mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
add needlebench
This commit is contained in:
parent
45c606bcd0
commit
a7cb025e05
@ -1,111 +0,0 @@
|
|||||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
||||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
||||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
||||||
from opencompass.datasets.cdme.cdme import CDMEDataset
|
|
||||||
from opencompass.datasets.cdme.cdme import CDMEEvaluator
|
|
||||||
from opencompass.datasets.cdme.cdme import cdme_postprocess
|
|
||||||
from opencompass.datasets.cdme.cdme import cdme_dataset_postprocess
|
|
||||||
import math
|
|
||||||
|
|
||||||
|
|
||||||
def logistic(x, L=100, x0=50, k=0.1):
|
|
||||||
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
|
||||||
|
|
||||||
|
|
||||||
def generate_linear_space(start, end, num):
|
|
||||||
if num == 1:
|
|
||||||
return [start]
|
|
||||||
elif num < 1:
|
|
||||||
raise ValueError("num must be at least 1.")
|
|
||||||
step = (end - start) / (num - 1)
|
|
||||||
return [start + step * i for i in range(num)]
|
|
||||||
|
|
||||||
|
|
||||||
def generate_depth_percents(intervals, interval_type):
|
|
||||||
if interval_type == 'linear':
|
|
||||||
return generate_linear_space(0, 100, intervals)
|
|
||||||
elif interval_type == 'sigmoid':
|
|
||||||
linear_space = generate_linear_space(0, 100, intervals)
|
|
||||||
return [logistic(x) for x in linear_space]
|
|
||||||
else:
|
|
||||||
raise ValueError('Unsupported interval type')
|
|
||||||
|
|
||||||
|
|
||||||
cdme_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
|
||||||
|
|
||||||
cdme_infer_cfg = dict(
|
|
||||||
prompt_template=dict(
|
|
||||||
type=PromptTemplate,
|
|
||||||
template='''{prompt}'''),
|
|
||||||
retriever=dict(type=ZeroRetriever),
|
|
||||||
inferencer=dict(type=GenInferencer, max_out_len=512))
|
|
||||||
|
|
||||||
cdme_eval_cfg = dict(
|
|
||||||
evaluator=dict(type=CDMEEvaluator),
|
|
||||||
pred_postprocessor=dict(type=cdme_postprocess),
|
|
||||||
dataset_postprocessor=dict(type=cdme_dataset_postprocess),
|
|
||||||
pred_role='BOT')
|
|
||||||
|
|
||||||
cdme_trim_eval_cfg = dict(
|
|
||||||
evaluator=dict(type=CDMEEvaluator, use_trim=True),
|
|
||||||
pred_postprocessor=dict(type=cdme_postprocess),
|
|
||||||
dataset_postprocessor=dict(type=cdme_dataset_postprocess),
|
|
||||||
pred_role='BOT')
|
|
||||||
|
|
||||||
#context_lengths = list(range(1000, 201000, 1000))
|
|
||||||
context_lengths = [16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000]
|
|
||||||
document_depth_percent_intervals = 20
|
|
||||||
document_depth_percent_interval_type = "linear"
|
|
||||||
|
|
||||||
base_path = './data/CDME'
|
|
||||||
file_list = ['zh_finance.jsonl']
|
|
||||||
cdme_datasets = []
|
|
||||||
cdme_trim_datasets = []
|
|
||||||
|
|
||||||
for original_context_length in context_lengths:
|
|
||||||
for depth_percent in generate_depth_percents(
|
|
||||||
document_depth_percent_intervals,
|
|
||||||
document_depth_percent_interval_type):
|
|
||||||
dataset_dict = {
|
|
||||||
'abbr': f'CDME_Length{original_context_length}'
|
|
||||||
f'Depth{int(depth_percent)}',
|
|
||||||
'type': CDMEDataset,
|
|
||||||
'path': base_path,
|
|
||||||
'length': original_context_length,
|
|
||||||
'depth': int(depth_percent),
|
|
||||||
'tokenizer_model': 'gpt-4',
|
|
||||||
'file_list': file_list,
|
|
||||||
'num_repeats_per_file': 10,
|
|
||||||
'length_buffer': 200,
|
|
||||||
'guide': True,
|
|
||||||
'language': 'Chinese',
|
|
||||||
'needle': '\n小明最喜欢的实习的地点就是上海人工智能实验室。\n',
|
|
||||||
'retrieval_question': '小明最喜欢的实习地点是哪里?请按照'
|
|
||||||
'“小明最喜欢的实习地点就是________。”的格式回答。\n',
|
|
||||||
'reader_cfg': cdme_reader_cfg,
|
|
||||||
'infer_cfg': cdme_infer_cfg,
|
|
||||||
'eval_cfg': cdme_eval_cfg
|
|
||||||
}
|
|
||||||
cdme_datasets.append(dataset_dict)
|
|
||||||
|
|
||||||
trim_dataset_dict = {
|
|
||||||
'abbr': f'CDME_Length{original_context_length}'
|
|
||||||
f'Depth{int(depth_percent)}',
|
|
||||||
'type': CDMEDataset,
|
|
||||||
'path': base_path,
|
|
||||||
'length': original_context_length,
|
|
||||||
'depth': int(depth_percent),
|
|
||||||
'tokenizer_model': 'gpt-4',
|
|
||||||
'file_list': file_list,
|
|
||||||
'num_repeats_per_file': 10,
|
|
||||||
'length_buffer': 200,
|
|
||||||
'guide': True,
|
|
||||||
'language': 'Chinese',
|
|
||||||
'needle': '\n小明最喜欢的实习的地点就是上海人工智能实验室。\n',
|
|
||||||
'retrieval_question': '小明最喜欢的实习地点是哪里?请按照'
|
|
||||||
'“小明最喜欢的实习地点就是________。”的格式回答。\n',
|
|
||||||
'reader_cfg': cdme_reader_cfg,
|
|
||||||
'infer_cfg': cdme_infer_cfg,
|
|
||||||
'eval_cfg': cdme_trim_eval_cfg
|
|
||||||
}
|
|
||||||
cdme_trim_datasets.append(trim_dataset_dict)
|
|
@ -1,81 +0,0 @@
|
|||||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
||||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
||||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
||||||
from opencompass.datasets.cdme.cdme import CDMEDataset
|
|
||||||
from opencompass.datasets.cdme.cdme import CDMEEvaluator
|
|
||||||
from opencompass.datasets.cdme.cdme import cdme_postprocess
|
|
||||||
from opencompass.datasets.cdme.cdme import cdme_dataset_postprocess
|
|
||||||
import math
|
|
||||||
|
|
||||||
|
|
||||||
def logistic(x, L=100, x0=50, k=0.1):
|
|
||||||
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
|
||||||
|
|
||||||
|
|
||||||
def generate_linear_space(start, end, num):
|
|
||||||
if num == 1:
|
|
||||||
return [start]
|
|
||||||
elif num < 1:
|
|
||||||
raise ValueError("num must be at least 1.")
|
|
||||||
step = (end - start) / (num - 1)
|
|
||||||
return [start + step * i for i in range(num)]
|
|
||||||
|
|
||||||
|
|
||||||
def generate_depth_percents(intervals, interval_type):
|
|
||||||
if interval_type == 'linear':
|
|
||||||
return generate_linear_space(0, 100, intervals)
|
|
||||||
elif interval_type == 'sigmoid':
|
|
||||||
linear_space = generate_linear_space(0, 100, intervals)
|
|
||||||
return [logistic(x) for x in linear_space]
|
|
||||||
else:
|
|
||||||
raise ValueError('Unsupported interval type')
|
|
||||||
|
|
||||||
|
|
||||||
cdme_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
|
||||||
|
|
||||||
cdme_infer_cfg = dict(
|
|
||||||
prompt_template=dict(
|
|
||||||
type=PromptTemplate,
|
|
||||||
template='''{prompt}'''),
|
|
||||||
retriever=dict(type=ZeroRetriever),
|
|
||||||
inferencer=dict(type=GenInferencer, max_out_len=512))
|
|
||||||
|
|
||||||
cdme_eval_cfg = dict(
|
|
||||||
evaluator=dict(type=CDMEEvaluator),
|
|
||||||
pred_postprocessor=dict(type=cdme_postprocess),
|
|
||||||
dataset_postprocessor=dict(type=cdme_dataset_postprocess),
|
|
||||||
pred_role='BOT')
|
|
||||||
|
|
||||||
context_lengths = list(range(1000, 33000, 1000))
|
|
||||||
document_depth_percent_intervals = 20
|
|
||||||
document_depth_percent_interval_type = "linear"
|
|
||||||
|
|
||||||
base_path = './data/CDME'
|
|
||||||
file_list = ['zh_finance.jsonl']
|
|
||||||
cdme_datasets = []
|
|
||||||
|
|
||||||
for original_context_length in context_lengths:
|
|
||||||
for depth_percent in generate_depth_percents(
|
|
||||||
document_depth_percent_intervals,
|
|
||||||
document_depth_percent_interval_type):
|
|
||||||
dataset_dict = {
|
|
||||||
'abbr': f'CDME_Length{original_context_length}'
|
|
||||||
f'Depth{int(depth_percent)}',
|
|
||||||
'type': CDMEDataset,
|
|
||||||
'path': base_path,
|
|
||||||
'length': original_context_length,
|
|
||||||
'depth': int(depth_percent),
|
|
||||||
'tokenizer_model': 'gpt-4',
|
|
||||||
'file_list': file_list,
|
|
||||||
'num_repeats_per_file': 10,
|
|
||||||
'length_buffer': 200,
|
|
||||||
'guide': True,
|
|
||||||
'language': 'Chinese',
|
|
||||||
'needle': '\n小明最喜欢的实习的地点就是上海人工智能实验室。\n',
|
|
||||||
'retrieval_question': '小明最喜欢的实习地点是哪里?请按照'
|
|
||||||
'“小明最喜欢的实习地点就是________。”的格式回答。',
|
|
||||||
'reader_cfg': cdme_reader_cfg,
|
|
||||||
'infer_cfg': cdme_infer_cfg,
|
|
||||||
'eval_cfg': cdme_eval_cfg
|
|
||||||
}
|
|
||||||
cdme_datasets.append(dataset_dict)
|
|
@ -1,81 +0,0 @@
|
|||||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
||||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
||||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
||||||
from opencompass.datasets.cdme.cdme import CDMEDataset
|
|
||||||
from opencompass.datasets.cdme.cdme import CDMEEvaluator
|
|
||||||
from opencompass.datasets.cdme.cdme import cdme_postprocess
|
|
||||||
from opencompass.datasets.cdme.cdme import cdme_dataset_postprocess
|
|
||||||
import math
|
|
||||||
|
|
||||||
|
|
||||||
def logistic(x, L=100, x0=50, k=0.1):
|
|
||||||
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
|
||||||
|
|
||||||
|
|
||||||
def generate_linear_space(start, end, num):
|
|
||||||
if num == 1:
|
|
||||||
return [start]
|
|
||||||
elif num < 1:
|
|
||||||
raise ValueError("num must be at least 1.")
