[Feat] local api speed up with fixed concurrent users (#497)

* [Feat] local api speed up

* fix lint

* fix lint

* minor fix

* add example api
This commit is contained in:
Hubert 2023-10-25 21:12:20 +08:00 committed by GitHub
parent 44c8d6cc60
commit ac3a2c4501
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 402 additions and 0 deletions

View File

@ -7,3 +7,4 @@ from .huggingface import HuggingFaceCausalLM # noqa: F401, F403
from .intern_model import InternLM # noqa: F401, F403
from .llama2 import Llama2, Llama2Chat # noqa: F401, F403
from .openai_api import OpenAI # noqa: F401
from .zhipuai import ZhiPuAI # noqa: F401

View File

@ -0,0 +1,159 @@
import sys
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union
from opencompass.registry import MODELS
from opencompass.utils.prompt import PromptList
from .base_api import BaseAPIModel
PromptType = Union[PromptList, str]
@MODELS.register_module()
class ZhiPuAI(BaseAPIModel):
"""Model wrapper around ZhiPuAI.
Args:
path (str): The name of OpenAI's model.
key (str): Authorization key.
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 1.
max_seq_len (int): Unused here.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
retry (int): Number of retires if the API call fails. Defaults to 2.
"""
def __init__(
self,
path: str,
key: str,
query_per_second: int = 2,
max_seq_len: int = 2048,
meta_template: Optional[Dict] = None,
retry: int = 2,
):
super().__init__(path=path,
max_seq_len=max_seq_len,
query_per_second=query_per_second,
meta_template=meta_template,
retry=retry)
import zhipuai
self.zhipuai = zhipuai
self.zhipuai.api_key = key
self.model = path
def generate(
self,
inputs: List[str or PromptList],
max_out_len: int = 512,
) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str or PromptList]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[max_out_len] * len(inputs)))
self.flush()
return results
def flush(self):
"""Flush stdout and stderr when concurrent resources exists.
When use multiproessing with standard io rediected to files, need to
flush internal information for examination or log loss when system
breaks.
"""
if hasattr(self, 'tokens'):
sys.stdout.flush()
sys.stderr.flush()
def acquire(self):
"""Acquire concurrent resources if exists.
This behavior will fall back to wait with query_per_second if there are
no concurrent resources.
"""
if hasattr(self, 'tokens'):
self.tokens.acquire()
else:
self.wait()
def release(self):
"""Release concurrent resources if acquired.
This behavior will fall back to do nothing if there are no concurrent
resources.
"""
if hasattr(self, 'tokens'):
self.tokens.release()
def _generate(
self,
input: str or PromptList,
max_out_len: int = 512,
) -> str:
"""Generate results given an input.
Args:
inputs (str or PromptList): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
if isinstance(input, str):
messages = [{'role': 'user', 'content': input}]
else:
messages = []
for item in input:
msg = {'content': item['prompt']}
if item['role'] == 'HUMAN':
msg['role'] = 'user'
elif item['role'] == 'BOT':
msg['role'] = 'assistant'
messages.append(msg)
data = {'model': self.model, 'prompt': messages}
max_num_retries = 0
while max_num_retries < self.retry:
self.acquire()
response = self.zhipuai.model_api.invoke(**data)
self.release()
if response is None:
print('Connection error, reconnect.')
# if connect error, frequent requests will casuse
# continuous unstable network, therefore wait here
# to slow down the request
self.wait()
continue
if response['code'] == 200 and response['success']:
msg = response['data']['choices'][0]['content']
return msg
# sensitive content, prompt overlength, network error
# or illegal prompt
if (response['code'] == 1301 or response['code'] == 1261
or response['code'] == 1234 or response['code'] == 1214):
print(response['msg'])
return ''
print(response)
max_num_retries += 1
raise RuntimeError(response['msg'])

