='livereasonbench-20250428',
n=1
)
]

View File

@ -0,0 +1,117 @@
"""
Summary: A config for AIME-2024 Evaluation.
Setting:
Shot: 0-shot
Evaluator:
- CascadeEvaluator
- MATHVerifyEvaluator
- GenericLLMEvaluator
Avaliable Models:
- Instruct/Chat Models
"""
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets import MATHDataset
from opencompass.evaluator import (
CascadeEvaluator,
GenericLLMEvaluator,
MATHVerifyEvaluator
)
# ----------------------------- Detailed Config -----------------------------
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{problem}\nRemember to put your final answer within \\boxed{}.'),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: \n{problem}\n<Original Question End>\n\n
<Gold Target Begin>: \n{solution}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
cascade_evaluator = dict(
type=CascadeEvaluator,
rule_evaluator=dict(
type=MATHVerifyEvaluator,
),
llm_evaluator= dict(
dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=MATHDataset,
path='opencompass/math',
file_name = 'test_prm800k_500.json',
reader_cfg=math_reader_cfg,
n=4,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
)
),
parallel=False,
)
math_datasets = [
dict(
type=MATHDataset,
abbr=f'math_prm800k_500',
path='opencompass/math',
file_name = 'test_prm800k_500.json',
reader_cfg=math_reader_cfg,
infer_cfg=math_infer_cfg,
eval_cfg=dict(
evaluator=cascade_evaluator,
),
n=1,
)
]

View File

@ -2,7 +2,7 @@ from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import CustomDataset
from opencompass.openicl.icl_evaluator.math_evaluator import MATHEvaluator
from opencompass.evaluator import MATHVerifyEvaluator
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
@ -24,7 +24,7 @@ math_infer_cfg = dict(
math_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator),
evaluator=dict(type=MATHVerifyEvaluator),
)
math_datasets = [

View File

@ -2,7 +2,7 @@ from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MATHDataset
from opencompass.openicl.icl_evaluator import MATHEvaluator
from opencompass.evaluator import MATHVerifyEvaluator
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
@ -24,7 +24,7 @@ math_infer_cfg = dict(
inferencer=dict(type=GenInferencer))
math_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator)
evaluator=dict(type=MATHVerifyEvaluator)
)
math_datasets = [

View File

@ -1,7 +1,7 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import MATHEvaluator
from opencompass.evaluator import MATHVerifyEvaluator
from opencompass.datasets import (
MATHDataset,
math_postprocess_v2,
@ -28,7 +28,7 @@ math_infer_cfg = dict(
# postprocess v2
math_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator)
evaluator=dict(type=MATHVerifyEvaluator)
)
math_datasets = [

View File

@ -0,0 +1,44 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MBPPDataset, MBPPEvaluator
mbpp_reader_cfg = dict(input_columns=['text', 'test_list'], output_column='test_list_2')
mbpp_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='You are an expert Python programmer, and here is your task: Write a function to find the similar elements from the given two tuple lists. Your code should pass these tests:\n\n assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)\nassert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4) \nassert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14) \n'),
dict(role='BOT', prompt="[BEGIN]\n 'def similar_elements(test_tup1, test_tup2):\r\n res = tuple(set(test_tup1) & set(test_tup2))\r\n return (res)' \n[DONE] \n\n "),
dict(role='HUMAN', prompt='You are an expert Python programmer, and here is your task: Write a python function to identify non-prime numbers. Your code should pass these tests:\n\n assert is_not_prime(2) == False \nassert is_not_prime(10) == True \nassert is_not_prime(35) == True \n'),
dict(role='BOT', prompt="[BEGIN]\n 'import math\r\ndef is_not_prime(n):\r\n result = False\r\n for i in range(2,int(math.sqrt(n)) + 1):\r\n if n % i == 0:\r\n result = True\r\n return result' \n[DONE] \n\n "),
dict(role='HUMAN', prompt='You are an expert Python programmer, and here is your task: Write a function to find the largest integers from a given list of numbers using heap queue algorithm. Your code should pass these tests:\n\n assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],3)==[85, 75, 65] \nassert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],2)==[85, 75] \nassert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],5)==[85, 75, 65, 58, 35] \n'),
dict(role='BOT', prompt="[BEGIN]\n 'import heapq as hq\r\ndef heap_queue_largest(nums,n):\r\n largest_nums = hq.nlargest(n, nums)\r\n return largest_nums' \n[DONE] \n\n "),
dict(role='HUMAN', prompt='You are an expert Python programmer, and here is your task: {text} Your code should pass these tests:\n\n {test_list} \n'),
dict(role='BOT', prompt='[BEGIN]\n'),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
mbpp_eval_cfg = dict(evaluator=dict(type=MBPPEvaluator), pred_role='BOT')
mbpp_datasets = [
dict(
type=MBPPDataset,
abbr='mbpp',
path='opencompass/mbpp',
reader_cfg=mbpp_reader_cfg,
infer_cfg=mbpp_infer_cfg,
eval_cfg=mbpp_eval_cfg,
n=5,
k=3
)
]