|
|
||||||
step = (end - start) / (num - 1)
|
|
||||||
return [start + step * i for i in range(num)]
|
|
||||||
|
|
||||||
|
|
||||||
def generate_depth_percents(intervals, interval_type):
|
|
||||||
if interval_type == 'linear':
|
|
||||||
return generate_linear_space(0, 100, intervals)
|
|
||||||
elif interval_type == 'sigmoid':
|
|
||||||
linear_space = generate_linear_space(0, 100, intervals)
|
|
||||||
return [logistic(x) for x in linear_space]
|
|
||||||
else:
|
|
||||||
raise ValueError('Unsupported interval type')
|
|
||||||
|
|
||||||
|
|
||||||
cdme_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
|
||||||
|
|
||||||
cdme_infer_cfg = dict(
|
|
||||||
prompt_template=dict(
|
|
||||||
type=PromptTemplate,
|
|
||||||
template='''{prompt}'''),
|
|
||||||
retriever=dict(type=ZeroRetriever),
|
|
||||||
inferencer=dict(type=GenInferencer, max_out_len=512))
|
|
||||||
|
|
||||||
cdme_eval_cfg = dict(
|
|
||||||
evaluator=dict(type=CDMEEvaluator),
|
|
||||||
pred_postprocessor=dict(type=cdme_postprocess),
|
|
||||||
dataset_postprocessor=dict(type=cdme_dataset_postprocess),
|
|
||||||
pred_role='BOT')
|
|
||||||
|
|
||||||
context_lengths = list(range(1000, 9000, 1000))
|
|
||||||
document_depth_percent_intervals = 20
|
|
||||||
document_depth_percent_interval_type = "linear"
|
|
||||||
|
|
||||||
base_path = './data/CDME'
|
|
||||||
file_list = ['zh_finance.jsonl']
|
|
||||||
cdme_datasets = []
|
|
||||||
|
|
||||||
for original_context_length in context_lengths:
|
|
||||||
for depth_percent in generate_depth_percents(
|
|
||||||
document_depth_percent_intervals,
|
|
||||||
document_depth_percent_interval_type):
|
|
||||||
dataset_dict = {
|
|
||||||
'abbr': f'CDME_Length{original_context_length}'
|
|
||||||
f'Depth{int(depth_percent)}',
|
|
||||||
'type': CDMEDataset,
|
|
||||||
'path': base_path,
|
|
||||||
'length': original_context_length,
|
|
||||||
'depth': int(depth_percent),
|
|
||||||
'tokenizer_model': 'gpt-4',
|
|
||||||
'file_list': file_list,
|
|
||||||
'num_repeats_per_file': 10,
|
|
||||||
'length_buffer': 200,
|
|
||||||
'guide': True,
|
|
||||||
'language': 'Chinese',
|
|
||||||
'needle': '\n小明最喜欢的实习的地点就是上海人工智能实验室。\n',
|
|
||||||
'retrieval_question': '小明最喜欢的实习地点是哪里?请按照'
|
|
||||||
'“小明最喜欢的实习地点就是________。”的格式回答。',
|
|
||||||
'reader_cfg': cdme_reader_cfg,
|
|
||||||
'infer_cfg': cdme_infer_cfg,
|
|
||||||
'eval_cfg': cdme_eval_cfg
|
|
||||||
}
|
|
||||||
cdme_datasets.append(dataset_dict)
|
|
@ -1,92 +0,0 @@
|
|||||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
||||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
||||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
||||||
from opencompass.datasets.cdme.cdme_multi import CDMEDataset
|
|
||||||
from opencompass.datasets.cdme.cdme_multi import CDMEEvaluator
|
|
||||||
from opencompass.datasets.cdme.cdme_multi import cdme_postprocess
|
|
||||||
from opencompass.datasets.cdme.cdme_multi import cdme_dataset_postprocess
|
|
||||||
import math
|
|
||||||
|
|
||||||
|
|
||||||
def logistic(x, L=100, x0=50, k=0.1):
|
|
||||||
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
|
||||||
|
|
||||||
|
|
||||||
def generate_linear_space(start, end, num):
|
|
||||||
if num == 1:
|
|
||||||
return [start]
|
|
||||||
elif num < 1:
|
|
||||||
raise ValueError("num must be at least 1.")
|
|
||||||
step = (end - start) / (num - 1)
|
|
||||||
return [start + step * i for i in range(num)]
|
|
||||||
|
|
||||||
|
|
||||||
def generate_depth_percents(intervals, interval_type):
|
|
||||||
if interval_type == 'linear':
|
|
||||||
return generate_linear_space(0, 100, intervals)
|
|
||||||
elif interval_type == 'sigmoid':
|
|
||||||
linear_space = generate_linear_space(0, 100, intervals)
|
|
||||||
return [logistic(x) for x in linear_space]
|
|
||||||
else:
|
|
||||||
raise ValueError('Unsupported interval type')
|
|
||||||
|
|
||||||
|
|
||||||
cdme_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
|
||||||
|
|
||||||
cdme_infer_cfg = dict(
|
|
||||||
prompt_template=dict(
|
|
||||||
type=PromptTemplate,
|
|
||||||
template='''{prompt}'''),
|
|
||||||
retriever=dict(type=ZeroRetriever),
|
|
||||||
inferencer=dict(type=GenInferencer, max_out_len=512))
|
|
||||||
|
|
||||||
cdme_eval_cfg = dict(
|
|
||||||
evaluator=dict(type=CDMEEvaluator),
|
|
||||||
pred_postprocessor=dict(type=cdme_postprocess),
|
|
||||||
dataset_postprocessor=dict(type=cdme_dataset_postprocess),
|
|
||||||
pred_role='BOT')
|
|
||||||
|
|
||||||
context_lengths = list(range(1000, 9000, 1000))
|
|
||||||
document_depth_percent_intervals = 20
|
|
||||||
document_depth_percent_interval_type = "linear"
|
|
||||||
|
|
||||||
base_path = './data/CDME'
|
|
||||||
file_list = ['zh_finance.jsonl']
|
|
||||||
cdme_datasets = []
|
|
||||||
|
|
||||||
needles = ['\n意大利的佛罗伦萨有一家名为"La Giostra"的餐馆,是整个佛罗伦萨中排行第一的餐馆。\n',
|
|
||||||
'"La Giostra"餐馆的特色菜肴是松露奶酪通心粉。']
|
|
||||||
retrieval_question = ("佛罗伦萨中排行第一的餐馆的特色菜肴是?"