View File

@ -0,0 +1,242 @@
import logging
import os
import os.path as osp
import subprocess
import sys
import time
from multiprocessing import Manager, Pool
from multiprocessing.managers import SyncManager
from typing import Any, Dict, List, Tuple
import mmengine
from mmengine.config import ConfigDict
from tqdm import tqdm
from opencompass.registry import RUNNERS, TASKS
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.base import BaseTask
from opencompass.utils import (build_dataset_from_cfg, build_model_from_cfg,
get_infer_output_path, get_logger,
task_abbr_from_cfg)
from .base import BaseRunner
def monkey_run(self, tokens: SyncManager.Semaphore):
"""Hack for infer task run, add tokens for multiprocess."""
self.logger.info(f'Task {task_abbr_from_cfg(self.cfg)}')
for model_cfg, dataset_cfgs in zip(self.model_cfgs, self.dataset_cfgs):
self.max_out_len = model_cfg.get('max_out_len', None)
self.batch_size = model_cfg.get('batch_size', None)
self.model = build_model_from_cfg(model_cfg)
# add global tokens for concurrents
assert self.model.is_api, 'Only API model is supported.'
self.model.tokens = tokens
for dataset_cfg in dataset_cfgs:
self.model_cfg = model_cfg
self.dataset_cfg = dataset_cfg
self.infer_cfg = self.dataset_cfg['infer_cfg']
self.dataset = build_dataset_from_cfg(self.dataset_cfg)
self.sub_cfg = {
'models': [self.model_cfg],
'datasets': [[self.dataset_cfg]],
}
out_path = get_infer_output_path(
self.model_cfg, self.dataset_cfg,
osp.join(self.work_dir, 'predictions'))
if osp.exists(out_path):
continue
self._inference()
old_stdout = sys.stdout
old_stderr = sys.stderr
def redirect_std_to_file(filename: str):
"""Redirect stdout and stderr, also change logger stream handler."""
f = open(filename, 'w', encoding='utf-8')
sys.stdout = f
sys.stderr = f
# change logger stream handler as well
logger = get_logger()
for h in logger.handlers:
if isinstance(h, logging.StreamHandler):
h.stream = sys.stdout
# special treat for icl_gen_inferencer logger
gen_logger = logging.getLogger(
'opencompass.openicl.icl_inferencer.icl_gen_inferencer')
for h in gen_logger.handlers:
if isinstance(h, logging.StreamHandler):
h.stream = sys.stdout
def reset_std():
"""Reset stdout and stderr, also change logger stream handler."""
sys.stdout.close()
sys.stdout = old_stdout
sys.stderr = old_stderr
# change logger stream handler as well
logger = get_logger()
for h in logger.handlers:
if isinstance(h, logging.StreamHandler):
h.stream = sys.stdout
# special treat for icl_gen_inferencer logger
gen_logger = logging.getLogger(
'opencompass.openicl.icl_inferencer.icl_gen_inferencer')
for h in gen_logger.handlers:
if isinstance(h, logging.StreamHandler):
h.stream = sys.stdout
def launch(task: BaseTask, tokens: SyncManager.Semaphore):
"""Launch a single task.
Args:
task (BaseTask): Task to launch.
tokens (SyncManager.Semaphore): Multiprocessing semaphore
for every subprocess to follow.
Returns:
tuple[str, int]: Task name and exit code.
"""
task_name = task.name
returncode = 0
logger = get_logger()
try:
# get log file and redirect stdout and stderr
out_path = task.get_log_path(file_extension='out')
mmengine.mkdir_or_exist(osp.split(out_path)[0])
redirect_std_to_file(out_path)
# start infer with monkey_run
start_time = time.time()
inferencer = OpenICLInferTask(task.cfg)
origin_run = inferencer.run
inferencer.run = monkey_run
inferencer.run(inferencer, tokens)
inferencer.run = origin_run
end_time = time.time()
logger.info(f'time elapsed: {end_time - start_time:.2f}s')
except Exception:
logger.warning(f'task {task_name} fail, see\n{out_path}')
returncode = 1
finally:
# reset stdout and stderr
reset_std()
return task_name, returncode
def submit(task, type, tokens):
"""Helper for launch the task."""
task = TASKS.build(dict(cfg=task, type=type))
tqdm.write(f'Launch {task.name} on CPU ')
res = launch(task, tokens)
return res
@RUNNERS.register_module()
class LocalAPIRunner(BaseRunner):
"""Local API Runner. Start tasks by local python.
The query per second cannot guarantee the number of concurrents, therefore
Supported concurrent users with multiple tasks. Applied for those apis
which has a restriction on concurrent numbers.
Args:
task (ConfigDict): Task type config.
concurrent_users (int): Max number of concurrent workers to request
the resources.
max_num_workers (int): Max number of workers to run in parallel.
Defaults to 16.
debug (bool): Whether to run in debug mode.
lark_bot_url (str): Lark bot url.
"""
def __init__(self,
task: ConfigDict,
concurrent_users: int,
max_num_workers: int = 16,
debug: bool = False,
lark_bot_url: str = None):
super().__init__(task=task, debug=debug, lark_bot_url=lark_bot_url)
self.max_num_workers = max_num_workers
self.concurrent_users = concurrent_users
assert task['type'] in [
'OpenICLInferTask', 'opencompass.tasks.OpenICLInferTask'
], 'Only supported for api infer task.'
def launch(self, tasks: List[Dict[str, Any]]) -> List[Tuple[str, int]]:
"""Launch multiple tasks.
Args:
tasks (list[dict]): A list of task configs, usually generated by
Partitioner.
Returns:
list[tuple[str, int]]: A list of (task name, exit code).
"""
status = []
if self.debug:
# fall back to LocalRunner debug mode
for task in tasks:
task = TASKS.build(dict(cfg=task, type=self.task_cfg['type']))
task_name = task.name
# get cmd
mmengine.mkdir_or_exist('tmp/')
param_file = f'tmp/{os.getpid()}_params.py'
try:
task.cfg.dump(param_file)
cmd = task.get_command(cfg_path=param_file,
template='{task_cmd}')
# run in subprocess if starts with torchrun etc.
if cmd.startswith('python'):
task.run()
else:
subprocess.run(cmd, shell=True, text=True)
finally:
os.remove(param_file)
status.append((task_name, 0))
else:
pbar = tqdm(total=len(tasks))
get_logger().info('All the logs and processes for each task'
' should be checked in each infer/.out file.')
with Manager() as manager:
tokens = manager.Semaphore(self.concurrent_users)
# pbar update has visualization issue when direct
# update pbar in callback, need an extra counter
pbar_counter = manager.Value('i', 0)
status = []
def update(args):
"""Update pbar counter when callback."""
pbar_counter.value += 1
status.append(args)
with Pool(processes=self.max_num_workers) as pool:
for task in tasks:
pool.apply_async(submit,
(task, self.task_cfg['type'], tokens),
callback=update)
pool.close()
# update progress bar
while True:
cur_count = pbar_counter.value
if cur_count > pbar.n:
pbar.update(cur_count - pbar.n)
# break when all the task finished
if cur_count >= pbar.total:
pbar.close()
break
# sleep to lower the usage
time.sleep(1)
pool.join()
return status