View File

@ -0,0 +1,17 @@
# MBPP pro
## OC results
| model | pass@1 |
|:--------------------------:|---------:|
|qwen2.5-coder-7b-instruct-hf| 66 |
| qwen2.5-14b-instruct-hf | 64 |
| deepseek-v2-lite-chat-hf | 36 |
## CodeEval-pro results
| model | pass@1 |
|:--------------------------:|---------:|
|qwen2.5-coder-7b-instruct-hf| 65 |
| qwen2.5-14b-instruct-hf | 65 |
| deepseek-v2-lite-chat-hf | 39 |

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .mbpp_pro_gen_3dc067 import mbpppro_datasets # noqa: F401, F403

View File

@ -0,0 +1,46 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MBPPProDataset, MBPPProEvaluator
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
mbpppro_reader_cfg = dict(
input_columns=['raw_problem', 'new_problem'], output_column='test_code')
mbpppro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=PROMPT_WRAPPER),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
mbpppro_eval_cfg = dict(
evaluator=dict(type=MBPPProEvaluator,
ip_address='https://opencompass-multiple-evaluator.hf.space'),
)
mbpppro_datasets = [
dict(
abbr='mbpp_pro',
type=MBPPProDataset,
path='opencompass/mbpp_pro',
reader_cfg=mbpppro_reader_cfg,
infer_cfg=mbpppro_infer_cfg,
eval_cfg=mbpppro_eval_cfg)
]

View File

@ -0,0 +1,48 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MBPPProDataset, MBPPProEvaluator
PROMPT_WRAPPER = """You are an exceptionally intelligent coding assistant that consistently delivers accurate and reliable responses to user instructions.
Write a solution of python file to the following problems, the solution of the second problem requires single or multiple calls to the first solution.
```python
{raw_problem}
{new_problem}
```
Please put the two solutions within the Python code block provided below, and make sure that the block contains no other unrelated content:
```python
```
"""
mbpppro_reader_cfg = dict(
input_columns=['raw_problem', 'new_problem'], output_column='test_code')
mbpppro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=PROMPT_WRAPPER),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
mbpppro_eval_cfg = dict(
evaluator=dict(type=MBPPProEvaluator,
ip_address='https://opencompass-multiple-evaluator.hf.space'),
)
mbpppro_datasets = [
dict(
abbr='mbpp_pro',
type=MBPPProDataset,
path='opencompass/mbpp_pro',
reader_cfg=mbpppro_reader_cfg,
infer_cfg=mbpppro_infer_cfg,
eval_cfg=mbpppro_eval_cfg,
n=5,
k=3)
]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .medmcqa_gen_60c8f5 import medmcqa_datasets # noqa: F401, F403

View File

@ -0,0 +1,58 @@
from opencompass.datasets import MedmcqaDataset, MedmcqaEvaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
SYSTEM_PROMPT = 'You are a helpful medical assistant.\n\n' # Where to put this?
ZERO_SHOT_PROMPT = 'Q: {question}\n Please select the correct answer from the options above and output only the corresponding letter (A, B, C, D, or E) without any explanation or additional text.\n'
# Reader configuration
reader_cfg = dict(
input_columns=[
'question',
'options',
'subject_name',
'choice_type',
'prompt_mode',
'topic_name',
],
output_column='label',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(role='SYSTEM', fallback_role='HUMAN', prompt=SYSTEM_PROMPT),
],
round=[
dict(
role='HUMAN',
prompt=ZERO_SHOT_PROMPT, # prompt mode: zero-shot
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(type=MedmcqaEvaluator),
pred_role='BOT',
)
medmcqa_dataset = dict(
type=MedmcqaDataset,
abbr='medmcqa',
path='openlifescienceai/medmcqa',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
medmcqa_datasets = [medmcqa_dataset]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .medmcqa_llmjudge_gen_60c8f5 import medmcqa_datasets # noqa: F401, F403