|
|
||||||
"请按照'佛罗伦萨中排行第一的餐馆的特色菜肴是______。'的格式回答。")
|
|
||||||
answer = "佛罗伦萨中排行第一的餐馆的特色菜肴是松露奶酪通心粉。"
|
|
||||||
|
|
||||||
keyword = "松露奶酪通心粉"
|
|
||||||
diff = 25
|
|
||||||
|
|
||||||
for original_context_length in context_lengths:
|
|
||||||
for depth_percent in generate_depth_percents(
|
|
||||||
document_depth_percent_intervals,
|
|
||||||
document_depth_percent_interval_type):
|
|
||||||
dataset_dict = {
|
|
||||||
'abbr': f'CDME_Length{original_context_length}'
|
|
||||||
f'Depth{int(depth_percent)}',
|
|
||||||
'type': CDMEDataset,
|
|
||||||
'path': base_path,
|
|
||||||
'length': original_context_length,
|
|
||||||
'depth': int(depth_percent),
|
|
||||||
'tokenizer_model': 'gpt-4',
|
|
||||||
'file_list': file_list,
|
|
||||||
'num_repeats_per_file': 10,
|
|
||||||
'length_buffer': 200,
|
|
||||||
'guide': True,
|
|
||||||
'language': 'Chinese',
|
|
||||||
'needles': needles,
|
|
||||||
'diff': diff,
|
|
||||||
'retrieval_question': retrieval_question,
|
|
||||||
'answer': answer,
|
|
||||||
'keyword': keyword,
|
|
||||||
'reader_cfg': cdme_reader_cfg,
|
|
||||||
'infer_cfg': cdme_infer_cfg,
|
|
||||||
'eval_cfg': cdme_eval_cfg
|
|
||||||
}
|
|
||||||
cdme_datasets.append(dataset_dict)
|
|
@ -1,93 +0,0 @@
|
|||||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
||||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
||||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
||||||
from opencompass.datasets.cdme.cdme_multi import CDMEDataset
|
|
||||||
from opencompass.datasets.cdme.cdme_multi import CDMEEvaluator
|
|
||||||
from opencompass.datasets.cdme.cdme_multi import cdme_postprocess
|
|
||||||
from opencompass.datasets.cdme.cdme_multi import cdme_dataset_postprocess
|
|
||||||
import math
|
|
||||||
|
|
||||||
|
|
||||||
def logistic(x, L=100, x0=50, k=0.1):
|
|
||||||
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
|
||||||
|
|
||||||
|
|
||||||
def generate_linear_space(start, end, num):
|
|
||||||
if num == 1:
|
|
||||||
return [start]
|
|
||||||
elif num < 1:
|
|
||||||
raise ValueError("num must be at least 1.")
|
|
||||||
step = (end - start) / (num - 1)
|
|
||||||
return [start + step * i for i in range(num)]
|
|
||||||
|
|
||||||
|
|
||||||
def generate_depth_percents(intervals, interval_type):
|
|
||||||
if interval_type == 'linear':
|
|
||||||
return generate_linear_space(0, 100, intervals)
|
|
||||||
elif interval_type == 'sigmoid':
|
|
||||||
linear_space = generate_linear_space(0, 100, intervals)
|
|
||||||
return [logistic(x) for x in linear_space]
|
|
||||||
else:
|
|
||||||
raise ValueError('Unsupported interval type')
|
|
||||||
|
|
||||||
|
|
||||||
cdme_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
|
||||||
|
|
||||||
cdme_infer_cfg = dict(
|
|
||||||
prompt_template=dict(
|
|
||||||
type=PromptTemplate,
|
|
||||||
template='''{prompt}'''),
|
|
||||||
retriever=dict(type=ZeroRetriever),
|
|
||||||
inferencer=dict(type=GenInferencer, max_out_len=512))
|
|
||||||
|
|
||||||
cdme_eval_cfg = dict(
|
|
||||||
evaluator=dict(type=CDMEEvaluator),
|
|
||||||
pred_postprocessor=dict(type=cdme_postprocess),
|
|
||||||
dataset_postprocessor=dict(type=cdme_dataset_postprocess),
|
|
||||||
pred_role='BOT')
|
|
||||||
|
|
||||||
context_lengths = list(range(1000, 9000, 1000))
|
|
||||||
document_depth_percent_intervals = 20
|
|
||||||
document_depth_percent_interval_type = "linear"
|
|
||||||
|
|
||||||
base_path = './data/CDME'
|
|
||||||
file_list = ['zh_finance.jsonl']
|
|
||||||
cdme_datasets = []
|
|
||||||
|
|
||||||
needles = ['\n意大利的佛罗伦萨有一家名为"La Giostra"的餐馆,是整个佛罗伦萨中排行第一的餐馆。\n',
|
|
||||||
'"La Giostra"餐馆的特色菜肴是松露奶酪通心粉。',
|
|
||||||
'松露奶酪通心粉是该家餐馆的有着意大利皇室烹饪血统的大厨Jack制作',]
|
|
||||||
retrieval_question = ("制作佛罗伦萨中排行第一的餐馆的特色菜肴的人叫什么?"
|
|
||||||
"请按照'制作佛罗伦萨中排行第一的餐馆的特色菜肴的人叫______。'的格式回答。")
|
|
||||||
answer = "制作佛罗伦萨中排行第一的餐馆的特色菜肴的人叫Jack"
|
|
||||||
|
|
||||||
keyword = "Jack"
|
|
||||||
diff = 25
|
|
||||||
|
|
||||||
for original_context_length in context_lengths:
|
|
||||||
for depth_percent in generate_depth_percents(
|
|
||||||
document_depth_percent_intervals,
|
|
||||||
document_depth_percent_interval_type):
|
|
||||||
dataset_dict = {
|
|
||||||
'abbr': f'CDME_Length{original_context_length}'
|
|
||||||
f'Depth{int(depth_percent)}',
|
|
||||||
'type': CDMEDataset,
|
|
||||||
'path': base_path,
|
|
||||||
'length': original_context_length,
|
|
||||||
'depth': int(depth_percent),
|
|
||||||
'tokenizer_model': 'gpt-4',
|
|
||||||
'file_list': file_list,
|
|
||||||
'num_repeats_per_file': 10,
|
|
||||||
'length_buffer': 200,
|
|
||||||
'guide': True,
|
|
||||||
'language': 'Chinese',
|
|
||||||
'needles': needles,
|
|
||||||
'diff': diff,
|
|
||||||
'retrieval_question': retrieval_question,
|
|
||||||
'answer': answer,
|
|
||||||
'keyword': keyword,
|
|
||||||
'reader_cfg': cdme_reader_cfg,
|
|
||||||
'infer_cfg': cdme_infer_cfg,
|
|
||||||
'eval_cfg': cdme_eval_cfg
|
|
||||||
}
|
|
||||||
cdme_datasets.append(dataset_dict)
|
|
104
configs/datasets/needlebench/atc/atc.py
Normal file
104
configs/datasets/needlebench/atc/atc.py
Normal file
@ -0,0 +1,104 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.atc import NeedleBenchATCOrderedDataset
|
||||||
|
from opencompass.datasets.needlebench.atc import NeedleBenchATCDataset
|
||||||
|
from opencompass.datasets.needlebench.origin import NeedleBenchOriginEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchOriginEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
needle_num_list = list(range(2, 100, 3))
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
repeats = 30
|
||||||
|
names_path = './data/needlebench/names.json'
|
||||||
|
|
||||||
|
needlebench_atc_datasets_zh = []
|
||||||
|
needlebench_atc_datasets_en = []
|
||||||
|
needlebench_atc_datasets_zh_ordered = []
|
||||||
|
needlebench_atc_datasets_en_ordered = []
|
||||||
|
|
||||||
|
for num_needles in needle_num_list:
|
||||||
|
# ordered English version
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'needlebench_atc_challenge'
|
||||||
|
f'needle_{num_needles}_en_ordered',
|
||||||
|
'type': NeedleBenchATCOrderedDataset,
|
||||||
|
'path': names_path,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'language': 'English',
|
||||||
|
'repeats': repeats,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_atc_datasets_en_ordered.append(dataset_dict)
|
||||||
|
|
||||||
|
|
||||||
|
for num_needles in needle_num_list:
|
||||||
|
# ordered Chinese version
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'needlebench_atc_challenge'
|
||||||
|
f'needle_{num_needles}_zh_ordered',
|
||||||
|
'type': NeedleBenchATCOrderedDataset,
|
||||||
|
'path': names_path,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'language': 'Chinese',
|
||||||
|
'repeats': repeats,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_atc_datasets_zh_ordered.append(dataset_dict)
|
||||||
|
|
||||||
|
for num_needles in needle_num_list:
|
||||||
|
# standard English version
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'needlebench_atc_challenge'
|
||||||
|
f'needle_{num_needles}_en',
|
||||||
|
'type': NeedleBenchATCDataset,
|
||||||
|
'path': names_path,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'language': 'English',
|
||||||
|
'repeats': repeats,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_atc_datasets_en.append(dataset_dict)
|
||||||
|
|
||||||
|
for num_needles in needle_num_list:
|
||||||
|
# standard Chinese version
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'needlebench_atc_challenge'
|
||||||
|
f'needle_{num_needles}_zh',
|
||||||
|
'type': NeedleBenchATCDataset,
|
||||||
|
'path': names_path,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'language': 'Chinese',
|
||||||
|
'repeats': repeats,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_atc_datasets_zh.append(dataset_dict)
|
10
configs/datasets/needlebench/needlebench.py
Normal file
10
configs/datasets/needlebench/needlebench.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
from mmengine.config import read_base
|
||||||
|
|
||||||
|
with read_base():
|
||||||
|
from .needlebench_4k.needlebench import needlebench_datasets as needlebench_datasets_4k
|
||||||
|
from .needlebench_8k.needlebench import needlebench_datasets as needlebench_datasets_8k
|
||||||
|
from .needlebench_32k.needlebench import needlebench_datasets as needlebench_datasets_32k
|
||||||
|
from .needlebench_128k.needlebench import needlebench_datasets as needlebench_datasets_128k
|
||||||
|
from .needlebench_200k.needlebench import needlebench_datasets as needlebench_datasets_200k
|
||||||
|
|
||||||
|
needlebench_datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
|
18
configs/datasets/needlebench/needlebench_128k/needlebench.py
Normal file
18
configs/datasets/needlebench/needlebench_128k/needlebench.py
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
from mmengine.config import read_base
|
||||||
|
|
||||||
|
with read_base():
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_2needle_en as needlebench_multi_2needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_3needle_en as needlebench_multi_3needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_4needle_en as needlebench_multi_4needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_5needle_en as needlebench_multi_5needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_2needle_zh as needlebench_multi_2needle_zh_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_3needle_zh as needlebench_multi_3needle_zh_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_4needle_zh as needlebench_multi_4needle_zh_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_5needle_zh as needlebench_multi_5needle_zh_datasets
|
||||||
|
|
||||||
|
from .needlebench_single import needlebench_datasets_en as needlebench_origin_en_datasets
|
||||||
|
from .needlebench_single import needlebench_datasets_zh as needlebench_origin_zh_datasets
|
||||||
|
from .needlebench_multi_retrieval import needlebench_datasets_en as needlebench_parallel_en_datasets
|
||||||
|
from .needlebench_multi_retrieval import needlebench_datasets_zh as needlebench_parallel_zh_datasets
|
||||||
|
|
||||||
|
needlebench_datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
|
@ -0,0 +1,303 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.multi import NeedleBenchMultiDataset
|
||||||
|
from opencompass.datasets.needlebench.multi import NeedleBenchMultiEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchMultiEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000])
