[Feature] Use local accuracy from hf implements (#416)

* use local accuracy from hf implements

* add load from hf fallback
This commit is contained in:
Leymore 2023-09-20 16:35:22 +08:00 committed by GitHub
parent 94755f8e2f
commit ae0cd8752f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 565 additions and 3 deletions

View File

@ -2,7 +2,8 @@ exclude: |
(?x)^(
tests/data/|
opencompass/models/internal/|
opencompass/utils/internal/
opencompass/utils/internal/|
opencompass/openicl/icl_evaluator/hf_metrics/
)
repos:
- repo: https://gitee.com/openmmlab/mirrors-flake8

View File

@ -2,7 +2,8 @@ exclude: |
(?x)^(
tests/data/|
opencompass/models/internal/|
opencompass/utils/internal/
opencompass/utils/internal/|
opencompass/openicl/icl_evaluator/hf_metrics/
)
repos:
- repo: https://github.com/PyCQA/flake8

View File

@ -0,0 +1,106 @@
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Accuracy metric."""
import datasets
from sklearn.metrics import accuracy_score
import evaluate
_DESCRIPTION = """
Accuracy is the proportion of correct predictions among the total number of cases processed. It can be computed with:
Accuracy = (TP + TN) / (TP + TN + FP + FN)
Where:
TP: True positive
TN: True negative
FP: False positive
FN: False negative
"""
_KWARGS_DESCRIPTION = """
Args:
predictions (`list` of `int`): Predicted labels.
references (`list` of `int`): Ground truth labels.
normalize (`boolean`): If set to False, returns the number of correctly classified samples. Otherwise, returns the fraction of correctly classified samples. Defaults to True.
sample_weight (`list` of `float`): Sample weights Defaults to None.
Returns:
accuracy (`float` or `int`): Accuracy score. Minimum possible value is 0. Maximum possible value is 1.0, or the number of examples input, if `normalize` is set to `True`.. A higher score means higher accuracy.
Examples:
Example 1-A simple example
>>> accuracy_metric = evaluate.load("accuracy")
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0])
>>> print(results)
{'accuracy': 0.5}
Example 2-The same as Example 1, except with `normalize` set to `False`.
>>> accuracy_metric = evaluate.load("accuracy")
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], normalize=False)
>>> print(results)
{'accuracy': 3.0}
Example 3-The same as Example 1, except with `sample_weight` set.
>>> accuracy_metric = evaluate.load("accuracy")
>>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0], sample_weight=[0.5, 2, 0.7, 0.5, 9, 0.4])
>>> print(results)
{'accuracy': 0.8778625954198473}
"""
_CITATION = """
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Accuracy(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("int32")),
"references": datasets.Sequence(datasets.Value("int32")),
}
if self.config_name == "multilabel"
else {
"predictions": datasets.Value("int32"),
"references": datasets.Value("int32"),
}
),
reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html"],
)
def _compute(self, predictions, references, normalize=True, sample_weight=None):
return {
"accuracy": float(
accuracy_score(references, predictions, normalize=normalize, sample_weight=sample_weight)
)
}