View File

@ -0,0 +1,105 @@
from opencompass.datasets import MedmcqaDataset, medmcqa_llmjudge_postprocess
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.evaluator import GenericLLMEvaluator
SYSTEM_PROMPT = 'You are a helpful medical assistant.\n\n' # Where to put this?
ZERO_SHOT_PROMPT = 'Q: {question}\n Please select the correct answer from the options above and output only the corresponding letter (A, B, C, D, or E) without any explanation or additional text.\n'
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: Q: {question}\nPlease select the correct answer from the options above and output only the corresponding letter (A, B, C, D, or E) without any explanation or additional text.\n\n<Original Question End>\n\n
<Gold Target Begin>: \n{label}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
# Reader configuration
reader_cfg = dict(
input_columns=[
'question',
'options',
'subject_name',
'choice_type',
'prompt_mode',
'topic_name',
],
output_column='label',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(role='SYSTEM', fallback_role='HUMAN', prompt=SYSTEM_PROMPT),
],
round=[
dict(
role='HUMAN',
prompt=ZERO_SHOT_PROMPT, # prompt mode: zero-shot
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=MedmcqaDataset,
path='openlifescienceai/medmcqa',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=medmcqa_llmjudge_postprocess),
),
)
medmcqa_dataset = dict(
type=MedmcqaDataset,
abbr='medmcqa',
path='openlifescienceai/medmcqa',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
medmcqa_datasets = [medmcqa_dataset]

View File

@ -0,0 +1,127 @@
"""
Setting: 0-shot No-CoT
Evaluator: GenericLLMEvaluator
"""
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MMLUDataset
from opencompass.utils.text_postprocessors import match_answer_pattern
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.evaluator import (
CascadeEvaluator,
GenericLLMEvaluator,
)
with read_base():
# from .....configs.datasets.mmlu.mmlu_all_sets import mmlu_all_sets
from .mmlu_stem_sets import mmlu_all_sets
# None of the mmlu dataset in huggingface is correctly parsed, so we use our own dataset reader
# Please download the dataset from https://people.eecs.berkeley.edu/~hendrycks/data.tar
QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of ABCD.
{input}
A) {A}
B) {B}
C) {C}
D) {D}
""".strip()
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: {input}\n A) {A}\n B) {B}\n C) {C}\n D) {D}\n<Original Question End>\n\n
<Gold Target Begin>: \n{target}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
mmlu_reader_cfg = dict(
input_columns=['input', 'A', 'B', 'C', 'D'],
output_column='target',
train_split='dev')
mmlu_datasets = []
for name in mmlu_all_sets:
mmlu_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
mmlu_eval_cfg = dict(
evaluator=dict(
type=CascadeEvaluator,
rule_evaluator=dict(
type=AccEvaluator,
pred_postprocessor=dict(type=match_answer_pattern, answer_pattern=r'(?i)ANSWER\s*:\s*([A-D])'),
),
llm_evaluator = dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
],
round=[
dict(
role='HUMAN',
prompt = GRADER_TEMPLATE
),
]),
),
dataset_cfg=dict(
abbr=f'lukaemon_mmlu_{name}',
type=MMLUDataset,
path='opencompass/mmlu',
name=name,
reader_cfg=mmlu_reader_cfg,
),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
judge_cfg=dict(),
),
parallel=False
),
)
mmlu_datasets.append(
dict(
abbr=f'lukaemon_mmlu_{name}',
type=MMLUDataset,
path='opencompass/mmlu',
name=name,
reader_cfg=mmlu_reader_cfg,
infer_cfg=mmlu_infer_cfg,
eval_cfg=mmlu_eval_cfg,
mode='singlescore',
))