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
# ----------English Version----------
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
|
||||||
|
needle_file_name = 'multi_needle_reasoning_en.json'
|
||||||
|
diff = 10
|
||||||
|
num_needles = 2
|
||||||
|
needlebench_datasets_2needle_en = []
|
||||||
|
language = 'English'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 600,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_2needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 3
|
||||||
|
needlebench_datasets_3needle_en = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 600,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_3needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 4
|
||||||
|
needlebench_datasets_4needle_en = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 600,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_4needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 5
|
||||||
|
needlebench_datasets_5needle_en = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 600,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_5needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
# ----------Chinese Version----------
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
|
||||||
|
needle_file_name = 'multi_needle_reasoning_zh.json'
|
||||||
|
diff = 10
|
||||||
|
num_needles = 2
|
||||||
|
needlebench_datasets_2needle_zh = []
|
||||||
|
language = 'Chinese'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_2needle_zh.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 3
|
||||||
|
needlebench_datasets_3needle_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_3needle_zh.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 4
|
||||||
|
needlebench_datasets_4needle_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_4needle_zh.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 5
|
||||||
|
needlebench_datasets_5needle_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_5needle_zh.append(dataset_dict)
|
@ -0,0 +1,111 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.parallel import NeedleBenchParallelDataset
|
||||||
|
from opencompass.datasets.needlebench.parallel import NeedleBenchParallelEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchParallelEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000])
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
needlebench_datasets_en = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
depths_float = generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type)
|
||||||
|
depths = [int(depth) for depth in depths_float]
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'_parallel_en_128k',
|
||||||
|
'type': NeedleBenchParallelDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depths': depths,
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 25,
|
||||||
|
'length_buffer': 3000,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'English',
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_en.append(dataset_dict)
|
||||||
|
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
needlebench_datasets_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'_parallel_zh_128k',
|
||||||
|
'type': NeedleBenchParallelDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depths': depths,
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 25,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'Chinese',
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_zh.append(dataset_dict)
|
@ -0,0 +1,114 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.origin import NeedleBenchOriginDataset
|
||||||
|
from opencompass.datasets.needlebench.origin import NeedleBenchOriginEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchOriginEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000])
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
needlebench_datasets_en = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_origin_en_128k',
|
||||||
|
'type': NeedleBenchOriginDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 600,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'English',
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_en.append(dataset_dict)
|
||||||
|
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
needlebench_datasets_zh = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_origin_zh_128k',
|
||||||
|
'type': NeedleBenchOriginDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'Chinese',
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_zh.append(dataset_dict)
|
18
configs/datasets/needlebench/needlebench_200k/needlebench.py
Normal file
18
configs/datasets/needlebench/needlebench_200k/needlebench.py
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
from mmengine.config import read_base
|
||||||
|
|
||||||
|
with read_base():
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_2needle_en as needlebench_multi_2needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_3needle_en as needlebench_multi_3needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_4needle_en as needlebench_multi_4needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_5needle_en as needlebench_multi_5needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_2needle_zh as needlebench_multi_2needle_zh_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_3needle_zh as needlebench_multi_3needle_zh_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_4needle_zh as needlebench_multi_4needle_zh_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_5needle_zh as needlebench_multi_5needle_zh_datasets
|
||||||
|
|
||||||
|
from .needlebench_single import needlebench_datasets_en as needlebench_origin_en_datasets
|
||||||
|
from .needlebench_single import needlebench_datasets_zh as needlebench_origin_zh_datasets
|
||||||
|
from .needlebench_multi_retrieval import needlebench_datasets_en as needlebench_parallel_en_datasets
|
||||||
|
from .needlebench_multi_retrieval import needlebench_datasets_zh as needlebench_parallel_zh_datasets
|
||||||
|
|
||||||
|
needlebench_datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
|
@ -0,0 +1,303 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.multi import NeedleBenchMultiDataset
|
||||||
|
from opencompass.datasets.needlebench.multi import NeedleBenchMultiEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchMultiEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
# ----------English Version----------
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
|
||||||
|
needle_file_name = 'multi_needle_reasoning_en.json'
|
||||||
|
diff = 10
|
||||||
|
num_needles = 2
|
||||||
|
needlebench_datasets_2needle_en = []
|
||||||
|
language = 'English'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 600,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_2needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 3
|
||||||
|
needlebench_datasets_3needle_en = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 600,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_3needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 4
|
||||||
|
needlebench_datasets_4needle_en = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 600,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_4needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 5
|
||||||
|
needlebench_datasets_5needle_en = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 600,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_5needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
# ----------Chinese Version----------
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
|
||||||
|
needle_file_name = 'multi_needle_reasoning_zh.json'
|
||||||
|
diff = 10
|
||||||
|
num_needles = 2
|
||||||
|
needlebench_datasets_2needle_zh = []
|
||||||
|
language = 'Chinese'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_2needle_zh.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 3
|
||||||
|
needlebench_datasets_3needle_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_3needle_zh.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 4
|
||||||
|
needlebench_datasets_4needle_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_4needle_zh.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 5
|
||||||
|
needlebench_datasets_5needle_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_5needle_zh.append(dataset_dict)
|
@ -0,0 +1,111 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.parallel import NeedleBenchParallelDataset
|
||||||
|
from opencompass.datasets.needlebench.parallel import NeedleBenchParallelEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchParallelEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
needlebench_datasets_en = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
depths_float = generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type)
|
||||||
|
depths = [int(depth) for depth in depths_float]
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'_parallel_en_200k',
|
||||||
|
'type': NeedleBenchParallelDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depths': depths,
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 25,
|
||||||
|
'length_buffer': 3000,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'English',
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_en.append(dataset_dict)
|
||||||
|
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
needlebench_datasets_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'_parallel_zh_200k',
|
||||||
|
'type': NeedleBenchParallelDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depths': depths,
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 25,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'Chinese',
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_zh.append(dataset_dict)
|
@ -0,0 +1,114 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.origin import NeedleBenchOriginDataset
|
||||||
|
from opencompass.datasets.needlebench.origin import NeedleBenchOriginEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchOriginEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
needlebench_datasets_en = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_origin_en_200k',
|
||||||
|
'type': NeedleBenchOriginDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 600,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'English',
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_en.append(dataset_dict)