View File

@ -0,0 +1,158 @@
# Copyright 2020 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ROUGE metric from Google Research github repo. """
# The dependencies in https://github.com/google-research/google-research/blob/master/rouge/requirements.txt
import absl # Here to have a nice missing dependency error message early on
import datasets
import nltk # Here to have a nice missing dependency error message early on
import numpy # Here to have a nice missing dependency error message early on
import six # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import evaluate
_CITATION = """\
@inproceedings{lin-2004-rouge,
title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",
author = "Lin, Chin-Yew",
booktitle = "Text Summarization Branches Out",
month = jul,
year = "2004",
address = "Barcelona, Spain",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W04-1013",
pages = "74--81",
}
"""
_DESCRIPTION = """\
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
evaluating automatic summarization and machine translation software in natural language processing.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around Google Research reimplementation of ROUGE:
https://github.com/google-research/google-research/tree/master/rouge
"""
_KWARGS_DESCRIPTION = """
Calculates average rouge scores for a list of hypotheses and references
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
rouge_types: A list of rouge types to calculate.
Valid names:
`"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,
`"rougeL"`: Longest common subsequence based scoring.
`"rougeLsum"`: rougeLsum splits text using `"\n"`.
See details in https://github.com/huggingface/datasets/issues/617
use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
use_aggregator: Return aggregates if this is set to True
Returns:
rouge1: rouge_1 (f1),
rouge2: rouge_2 (f1),
rougeL: rouge_l (f1),
rougeLsum: rouge_lsum (f1)
Examples:
>>> rouge = evaluate.load('rouge')
>>> predictions = ["hello there", "general kenobi"]
>>> references = ["hello there", "general kenobi"]
>>> results = rouge.compute(predictions=predictions, references=references)
>>> print(results)
{'rouge1': 1.0, 'rouge2': 1.0, 'rougeL': 1.0, 'rougeLsum': 1.0}
"""
class Tokenizer:
"""Helper class to wrap a callable into a class with a `tokenize` method as used by rouge-score."""
def __init__(self, tokenizer_func):
self.tokenizer_func = tokenizer_func
def tokenize(self, text):
return self.tokenizer_func(text)
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Rouge(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=[
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Sequence(datasets.Value("string", id="sequence")),
}
),
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}
),
],
codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"],
reference_urls=[
"https://en.wikipedia.org/wiki/ROUGE_(metric)",
"https://github.com/google-research/google-research/tree/master/rouge",
],
)
def _compute(
self, predictions, references, rouge_types=None, use_aggregator=True, use_stemmer=False, tokenizer=None
):
if rouge_types is None:
rouge_types = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
multi_ref = isinstance(references[0], list)
if tokenizer is not None:
tokenizer = Tokenizer(tokenizer)
scorer = rouge_scorer.RougeScorer(rouge_types=rouge_types, use_stemmer=use_stemmer, tokenizer=tokenizer)
if use_aggregator:
aggregator = scoring.BootstrapAggregator()
else:
scores = []
for ref, pred in zip(references, predictions):
if multi_ref:
score = scorer.score_multi(ref, pred)
else:
score = scorer.score(ref, pred)
if use_aggregator:
aggregator.add_scores(score)
else:
scores.append(score)
if use_aggregator:
result = aggregator.aggregate()
for key in result:
result[key] = result[key].mid.fmeasure
else:
result = {}
for key in scores[0]:
result[key] = list(score[key].fmeasure for score in scores)
return result

View File

@ -0,0 +1,178 @@
# Copyright 2020 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" SACREBLEU metric. """
import datasets
import sacrebleu as scb
from packaging import version
import evaluate
_CITATION = """\
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
"""
_DESCRIPTION = """\
SacreBLEU provides hassle-free computation of shareable, comparable, and reproducible BLEU scores.
Inspired by Rico Sennrich's `multi-bleu-detok.perl`, it produces the official WMT scores but works with plain text.
It also knows all the standard test sets and handles downloading, processing, and tokenization for you.
See the [README.md] file at https://github.com/mjpost/sacreBLEU for more information.
"""
_KWARGS_DESCRIPTION = """
Produces BLEU scores along with its sufficient statistics
from a source against one or more references.
Args:
predictions (`list` of `str`): list of translations to score. Each translation should be tokenized into a list of tokens.
references (`list` of `list` of `str`): A list of lists of references. The contents of the first sub-list are the references for the first prediction, the contents of the second sub-list are for the second prediction, etc. Note that there must be the same number of references for each prediction (i.e. all sub-lists must be of the same length).
smooth_method (`str`): The smoothing method to use, defaults to `'exp'`. Possible values are:
- `'none'`: no smoothing
- `'floor'`: increment zero counts
- `'add-k'`: increment num/denom by k for n>1
- `'exp'`: exponential decay
smooth_value (`float`): The smoothing value. Only valid when `smooth_method='floor'` (in which case `smooth_value` defaults to `0.1`) or `smooth_method='add-k'` (in which case `smooth_value` defaults to `1`).
tokenize (`str`): Tokenization method to use for BLEU. If not provided, defaults to `'zh'` for Chinese, `'ja-mecab'` for Japanese and `'13a'` (mteval) otherwise. Possible values are:
- `'none'`: No tokenization.
- `'zh'`: Chinese tokenization.
- `'13a'`: mimics the `mteval-v13a` script from Moses.
- `'intl'`: International tokenization, mimics the `mteval-v14` script from Moses
- `'char'`: Language-agnostic character-level tokenization.
- `'ja-mecab'`: Japanese tokenization. Uses the [MeCab tokenizer](https://pypi.org/project/mecab-python3).
lowercase (`bool`): If `True`, lowercases the input, enabling case-insensitivity. Defaults to `False`.
force (`bool`): If `True`, insists that your tokenized input is actually detokenized. Defaults to `False`.
use_effective_order (`bool`): If `True`, stops including n-gram orders for which precision is 0. This should be `True`, if sentence-level BLEU will be computed. Defaults to `False`.
Returns:
'score': BLEU score,
'counts': Counts,
'totals': Totals,
'precisions': Precisions,
'bp': Brevity penalty,
'sys_len': predictions length,
'ref_len': reference length,
Examples:
Example 1:
>>> predictions = ["hello there general kenobi", "foo bar foobar"]
>>> references = [["hello there general kenobi", "hello there !"], ["foo bar foobar", "foo bar foobar"]]
>>> sacrebleu = evaluate.load("sacrebleu")
>>> results = sacrebleu.compute(predictions=predictions, references=references)
>>> print(list(results.keys()))
['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len']
>>> print(round(results["score"], 1))
100.0
Example 2:
>>> predictions = ["hello there general kenobi",
... "on our way to ankh morpork"]
>>> references = [["hello there general kenobi", "hello there !"],
... ["goodbye ankh morpork", "ankh morpork"]]
>>> sacrebleu = evaluate.load("sacrebleu")
>>> results = sacrebleu.compute(predictions=predictions,
... references=references)
>>> print(list(results.keys()))
['score', 'counts', 'totals', 'precisions', 'bp', 'sys_len', 'ref_len']
>>> print(round(results["score"], 1))
39.8
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Sacrebleu(evaluate.Metric):
def _info(self):
if version.parse(scb.__version__) < version.parse("1.4.12"):
raise ImportWarning(
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
'You can install it with `pip install "sacrebleu>=1.4.12"`.'
)
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage="https://github.com/mjpost/sacreBLEU",
inputs_description=_KWARGS_DESCRIPTION,
features=[
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"),
}
),
datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}
),
],
codebase_urls=["https://github.com/mjpost/sacreBLEU"],
reference_urls=[
"https://github.com/mjpost/sacreBLEU",
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
],
)
def _compute(
self,
predictions,
references,
smooth_method="exp",
smooth_value=None,
force=False,
lowercase=False,
tokenize=None,
use_effective_order=False,
):
# if only one reference is provided make sure we still use list of lists
if isinstance(references[0], str):
references = [[ref] for ref in references]
references_per_prediction = len(references[0])
if any(len(refs) != references_per_prediction for refs in references):
raise ValueError("Sacrebleu requires the same number of references for each prediction")
transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)]
output = scb.corpus_bleu(
predictions,
transformed_references,
smooth_method=smooth_method,
smooth_value=smooth_value,
force=force,
lowercase=lowercase,
use_effective_order=use_effective_order,
**(dict(tokenize=tokenize) if tokenize else {}),
)
output_dict = {
"score": output.score,
"counts": output.counts,
"totals": output.totals,
"precisions": output.precisions,
"bp": output.bp,
"sys_len": output.sys_len,
"ref_len": output.ref_len,
}
return output_dict