View File

@ -0,0 +1,60 @@
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MMLUProDataset
from opencompass.utils.text_postprocessors import match_answer_pattern
categories = [
'health',
]
QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of Options(e.g. one of ABCDEFGHIJKLMNOP). Think step by step before answering.
Question:\n
{question}
Options:\n
{options_str}
""".strip()
mmlu_pro_datasets = []
for category in categories:
mmlu_pro_reader_cfg = dict(
input_columns=['question', 'cot_content', 'options_str'],
output_column='answer',
train_split='validation',
test_split='test',
)
mmlu_pro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN',
prompt=QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
mmlu_pro_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(
type=match_answer_pattern,
answer_pattern=r'(?i)ANSWER\s*:\s*([A-P])')
)
mmlu_pro_datasets.append(
dict(
abbr=f'mmlu_pro_{category.replace(" ", "_")}',
type=MMLUProDataset,
path='opencompass/mmlu_pro',
category=category,
reader_cfg=mmlu_pro_reader_cfg,
infer_cfg=mmlu_pro_infer_cfg,
eval_cfg=mmlu_pro_eval_cfg,
))

View File

@ -0,0 +1,101 @@
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import MMLUProDataset, generic_llmjudge_postprocess
categories = [
'health',
]
QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of Options(e.g. one of ABCDEFGHIJKLMNOP). Think step by step before answering.
Question:\n
{question}
Options:\n
{options_str}
""".strip()
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: {question}\n {options_str} \n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
mmlu_pro_datasets = []
for category in categories:
mmlu_pro_reader_cfg = dict(
input_columns=['question', 'cot_content', 'options_str'],
output_column='answer',
train_split='validation',
test_split='test',
)
mmlu_pro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
mmlu_pro_eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=MMLUProDataset,
path='opencompass/mmlu_pro',
category=category,
reader_cfg=mmlu_pro_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
mmlu_pro_datasets.append(
dict(
abbr=f'mmlu_pro_{category.replace(" ", "_")}',
type=MMLUProDataset,
path='opencompass/mmlu_pro',
category=category,
reader_cfg=mmlu_pro_reader_cfg,
infer_cfg=mmlu_pro_infer_cfg,
eval_cfg=mmlu_pro_eval_cfg,
)
)

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .multiple_top_ten_gen_f44aaf import multiple_datasets # noqa: F401, F403

View File

@ -32,7 +32,6 @@ multiple_datasets = [
type=MultiplEDataset,
abbr=f'humaneval-multiple-{lang}',
language=lang,
num_repeats=1,
path='opencompass/multipl_e',
tag='humaneval',
reader_cfg=multiple_reader_cfg,
@ -46,7 +45,6 @@ multiple_datasets += [
type=MultiplEDataset,
abbr=f'mbpp-multiple-{lang}',
language=lang,
num_repeats=1,
path='opencompass/multipl_e',
tag='mbpp',
reader_cfg=multiple_reader_cfg,

View File

@ -0,0 +1,58 @@
# Select the 10 most popular programming languages from MultiPL-E to compose the test set.
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MultiplEDataset, MultiplEEvaluator
_TOP_TEN_LANGUAGE_ = ['cpp']
multiple_reader_cfg = dict(input_columns=['language', 'prompt'], output_column='tests')
multiple_infer_cfg = dict(
prompt_template=dict(type=PromptTemplate, template='Based on the provided {language} code snippet, complete the subsequent content. The initial part of the completed code must match the provided code snippet exactly:\n{prompt}'),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
multiple_eval_cfg = {
lang: dict(
evaluator=dict(
type=MultiplEEvaluator,
language=lang,
ip_address='https://opencompass-multiple-evaluator.hf.space',
),
pred_role='BOT',
) for lang in _TOP_TEN_LANGUAGE_
}
multiple_datasets = [
dict(
type=MultiplEDataset,
abbr=f'humaneval-multiple-{lang}',
language=lang,
path='opencompass/multipl_e',
tag='humaneval',
reader_cfg=multiple_reader_cfg,
infer_cfg=multiple_infer_cfg,
eval_cfg=multiple_eval_cfg[lang],
n=5,
k=3
) for lang in _TOP_TEN_LANGUAGE_
]
multiple_datasets += [
dict(
type=MultiplEDataset,
abbr=f'mbpp-multiple-{lang}',
language=lang,
path='opencompass/multipl_e',
tag='mbpp',
reader_cfg=multiple_reader_cfg,
infer_cfg=multiple_infer_cfg,
eval_cfg=multiple_eval_cfg[lang],
n=5,
k=3
) for lang in _TOP_TEN_LANGUAGE_
]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .nejmaibench_gen_60c8f5 import nejmaibench_datasets # noqa: F401, F403