|
||||||
|
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
needlebench_datasets_zh = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_origin_zh_200k',
|
||||||
|
'type': NeedleBenchOriginDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'Chinese',
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_zh.append(dataset_dict)
|
18
configs/datasets/needlebench/needlebench_32k/needlebench.py
Normal file
18
configs/datasets/needlebench/needlebench_32k/needlebench.py
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
from mmengine.config import read_base
|
||||||
|
|
||||||
|
with read_base():
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_2needle_en as needlebench_multi_2needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_3needle_en as needlebench_multi_3needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_4needle_en as needlebench_multi_4needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_5needle_en as needlebench_multi_5needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_2needle_zh as needlebench_multi_2needle_zh_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_3needle_zh as needlebench_multi_3needle_zh_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_4needle_zh as needlebench_multi_4needle_zh_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_5needle_zh as needlebench_multi_5needle_zh_datasets
|
||||||
|
|
||||||
|
from .needlebench_single import needlebench_datasets_en as needlebench_origin_en_datasets
|
||||||
|
from .needlebench_single import needlebench_datasets_zh as needlebench_origin_zh_datasets
|
||||||
|
from .needlebench_multi_retrieval import needlebench_datasets_en as needlebench_parallel_en_datasets
|
||||||
|
from .needlebench_multi_retrieval import needlebench_datasets_zh as needlebench_parallel_zh_datasets
|
||||||
|
|
||||||
|
needlebench_datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
|
@ -0,0 +1,303 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.multi import NeedleBenchMultiDataset
|
||||||
|
from opencompass.datasets.needlebench.multi import NeedleBenchMultiEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchMultiEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list([9000, 13000, 17000, 21000, 25000, 29000, 31000, 32000])
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
# ----------English Version----------
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
|
||||||
|
needle_file_name = 'multi_needle_reasoning_en.json'
|
||||||
|
diff = 10
|
||||||
|
num_needles = 2
|
||||||
|
needlebench_datasets_2needle_en = []
|
||||||
|
language = 'English'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 3000,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_2needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 3
|
||||||
|
needlebench_datasets_3needle_en = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 3000,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_3needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 4
|
||||||
|
needlebench_datasets_4needle_en = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 3000,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_4needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 5
|
||||||
|
needlebench_datasets_5needle_en = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 3000,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_5needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
# ----------Chinese Version----------
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
|
||||||
|
needle_file_name = 'multi_needle_reasoning_zh.json'
|
||||||
|
diff = 10
|
||||||
|
num_needles = 2
|
||||||
|
needlebench_datasets_2needle_zh = []
|
||||||
|
language = 'Chinese'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_2needle_zh.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 3
|
||||||
|
needlebench_datasets_3needle_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_3needle_zh.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 4
|
||||||
|
needlebench_datasets_4needle_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_4needle_zh.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 5
|
||||||
|
needlebench_datasets_5needle_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_5needle_zh.append(dataset_dict)
|
@ -0,0 +1,111 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.parallel import NeedleBenchParallelDataset
|
||||||
|
from opencompass.datasets.needlebench.parallel import NeedleBenchParallelEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchParallelEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list([9000, 13000, 17000, 21000, 25000, 29000, 31000, 32000])
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
needlebench_datasets_en = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
depths_float = generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type)
|
||||||
|
depths = [int(depth) for depth in depths_float]
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'_parallel_en_32k',
|
||||||
|
'type': NeedleBenchParallelDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depths': depths,
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 25,
|
||||||
|
'length_buffer': 3000,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'English',
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_en.append(dataset_dict)
|
||||||
|
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
needlebench_datasets_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'_parallel_zh_32k',
|
||||||
|
'type': NeedleBenchParallelDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depths': depths,
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 25,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'Chinese',
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_zh.append(dataset_dict)
|
@ -0,0 +1,114 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.origin import NeedleBenchOriginDataset
|
||||||
|
from opencompass.datasets.needlebench.origin import NeedleBenchOriginEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchOriginEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list([9000, 13000, 17000, 21000, 25000, 29000, 31000, 32000])
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
needlebench_datasets_en = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_origin_en_32k',
|
||||||
|
'type': NeedleBenchOriginDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 3000,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'English',
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_en.append(dataset_dict)
|
||||||
|
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
needlebench_datasets_zh = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_origin_zh_32k',
|
||||||
|
'type': NeedleBenchOriginDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'Chinese',
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_zh.append(dataset_dict)
|
18
configs/datasets/needlebench/needlebench_4k/needlebench.py
Normal file
18
configs/datasets/needlebench/needlebench_4k/needlebench.py
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
from mmengine.config import read_base
|
||||||
|
|
||||||
|
with read_base():
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_2needle_en as needlebench_multi_2needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_3needle_en as needlebench_multi_3needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_4needle_en as needlebench_multi_4needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_5needle_en as needlebench_multi_5needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_2needle_zh as needlebench_multi_2needle_zh_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_3needle_zh as needlebench_multi_3needle_zh_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_4needle_zh as needlebench_multi_4needle_zh_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_5needle_zh as needlebench_multi_5needle_zh_datasets
|
||||||
|
|
||||||
|
from .needlebench_single import needlebench_datasets_en as needlebench_origin_en_datasets
|
||||||
|
from .needlebench_single import needlebench_datasets_zh as needlebench_origin_zh_datasets
|
||||||
|
from .needlebench_multi_retrieval import needlebench_datasets_en as needlebench_parallel_en_datasets
|
||||||
|
from .needlebench_multi_retrieval import needlebench_datasets_zh as needlebench_parallel_zh_datasets
|
||||||
|
|
||||||
|
needlebench_datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
|
@ -0,0 +1,303 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.multi import NeedleBenchMultiDataset
|
||||||
|
from opencompass.datasets.needlebench.multi import NeedleBenchMultiEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchMultiEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list(range(1000, 5000, 1000))
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
# ----------English Version----------
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
|
||||||
|
needle_file_name = 'multi_needle_reasoning_en.json'
|
||||||
|
diff = 10
|
||||||
|
num_needles = 2
|
||||||
|
needlebench_datasets_2needle_en = []
|
||||||
|
language = 'English'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 600,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_2needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 3
|
||||||
|
needlebench_datasets_3needle_en = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 600,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_3needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 4
|
||||||
|
needlebench_datasets_4needle_en = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 600,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_4needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 5
|
||||||
|
needlebench_datasets_5needle_en = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 600,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_5needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
# ----------Chinese Version----------
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
|
||||||
|
needle_file_name = 'multi_needle_reasoning_zh.json'
|
||||||
|
diff = 10
|
||||||
|
num_needles = 2
|
||||||
|
needlebench_datasets_2needle_zh = []
|
||||||
|
language = 'Chinese'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_2needle_zh.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 3
|
||||||
|