View File

@ -0,0 +1,111 @@
# Copyright 2020 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" SQuAD metric. """
import datasets
import evaluate
from .compute_score import compute_score
_CITATION = """\
@inproceedings{Rajpurkar2016SQuAD10,
title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},
author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},
booktitle={EMNLP},
year={2016}
}
"""
_DESCRIPTION = """
This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by
crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,
from the corresponding reading passage, or the question might be unanswerable.
"""
_KWARGS_DESCRIPTION = """
Computes SQuAD scores (F1 and EM).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair as given in the references (see below)
- 'prediction_text': the text of the answer
references: List of question-answers dictionaries with the following key-values:
- 'id': id of the question-answer pair (see above),
- 'answers': a Dict in the SQuAD dataset format
{
'text': list of possible texts for the answer, as a list of strings
'answer_start': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
'exact_match': Exact match (the normalized answer exactly match the gold answer)
'f1': The F-score of predicted tokens versus the gold answer
Examples:
>>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]
>>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]
>>> squad_metric = evaluate.load("squad")
>>> results = squad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 100.0, 'f1': 100.0}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Squad(evaluate.Metric):
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"predictions": {"id": datasets.Value("string"), "prediction_text": datasets.Value("string")},
"references": {
"id": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
"answer_start": datasets.Value("int32"),
}
),
},
}
),
codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"],
reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"],
)
def _compute(self, predictions, references):
pred_dict = {prediction["id"]: prediction["prediction_text"] for prediction in predictions}
dataset = [
{
"paragraphs": [
{
"qas": [
{
"answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]],
"id": ref["id"],
}
for ref in references
]
}
]
}
]
score = compute_score(dataset=dataset, predictions=pred_dict)
return score

View File

@ -1,3 +1,4 @@
import os
import random
from typing import List
@ -72,7 +73,13 @@ class HuggingfaceEvaluator(BaseEvaluator):
f'length. len(predictions): {len(predictions)}, '
f'len(references): {len(references)}'
}
metric = evaluate.load(self.metric)
# use codes pre-downloaded to opencompass repo, avoid downloading
local_path = os.path.join(os.dirname(os.path.abspath(__file__)),
'hf_metrics', self.metric + '.py')
if os.path.exists(local_path):
metric = evaluate.load(local_path)
else:
metric = evaluate.load(self.metric)
scores = metric.compute(**self._preprocess(predictions, references))
result = self._postprocess(scores)
random.setstate(random_state)