View File

@ -0,0 +1,59 @@
from opencompass.datasets import NejmaibenchDataset, NejmaibenchEvaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
import os
SYSTEM_PROMPT = 'You are a helpful medical assistant.\n\n' # Where to put this?
ZERO_SHOT_PROMPT = 'Q: {question}\n Please select the correct answer from the options above and output only the corresponding letter (A, B, C, D, or E) without any explanation or additional text.\n'
# Reader configuration
reader_cfg = dict(
input_columns=[
'question',
'options',
'Subject',
'prompt_mode',
],
output_column='label',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(role='SYSTEM', fallback_role='HUMAN', prompt=SYSTEM_PROMPT),
],
round=[
dict(
role='HUMAN',
prompt=ZERO_SHOT_PROMPT, # prompt mode: zero-shot
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(type=NejmaibenchEvaluator),
pred_role='BOT',
)
nejmaibench_dataset = dict(
type=NejmaibenchDataset,
abbr='nejmaibench',
path='opencompass/nejmaibench',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
nejmaibench_datasets = [nejmaibench_dataset]

View File

@ -0,0 +1,4 @@
from mmengine.config import read_base
with read_base():
from .nejmaibench_llmjudge_gen_60c8f5 import nejmaibench_datasets # noqa: F401, F403

View File

@ -0,0 +1,108 @@
from opencompass.datasets import NejmaibenchDataset
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.evaluator import GenericLLMEvaluator
import os
SYSTEM_PROMPT = 'You are a helpful medical assistant.\n\n' # Where to put this?
ZERO_SHOT_PROMPT = 'Q: {question}\n Please select the correct answer from the options above and output only the corresponding letter (A, B, C, D, or E) without any explanation or additional text.\n'
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: Q: {question}\nPlease select the correct answer from the options above and output only the corresponding letter (A, B, C, D, or E) without any explanation or additional text.\n\n<Original Question End>\n\n
<Gold Target Begin>: \n{label}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
# Reader configuration
reader_cfg = dict(
input_columns=[
'question',
'options',
'Subject',
'prompt_mode',
],
output_column='label',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(role='SYSTEM', fallback_role='HUMAN', prompt=SYSTEM_PROMPT),
],
round=[
dict(
role='HUMAN',
prompt=ZERO_SHOT_PROMPT, # prompt mode: zero-shot
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=NejmaibenchDataset,
path='opencompass/nejmaibench',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
nejmaibench_dataset = dict(
type=NejmaibenchDataset,
abbr='nejmaibench',
path='opencompass/nejmaibench',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
nejmaibench_datasets = [nejmaibench_dataset]

View File

@ -1,30 +1,46 @@
"""
Summary: A config for OmniMath Dataset Evaluation.
Setting:
Shot: 0-shot
Evaluator:
- CascadeEvaluator
- MATHVerifyEvaluator
- GenericLLMEvaluator
Repeat: 1
Avaliable Models:
- Instruct/Chat Models
"""
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import Aime2024Dataset, MATHEvaluator, math_postprocess_v2
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets.omni_math import OmniMathDataset
from opencompass.evaluator import (
CascadeEvaluator,
GenericLLMEvaluator,
MATHVerifyEvaluator,
)
aime2024_reader_cfg = dict(
input_columns=['question'],
omnimath_reader_cfg = dict(
input_columns=['problem'],
output_column='answer'
)
aime2024_infer_cfg = dict(
omnimath_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{question}\nRemember to put your final answer within \\boxed{}.'),
],
dict(role='HUMAN', prompt='please answer the following mathematical question, put your final answer in \\boxed{}.\n\n{problem}'),
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=2048)
inferencer=dict(type=GenInferencer)
)
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
@ -43,16 +59,20 @@ GRADER_TEMPLATE = """
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: \n{question}\n<Original Question End>\n\n
<Original Question Begin>: \n{problem}\n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
aime2024_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
cascade_evaluator = dict(
type=CascadeEvaluator,
rule_evaluator=dict(
type=MATHVerifyEvaluator,
),
llm_evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
@ -69,19 +89,27 @@ aime2024_eval_cfg = dict(
),
]),
),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
dataset_cfg=dict(
type=OmniMathDataset,
reader_cfg=omnimath_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
pred_role='BOT',
parallel=False,
)
aime2024_datasets = [
omnimath_eval_cfg = dict(
evaluator=cascade_evaluator,
)
omnimath_datasets = [
dict(
abbr='aime2024',
type=Aime2024Dataset,
path='opencompass/aime2024',
reader_cfg=aime2024_reader_cfg,
infer_cfg=aime2024_infer_cfg,
eval_cfg=aime2024_eval_cfg,
mode='singlescore',
type=OmniMathDataset,
abbr='OmniMath',
reader_cfg=omnimath_reader_cfg,
infer_cfg=omnimath_infer_cfg,
eval_cfg=omnimath_eval_cfg,
n=1,
)
]