needlebench_datasets_3needle_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_3needle_zh.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 4
|
||||||
|
needlebench_datasets_4needle_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_4needle_zh.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 5
|
||||||
|
needlebench_datasets_5needle_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_5needle_zh.append(dataset_dict)
|
@ -0,0 +1,111 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.parallel import NeedleBenchParallelDataset
|
||||||
|
from opencompass.datasets.needlebench.parallel import NeedleBenchParallelEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchParallelEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list(range(1000, 5000, 1000))
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
needlebench_datasets_en = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
depths_float = generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type)
|
||||||
|
depths = [int(depth) for depth in depths_float]
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'_parallel_en_4k',
|
||||||
|
'type': NeedleBenchParallelDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depths': depths,
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 25,
|
||||||
|
'length_buffer': 1000,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'English',
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_en.append(dataset_dict)
|
||||||
|
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
needlebench_datasets_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'_parallel_zh_4k',
|
||||||
|
'type': NeedleBenchParallelDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depths': depths,
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 25,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'Chinese',
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_zh.append(dataset_dict)
|
@ -0,0 +1,114 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.origin import NeedleBenchOriginDataset
|
||||||
|
from opencompass.datasets.needlebench.origin import NeedleBenchOriginEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchOriginEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list(range(1000, 5000, 1000))
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
needlebench_datasets_en = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_origin_en_4k',
|
||||||
|
'type': NeedleBenchOriginDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 600,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'English',
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_en.append(dataset_dict)
|
||||||
|
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
needlebench_datasets_zh = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_origin_zh_4k',
|
||||||
|
'type': NeedleBenchOriginDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'Chinese',
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_zh.append(dataset_dict)
|
18
configs/datasets/needlebench/needlebench_8k/needlebench.py
Normal file
18
configs/datasets/needlebench/needlebench_8k/needlebench.py
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
from mmengine.config import read_base
|
||||||
|
|
||||||
|
with read_base():
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_2needle_en as needlebench_multi_2needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_3needle_en as needlebench_multi_3needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_4needle_en as needlebench_multi_4needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_5needle_en as needlebench_multi_5needle_en_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_2needle_zh as needlebench_multi_2needle_zh_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_3needle_zh as needlebench_multi_3needle_zh_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_4needle_zh as needlebench_multi_4needle_zh_datasets
|
||||||
|
from .needlebench_multi_reasoning import needlebench_datasets_5needle_zh as needlebench_multi_5needle_zh_datasets
|
||||||
|
|
||||||
|
from .needlebench_single import needlebench_datasets_en as needlebench_origin_en_datasets
|
||||||
|
from .needlebench_single import needlebench_datasets_zh as needlebench_origin_zh_datasets
|
||||||
|
from .needlebench_multi_retrieval import needlebench_datasets_en as needlebench_parallel_en_datasets
|
||||||
|
from .needlebench_multi_retrieval import needlebench_datasets_zh as needlebench_parallel_zh_datasets
|
||||||
|
|
||||||
|
needlebench_datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
|
@ -0,0 +1,303 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.multi import NeedleBenchMultiDataset
|
||||||
|
from opencompass.datasets.needlebench.multi import NeedleBenchMultiEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchMultiEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list(range(5000, 9000, 1000))
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
# ----------English Version----------
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
|
||||||
|
needle_file_name = 'multi_needle_reasoning_en.json'
|
||||||
|
diff = 10
|
||||||
|
num_needles = 2
|
||||||
|
needlebench_datasets_2needle_en = []
|
||||||
|
language = 'English'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 1000,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_2needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 3
|
||||||
|
needlebench_datasets_3needle_en = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 1000,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_3needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 4
|
||||||
|
needlebench_datasets_4needle_en = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 1000,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_4needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 5
|
||||||
|
needlebench_datasets_5needle_en = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 1000,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_5needle_en.append(dataset_dict)
|
||||||
|
|
||||||
|
# ----------Chinese Version----------
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
|
||||||
|
needle_file_name = 'multi_needle_reasoning_zh.json'
|
||||||
|
diff = 10
|
||||||
|
num_needles = 2
|
||||||
|
needlebench_datasets_2needle_zh = []
|
||||||
|
language = 'Chinese'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_2needle_zh.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 3
|
||||||
|
needlebench_datasets_3needle_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_3needle_zh.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 4
|
||||||
|
needlebench_datasets_4needle_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_4needle_zh.append(dataset_dict)
|
||||||
|
|
||||||
|
num_needles = 5
|
||||||
|
needlebench_datasets_5needle_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
|
||||||
|
'type': NeedleBenchMultiDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': language,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'num_needles': num_needles,
|
||||||
|
'diff': diff,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_5needle_zh.append(dataset_dict)
|
@ -0,0 +1,111 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.parallel import NeedleBenchParallelDataset
|
||||||
|
from opencompass.datasets.needlebench.parallel import NeedleBenchParallelEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchParallelEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list(range(5000, 9000, 1000))
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
needlebench_datasets_en = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
depths_float = generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type)
|
||||||
|
depths = [int(depth) for depth in depths_float]
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'_parallel_en_8k',
|
||||||
|
'type': NeedleBenchParallelDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depths': depths,
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 25,
|
||||||
|
'length_buffer': 1300,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'English',
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_en.append(dataset_dict)
|
||||||
|
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
needlebench_datasets_zh = []
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'_parallel_zh_8k',
|
||||||
|
'type': NeedleBenchParallelDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depths': depths,
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 25,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'Chinese',
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_zh.append(dataset_dict)
|
@ -0,0 +1,120 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.parallel import NeedleBenchParallelDataset
|
||||||
|
from opencompass.datasets.needlebench.parallel import NeedleBenchParallelEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchParallelEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list(range(5000, 9000, 1000))
|
||||||
|
document_depth_percent_intervals_list = [1, 5, 10, 15, 20]
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
needlebench_datasets_en = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
|
||||||
|
for document_depth_percent_intervals in document_depth_percent_intervals_list:
|
||||||
|
depths_float = generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type)
|
||||||
|
depths = [int(depth) for depth in depths_float]
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'_parallel_en_8k_batch{document_depth_percent_intervals}',
|
||||||
|
'type': NeedleBenchParallelDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depths': depths,
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 50,
|
||||||
|
'length_buffer': 1300,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'English',
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_en.append(dataset_dict)
|
||||||
|
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
needlebench_datasets_zh = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
|
||||||
|
for document_depth_percent_intervals in document_depth_percent_intervals_list:
|
||||||
|
depths_float = generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type)
|
||||||
|
depths = [int(depth) for depth in depths_float]
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'_parallel_zh_8k_batch{document_depth_percent_intervals}',
|
||||||
|
'type': NeedleBenchParallelDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depths': depths,
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 50,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'Chinese',
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_zh.append(dataset_dict)
|
@ -0,0 +1,114 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets.needlebench.origin import NeedleBenchOriginDataset
|
||||||
|
from opencompass.datasets.needlebench.origin import NeedleBenchOriginEvaluator
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_postprocess
|
||||||
|
from opencompass.datasets.needlebench.origin import needlebench_dataset_postprocess
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def logistic(x, L=100, x0=50, k=0.1):
|
||||||
|
return round(L / (1 + math.exp(-k * (x - x0))), 3)
|
||||||
|
|
||||||
|
|
||||||
|
def generate_linear_space(start, end, num):
|
||||||
|
if num == 1:
|
||||||
|
return [start]
|
||||||
|
elif num < 1:
|
||||||
|
raise ValueError("num must be at least 1.")
|
||||||
|
step = (end - start) / (num - 1)
|
||||||
|
return [start + step * i for i in range(num)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_depth_percents(intervals, interval_type):
|
||||||
|
if interval_type == 'linear':
|
||||||
|
return generate_linear_space(0, 100, intervals)
|
||||||
|
elif interval_type == 'sigmoid':
|
||||||
|
linear_space = generate_linear_space(0, 100, intervals)
|
||||||
|
return [logistic(x) for x in linear_space]
|
||||||
|
else:
|
||||||
|
raise ValueError('Unsupported interval type')
|
||||||
|
|
||||||
|
|
||||||
|
needlebench_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
|
||||||
|
|
||||||
|
needlebench_infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt='{prompt}'),
|
||||||
|
dict(role='BOT', prompt='{answer}\n'),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer))
|
||||||
|
|
||||||
|
needlebench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=NeedleBenchOriginEvaluator),
|
||||||
|
pred_postprocessor=dict(type=needlebench_postprocess),
|
||||||
|
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||||
|
pred_role='BOT')
|
||||||
|
|
||||||
|
context_lengths = list(range(5000, 9000, 1000))
|
||||||
|
document_depth_percent_intervals = 20
|
||||||
|
document_depth_percent_interval_type = "linear"
|
||||||
|
|
||||||
|
base_path = './data/needlebench'
|
||||||
|
file_list = ['PaulGrahamEssays.jsonl']
|
||||||
|
needlebench_datasets_en = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_origin_en_8k',
|
||||||
|
'type': NeedleBenchOriginDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 800,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'English',
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_en.append(dataset_dict)
|
||||||
|
|
||||||
|
file_list = ['zh_finance.jsonl']
|
||||||
|
needlebench_datasets_zh = []
|
||||||
|
needle_file_name = 'needles.jsonl'
|
||||||
|
|
||||||
|
for original_context_length in context_lengths:
|
||||||
|
for depth_percent in generate_depth_percents(
|
||||||
|
document_depth_percent_intervals,
|
||||||
|
document_depth_percent_interval_type):
|
||||||
|
dataset_dict = {
|
||||||
|
'abbr': f'Length{original_context_length}'
|
||||||
|
f'Depth{int(depth_percent)}_origin_zh_8k',
|
||||||
|
'type': NeedleBenchOriginDataset,
|
||||||
|
'path': base_path,
|
||||||
|
'length': original_context_length,
|
||||||
|
'depth': int(depth_percent),
|
||||||
|
'tokenizer_model': 'gpt-4',
|
||||||
|
'file_list': file_list,
|
||||||
|
'num_repeats_per_file': 10,
|
||||||
|
'length_buffer': 200,
|
||||||
|
'guide': True,
|
||||||
|
'language': 'Chinese',
|
||||||
|
'needle_file_name': needle_file_name,
|
||||||
|
'reader_cfg': needlebench_reader_cfg,
|
||||||
|
'infer_cfg': needlebench_infer_cfg,
|
||||||
|
'eval_cfg': needlebench_eval_cfg
|
||||||
|
}
|
||||||
|
needlebench_datasets_zh.append(dataset_dict)
|
78
configs/eval_needlebench.py
Normal file
78
configs/eval_needlebench.py
Normal file
@ -0,0 +1,78 @@
|
|||||||
|
from opencompass.models import HuggingFaceCausalLM
|
||||||
|
from opencompass.models.turbomind import TurboMindModel
|
||||||
|
from opencompass.runners import SlurmSequentialRunner
|
||||||
|
from opencompass.partitioners import SizePartitioner, NaivePartitioner
|
||||||
|
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask
|
||||||
|
|
||||||
|
from mmengine.config import read_base
|
||||||
|
with read_base():
|
||||||
|
# eval needlebench_4k
|
||||||
|
from .datasets.needlebench.needlebench_4k.needlebench import needlebench_datasets
|
||||||
|
from .summarizers.needlebench import needlebench_4k_summarizer as summarizer
|
||||||
|
|
||||||
|
# only eval original "needle in a haystack test" in needlebench_4k
|
||||||
|
# from .datasets.needlebench.needlebench_4k.needlebench_single import needlebench_datasets_zh, needlebench_datasets_en
|
||||||
|
# from .summarizers.needlebench import needlebench_4k_summarizer as summarizer
|
||||||
|
|
||||||
|
# eval Ancestral Tracing Challenge(ATC)
|
||||||
|
# from .datasets.needlebench.atc.atc import needlebench_atc_datasets_zh, needlebench_atc_datasets_en
|
||||||
|
# from .summarizers.needlebench import needlebench_atc_summarizer as summarizer
|
||||||
|
|
||||||
|
datasets = sum([v for k, v in locals().items() if ('datasets' in k)], [])
|
||||||
|
|
||||||
|
hf_internlm2_chat_7b_model_meta_template = dict(
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN',
|
||||||
|
begin='<|im_start|>user\n', end='<|im_end|>\n'),
|
||||||
|
dict(role='BOT', begin='<|im_start|>assistant\n',
|
||||||
|
end='<|im_end|>\n', generate=True),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
hf_internlm2_chat_7b = dict(
|
||||||
|
type=HuggingFaceCausalLM,
|
||||||
|
abbr='internlm2-chat-7b-hf',
|
||||||
|
path="internlm/internlm2-chat-7b",
|
||||||
|
tokenizer_path='internlm/internlm2-chat-7b',
|
||||||
|
model_kwargs=dict(
|
||||||
|
trust_remote_code=True,
|
||||||
|
device_map='auto',
|
||||||
|
),
|
||||||
|
tokenizer_kwargs=dict(
|
||||||
|
padding_side='left',
|
||||||
|
truncation_side='left',
|
||||||
|
use_fast=False,
|
||||||
|
trust_remote_code=True,
|
||||||
|
),
|
||||||
|
max_out_len=2000,
|
||||||
|
max_seq_len=32768,
|
||||||
|
batch_size=8,
|
||||||
|
meta_template=hf_internlm2_chat_7b_model_meta_template,
|
||||||
|
run_cfg=dict(num_gpus=1, num_procs=1),
|
||||||
|
end_str='<|im_end|>',
|
||||||
|
)
|
||||||
|
|
||||||
|
internlm2_chat_7b_200k = dict(
|
||||||
|
type=TurboMindModel,
|
||||||
|
abbr='internlm2-chat-7b-200k',
|
||||||
|
path="internlm/internlm2-chat-7b",
|
||||||
|
meta_template=hf_internlm2_chat_7b_model_meta_template,
|
||||||
|
engine_config=dict(session_len=210000,
|
||||||
|
max_batch_size=8,
|
||||||
|
rope_scaling_factor=2.0,
|
||||||
|
model_name="internlm2-chat-7b"),
|
||||||
|
gen_config=dict(top_k=1, top_p=0.8,
|
||||||
|
temperature=1.0,
|
||||||
|
max_new_tokens=2000),
|
||||||
|
max_out_len=2000,
|
||||||
|
max_seq_len=210000,
|
||||||
|
batch_size=8,
|
||||||
|
concurrency=8,
|
||||||
|
run_cfg=dict(num_gpus=1, num_procs=1),
|
||||||
|
)
|
||||||
|
|
||||||
|
models = [
|
||||||
|
# hf_internlm2_chat_7b,
|
||||||
|
internlm2_chat_7b_200k,
|
||||||
|
]
|
||||||
|
|
||||||
|
work_dir = './outputs/needlebench'
|
@ -1,40 +0,0 @@
|
|||||||
from opencompass.models import HuggingFaceCausalLM
|
|
||||||
|
|
||||||
from mmengine.config import read_base
|
|
||||||
with read_base():
|
|
||||||
from .datasets.cdme.cdme8k import cdme_datasets
|
|
||||||
|
|
||||||
datasets = [*cdme_datasets]
|
|
||||||
|
|
||||||
|
|
||||||
_meta_template = dict(
|
|
||||||
round=[
|
|
||||||
dict(role='HUMAN', begin='<|User|>:', end='\n'),
|
|
||||||
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
|
|
||||||
],
|
|
||||||
)
|
|
||||||
|
|
||||||
models = [
|
|
||||||
dict(
|
|
||||||
type=HuggingFaceCausalLM,
|
|
||||||
abbr='internlm-chat-20b-hf',
|
|
||||||
path="internlm/internlm-chat-20b",
|
|
||||||
tokenizer_path='internlm/internlm-chat-20b',
|
|
||||||
model_kwargs=dict(
|
|
||||||
trust_remote_code=True,
|
|
||||||
device_map='auto',
|
|
||||||
),
|
|
||||||
tokenizer_kwargs=dict(
|
|
||||||
padding_side='left',
|
|
||||||
truncation_side='left',
|
|
||||||
use_fast=False,
|
|
||||||
trust_remote_code=True,
|
|
||||||
),
|
|
||||||
max_out_len=100,
|
|
||||||
max_seq_len=8192,
|
|
||||||
batch_size=8,
|
|
||||||
meta_template=_meta_template,
|
|
||||||
run_cfg=dict(num_gpus=2, num_procs=1),
|
|
||||||
end_str='<eoa>',
|
|
||||||
)
|
|
||||||
]
|
|
@ -1,28 +0,0 @@
|
|||||||
from opencompass.models.turbomind import TurboMindModel
|
|
||||||
|
|
||||||
from mmengine.config import read_base
|
|
||||||
with read_base():
|
|
||||||
from .datasets.cdme.cdme200k import cdme_datasets
|
|
||||||
|
|
||||||
datasets = [*cdme_datasets]
|
|
||||||
|
|
||||||
internlm_meta_template = dict(round=[
|
|
||||||
dict(role='HUMAN', begin='<|User|>:', end='\n'),
|
|
||||||
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
|
|
||||||
],
|
|
||||||
eos_token_id=103028)
|
|
||||||
|
|
||||||
models = [
|
|
||||||
# config for internlm-chat-20b
|
|
||||||
dict(
|
|
||||||
type=TurboMindModel,
|
|
||||||
abbr='internlm-chat-20b-turbomind',
|
|
||||||
path='./turbomind',
|
|
||||||
max_out_len=100,
|
|
||||||
max_seq_len=201000,
|
|
||||||
batch_size=8,
|
|
||||||
concurrency=8,
|
|
||||||
meta_template=internlm_meta_template,
|
|
||||||
run_cfg=dict(num_gpus=1, num_procs=1),
|
|
||||||
)
|
|
||||||
]
|
|
657
configs/summarizers/needlebench.py
Normal file
657
configs/summarizers/needlebench.py
Normal file
@ -0,0 +1,657 @@
|
|||||||
|
from opencompass.summarizers.needlebench import NeedleBenchSummarizer
|
||||||
|
from opencompass.summarizers.needlebench import NeedleBenchATCSummarizer
|
||||||
|
|
||||||
|
# ----------NeedleBench-4k-summarizer----------
|
||||||
|
context_lengths_4k = list(range(1000, 5000, 1000))
|
||||||
|
depths = [0, 5, 10, 15, 21, 26, 31, 36, 42, 47, 52, 57, 63, 68, 73, 78, 84, 89, 94, 100]
|
||||||
|
|
||||||
|
# Initialize the lists
|
||||||
|
_needlebench_4k_2needle_en = []
|
||||||
|
_needlebench_4k_3needle_en = []
|
||||||
|
_needlebench_4k_4needle_en = []
|
||||||
|
_needlebench_4k_5needle_en = []
|
||||||
|
_needlebench_4k_2needle_zh = []
|
||||||
|
_needlebench_4k_3needle_zh = []
|
||||||
|
_needlebench_4k_4needle_zh = []
|
||||||
|
_needlebench_4k_5needle_zh = []
|
||||||
|
_needlebench_4k_origin_en = []
|
||||||
|
_needlebench_4k_origin_zh = []
|
||||||
|
|
||||||
|
# Fill the lists using nested loops
|
||||||
|