View File

@ -0,0 +1,14 @@
import torch
from opencompass.models import HuggingFaceBaseModel
models = [
dict(
type=HuggingFaceBaseModel,
abbr='baichuan-m1-14b-base-hf',
path='baichuan-inc/Baichuan-M1-14B-Base',
max_out_len=1024,
batch_size=8,
model_kwargs=dict(device_map='auto', trust_remote_code=True, torch_dtype=torch.bfloat16),
run_cfg=dict(num_gpus=1),
)
]

View File

@ -0,0 +1,14 @@
import torch
from opencompass.models import HuggingFacewithChatTemplate
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='baichuan-m1-14b-instruct-hf',
path='baichuan-inc/Baichuan-M1-14B-Instruct',
max_out_len=2048,
batch_size=8,
model_kwargs=dict(device_map='auto', trust_remote_code=True, torch_dtype=torch.bfloat16),
run_cfg=dict(num_gpus=1),
)
]

View File

@ -0,0 +1,16 @@
from opencompass.models import VLLMwithChatTemplate
models = [
dict(
type=VLLMwithChatTemplate,
abbr='gemma-3-12b-it-vllm',
path='google/gemma-3-12b-it',
model_kwargs=dict(tensor_parallel_size=4,
# for long context
rope_scaling={'factor': 8.0, 'rope_type': 'linear'}),
max_out_len=4096,
batch_size=1,
generation_kwargs=dict(temperature=0),
run_cfg=dict(num_gpus=4),
)
]

View File

@ -0,0 +1,16 @@
from opencompass.models import VLLMwithChatTemplate
models = [
dict(
type=VLLMwithChatTemplate,
abbr='gemma-3-27b-it-vllm',
path='google/gemma-3-27b-it',
model_kwargs=dict(tensor_parallel_size=4,
# for long context
rope_scaling={'factor': 8.0, 'rope_type': 'linear'}),
max_out_len=4096,
batch_size=1,
generation_kwargs=dict(temperature=0),
run_cfg=dict(num_gpus=4),
)
]

View File

@ -0,0 +1,17 @@
from opencompass.models import VLLMwithChatTemplate
models = [
dict(
type=VLLMwithChatTemplate,
abbr='gemma-3-4b-it-vllm',
path='google/gemma-3-4b-it',
model_kwargs=dict(tensor_parallel_size=2,
# for long context
rope_scaling={'factor': 8.0, 'rope_type': 'linear'}),
max_seq_len=140000,
max_out_len=4096,
batch_size=1,
generation_kwargs=dict(temperature=0),
run_cfg=dict(num_gpus=2),
)
]

View File

@ -0,0 +1,19 @@
from opencompass.models import TurboMindModelwithChatTemplate
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='internlm3-8b-instruct-turbomind',
path='internlm/internlm3-8b-instruct',
engine_config=dict(session_len=142000, max_batch_size=1, tp=2,
# for long context
rope_scaling_factor=6.0),
gen_config=dict(
top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=8192
),
max_seq_len=142000,
max_out_len=8192,
batch_size=1,
run_cfg=dict(num_gpus=2),
)
]

View File

@ -0,0 +1,20 @@
from opencompass.models import TurboMindModelwithChatTemplate
from opencompass.utils.text_postprocessors import extract_non_reasoning_content
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='OREAL-32B',
path='internlm/OREAL-32B',
engine_config=dict(session_len=32768, max_batch_size=16, tp=4),
gen_config=dict(top_k=1,
temperature=1e-6,
top_p=0.9,
max_new_tokens=32768),
max_seq_len=32768,
max_out_len=32768,
batch_size=16,
run_cfg=dict(num_gpus=4),
pred_postprocessor=dict(type=extract_non_reasoning_content)
)
]

View File

@ -0,0 +1,17 @@
from opencompass.models import HuggingFacewithChatTemplate
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='huatuogpt2-13b-hf',
path='FreedomIntelligence/HuatuoGPT2-13B',
tokenizer_kwargs=dict(padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=True,),
max_out_len=1024,
batch_size=8,
model_kwargs=dict(device_map='auto', trust_remote_code=True),
run_cfg=dict(num_gpus=4),
)
]

View File

@ -0,0 +1,13 @@
from opencompass.models import HuggingFacewithChatTemplate
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='huatuogpt2-7b-hf',
path='FreedomIntelligence/HuatuoGPT2-7B',
max_out_len=1024,
batch_size=8,
model_kwargs=dict(device_map='auto', trust_remote_code=True),
run_cfg=dict(num_gpus=1),
)
]

View File

@ -0,0 +1,15 @@
from opencompass.models import HuggingFacewithChatTemplate
from opencompass.utils.text_postprocessors import extract_non_reasoning_content
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='huatuogpt-o1-7b-hf',
path='FreedomIntelligence/HuatuoGPT-o1-7B',
max_out_len=2048,
batch_size=8,
model_kwargs=dict(device_map='auto', trust_remote_code=True),
run_cfg=dict(num_gpus=1),
pred_postprocessor=dict(type=extract_non_reasoning_content, think_start_token='## Thinking', think_end_token='## Final Response'),
)
]

View File

@ -0,0 +1,15 @@
from opencompass.models import HuggingFacewithChatTemplate
from opencompass.utils.text_postprocessors import extract_non_reasoning_content
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='huatuogpt-o1-8b-hf',
path='FreedomIntelligence/HuatuoGPT-o1-8B',
max_out_len=2048,
batch_size=8,
model_kwargs=dict(device_map='auto', trust_remote_code=True),
run_cfg=dict(num_gpus=1),
pred_postprocessor=dict(type=extract_non_reasoning_content, think_start_token='## Thinking', think_end_token='## Final Response'),
)
]

View File

@ -0,0 +1,15 @@
from opencompass.models import TurboMindModelwithChatTemplate
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='internvl2_5-38b-turbomind',
path='OpenGVLab/InternVL2_5-38B',
engine_config=dict(session_len=8192, max_batch_size=8, tp=4),
gen_config=dict(top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=1024),
max_seq_len=8192,
max_out_len=8192,
batch_size=8,
run_cfg=dict(num_gpus=4),
)
]

View File

@ -0,0 +1,15 @@
from opencompass.models import TurboMindModelwithChatTemplate
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='internvl2_5-8b-turbomind',
path='OpenGVLab/InternVL2_5-8B',
engine_config=dict(session_len=8192, max_batch_size=16, tp=1),
gen_config=dict(top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=8192),
max_seq_len=8192,
max_out_len=8192,
batch_size=16,
run_cfg=dict(num_gpus=1),
)
]

View File

@ -0,0 +1,21 @@
from opencompass.models import VLLMwithChatTemplate
models = [
dict(
type=VLLMwithChatTemplate,
abbr='qwen2.5-14b-instruct-vllm',
path='Qwen/Qwen2.5-14B-Instruct',
model_kwargs=dict(
tensor_parallel_size=4,
rope_scaling={
'factor': 4.0,
'original_max_position_embeddings': 32768,
'rope_type': 'yarn'
},
),
max_out_len=4096,
batch_size=1,
generation_kwargs=dict(temperature=0),
run_cfg=dict(num_gpus=4),
)
]

Some files were not shown because too many files have changed in this diff Show More