for original_context_length in context_lengths_4k:
|
||||||
|
for depth_percent in depths:
|
||||||
|
_needlebench_4k_2needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_2needle_en_4k')
|
||||||
|
_needlebench_4k_3needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_3needle_en_4k')
|
||||||
|
_needlebench_4k_4needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_4needle_en_4k')
|
||||||
|
_needlebench_4k_5needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_5needle_en_4k')
|
||||||
|
_needlebench_4k_2needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_2needle_zh_4k')
|
||||||
|
_needlebench_4k_3needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_3needle_zh_4k')
|
||||||
|
_needlebench_4k_4needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_4needle_zh_4k')
|
||||||
|
_needlebench_4k_5needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_5needle_zh_4k')
|
||||||
|
|
||||||
|
_needlebench_4k_origin_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_origin_en_4k')
|
||||||
|
_needlebench_4k_origin_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_origin_zh_4k')
|
||||||
|
|
||||||
|
# Concatenate the multi-needle and origin lists
|
||||||
|
_needlebench_4k_multi_needle_en = _needlebench_4k_2needle_en + _needlebench_4k_3needle_en + _needlebench_4k_4needle_en + _needlebench_4k_5needle_en
|
||||||
|
_needlebench_4k_multi_needle_zh = _needlebench_4k_2needle_zh + _needlebench_4k_3needle_zh + _needlebench_4k_4needle_zh + _needlebench_4k_5needle_zh
|
||||||
|
_needlebench_4k_origin = _needlebench_4k_origin_en + _needlebench_4k_origin_zh
|
||||||
|
_needlebench_4k_multi_needle = _needlebench_4k_multi_needle_en + _needlebench_4k_multi_needle_zh
|
||||||
|
|
||||||
|
# Repeating the same process for parallel (assuming it's similar to origin_en)
|
||||||
|
_needlebench_4k_parallel_en = []
|
||||||
|
_needlebench_4k_parallel_zh = []
|
||||||
|
for original_context_length in context_lengths_4k:
|
||||||
|
_needlebench_4k_parallel_en.append(f'Length{original_context_length}_parallel_en_4k')
|
||||||
|
for original_context_length in context_lengths_4k:
|
||||||
|
_needlebench_4k_parallel_zh.append(f'Length{original_context_length}_parallel_zh_4k')
|
||||||
|
_needlebench_4k_parallel = _needlebench_4k_parallel_en + _needlebench_4k_parallel_zh
|
||||||
|
|
||||||
|
needlebench_summary_groups = [
|
||||||
|
{'name': 'original_version', 'subsets': _needlebench_4k_origin},
|
||||||
|
{'name': 'original_version_zh', 'subsets': _needlebench_4k_origin_zh},
|
||||||
|
{'name': 'original_version_en', 'subsets': _needlebench_4k_origin_en},
|
||||||
|
|
||||||
|
{'name': 'multi_needle_en', 'subsets': _needlebench_4k_multi_needle_en},
|
||||||
|
{'name': 'multi_needle2_en', 'subsets': _needlebench_4k_2needle_en},
|
||||||
|
{'name': 'multi_needle3_en', 'subsets': _needlebench_4k_3needle_en},
|
||||||
|
{'name': 'multi_needle4_en', 'subsets': _needlebench_4k_4needle_en},
|
||||||
|
{'name': 'multi_needle5_en', 'subsets': _needlebench_4k_5needle_en},
|
||||||
|
|
||||||
|
{'name': 'multi_needle_zh', 'subsets': _needlebench_4k_multi_needle_zh},
|
||||||
|
{'name': 'multi_needle2_zh', 'subsets': _needlebench_4k_2needle_zh},
|
||||||
|
{'name': 'multi_needle3_zh', 'subsets': _needlebench_4k_3needle_zh},
|
||||||
|
{'name': 'multi_needle4_zh', 'subsets': _needlebench_4k_4needle_zh},
|
||||||
|
{'name': 'multi_needle5_zh', 'subsets': _needlebench_4k_5needle_zh},
|
||||||
|
|
||||||
|
{'name': 'multi_needle', 'subsets': _needlebench_4k_multi_needle},
|
||||||
|
|
||||||
|
{'name': 'parallel_version', 'subsets': _needlebench_4k_parallel},
|
||||||
|
{'name': 'parallel_version_zh', 'subsets': _needlebench_4k_parallel_zh},
|
||||||
|
{'name': 'parallel_version_en', 'subsets': _needlebench_4k_parallel_en},
|
||||||
|
|
||||||
|
|
||||||
|
{'name': 'overall',
|
||||||
|
'subsets': [['original_version', 'naive_average'],
|
||||||
|
['multi_needle', 'naive_average'],
|
||||||
|
['parallel_version', 'average_score']],
|
||||||
|
'weights': {'original_version': 0.4,
|
||||||
|
'multi_needle': 0.3,
|
||||||
|
'parallel_version': 0.3}},
|
||||||
|
]
|
||||||
|
needlebench_4k_summarizer = dict(
|
||||||
|
type=NeedleBenchSummarizer,
|
||||||
|
dataset_abbrs=[
|
||||||
|
'overall',
|
||||||
|
'--------- NeedleBench-4k Single-Needle ---------', # category
|
||||||
|
'original_version',
|
||||||
|
'original_version_zh',
|
||||||
|
'original_version_en',
|
||||||
|
'--------- NeedleBench-4k Parallel-Needles ---------', # category
|
||||||
|
'parallel_version',
|
||||||
|
'parallel_version_zh',
|
||||||
|
'parallel_version_en',
|
||||||
|
'--------- NeedleBench-4k Multi-Needles ---------', # category
|
||||||
|
'multi_needle',
|
||||||
|
'multi_needle_en',
|
||||||
|
'multi_needle_zh',
|
||||||
|
'multi_needle2_en',
|
||||||
|
'multi_needle3_en',
|
||||||
|
'multi_needle4_en',
|
||||||
|
'multi_needle5_en',
|
||||||
|
'multi_needle2_zh',
|
||||||
|
'multi_needle3_zh',
|
||||||
|
'multi_needle4_zh',
|
||||||
|
'multi_needle5_zh',
|
||||||
|
|
||||||
|
# *_needlebench_4k_origin, *_needlebench_4k_multi_needle, *_needlebench_4k_parallel,
|
||||||
|
],
|
||||||
|
summary_groups=needlebench_summary_groups,
|
||||||
|
)
|
||||||
|
|
||||||
|
# ----------NeedleBench-8k-summarizer----------
|
||||||
|
|
||||||
|
context_lengths_8k = list(range(5000, 9000, 1000))
|
||||||
|
|
||||||
|
# Initialize the lists
|
||||||
|
_needlebench_8k_2needle_en = []
|
||||||
|
_needlebench_8k_3needle_en = []
|
||||||
|
_needlebench_8k_4needle_en = []
|
||||||
|
_needlebench_8k_5needle_en = []
|
||||||
|
_needlebench_8k_2needle_zh = []
|
||||||
|
_needlebench_8k_3needle_zh = []
|
||||||
|
_needlebench_8k_4needle_zh = []
|
||||||
|
_needlebench_8k_5needle_zh = []
|
||||||
|
_needlebench_8k_origin_en = []
|
||||||
|
_needlebench_8k_origin_zh = []
|
||||||
|
|
||||||
|
# Fill the lists using nested loops
|
||||||
|
for original_context_length in context_lengths_8k:
|
||||||
|
for depth_percent in depths:
|
||||||
|
_needlebench_8k_2needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_2needle_en_8k')
|
||||||
|
_needlebench_8k_3needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_3needle_en_8k')
|
||||||
|
_needlebench_8k_4needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_4needle_en_8k')
|
||||||
|
_needlebench_8k_5needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_5needle_en_8k')
|
||||||
|
_needlebench_8k_2needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_2needle_zh_8k')
|
||||||
|
_needlebench_8k_3needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_3needle_zh_8k')
|
||||||
|
_needlebench_8k_4needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_4needle_zh_8k')
|
||||||
|
_needlebench_8k_5needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_5needle_zh_8k')
|
||||||
|
|
||||||
|
_needlebench_8k_origin_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_origin_en_8k')
|
||||||
|
_needlebench_8k_origin_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_origin_zh_8k')
|
||||||
|
|
||||||
|
# Concatenate the multi-needle and origin lists
|
||||||
|
_needlebench_8k_multi_needle_en = _needlebench_8k_2needle_en + _needlebench_8k_3needle_en + _needlebench_8k_4needle_en + _needlebench_8k_5needle_en
|
||||||
|
_needlebench_8k_multi_needle_zh = _needlebench_8k_2needle_zh + _needlebench_8k_3needle_zh + _needlebench_8k_4needle_zh + _needlebench_8k_5needle_zh
|
||||||
|
_needlebench_8k_origin = _needlebench_8k_origin_en + _needlebench_8k_origin_zh
|
||||||
|
_needlebench_8k_multi_needle = _needlebench_8k_multi_needle_en + _needlebench_8k_multi_needle_zh
|
||||||
|
|
||||||
|
# Repeating the same process for parallel (assuming it's similar to origin_en)
|
||||||
|
_needlebench_8k_parallel_en = []
|
||||||
|
_needlebench_8k_parallel_zh = []
|
||||||
|
for original_context_length in context_lengths_8k:
|
||||||
|
_needlebench_8k_parallel_en.append(f'Length{original_context_length}_parallel_en_8k')
|
||||||
|
for original_context_length in context_lengths_8k:
|
||||||
|
_needlebench_8k_parallel_zh.append(f'Length{original_context_length}_parallel_zh_8k')
|
||||||
|
_needlebench_8k_parallel = _needlebench_8k_parallel_en + _needlebench_8k_parallel_zh
|
||||||
|
|
||||||
|
needlebench_summary_groups = [
|
||||||
|
{'name': 'original_version', 'subsets': _needlebench_8k_origin},
|
||||||
|
{'name': 'original_version_zh', 'subsets': _needlebench_8k_origin_zh},
|
||||||
|
{'name': 'original_version_en', 'subsets': _needlebench_8k_origin_en},
|
||||||
|
|
||||||
|
{'name': 'multi_needle_en', 'subsets': _needlebench_8k_multi_needle_en},
|
||||||
|
{'name': 'multi_needle2_en', 'subsets': _needlebench_8k_2needle_en},
|
||||||
|
{'name': 'multi_needle3_en', 'subsets': _needlebench_8k_3needle_en},
|
||||||
|
{'name': 'multi_needle4_en', 'subsets': _needlebench_8k_4needle_en},
|
||||||
|
{'name': 'multi_needle5_en', 'subsets': _needlebench_8k_5needle_en},
|
||||||
|
|
||||||
|
{'name': 'multi_needle_zh', 'subsets': _needlebench_8k_multi_needle_zh},
|
||||||
|
{'name': 'multi_needle2_zh', 'subsets': _needlebench_8k_2needle_zh},
|
||||||
|
{'name': 'multi_needle3_zh', 'subsets': _needlebench_8k_3needle_zh},
|
||||||
|
{'name': 'multi_needle4_zh', 'subsets': _needlebench_8k_4needle_zh},
|
||||||
|
{'name': 'multi_needle5_zh', 'subsets': _needlebench_8k_5needle_zh},
|
||||||
|
|
||||||
|
{'name': 'multi_needle', 'subsets': _needlebench_8k_multi_needle},
|
||||||
|
|
||||||
|
{'name': 'parallel_version', 'subsets': _needlebench_8k_parallel},
|
||||||
|
{'name': 'parallel_version_zh', 'subsets': _needlebench_8k_parallel_zh},
|
||||||
|
{'name': 'parallel_version_en', 'subsets': _needlebench_8k_parallel_en},
|
||||||
|
|
||||||
|
|
||||||
|
{'name': 'overall',
|
||||||
|
'subsets': [['original_version', 'naive_average'],
|
||||||
|
['multi_needle', 'naive_average'],
|
||||||
|
['parallel_version', 'average_score']],
|
||||||
|
'weights': {'original_version': 0.4,
|
||||||
|
'multi_needle': 0.3,
|
||||||
|
'parallel_version': 0.3}},
|
||||||
|
]
|
||||||
|
needlebench_8k_summarizer = dict(
|
||||||
|
type=NeedleBenchSummarizer,
|
||||||
|
dataset_abbrs=[
|
||||||
|
'overall',
|
||||||
|
'--------- NeedleBench-8k Single-Needle ---------', # category
|
||||||
|
'original_version',
|
||||||
|
'original_version_zh',
|
||||||
|
'original_version_en',
|
||||||
|
'--------- NeedleBench-8k Parallel-Needles ---------', # category
|
||||||
|
'parallel_version',
|
||||||
|
'parallel_version_zh',
|
||||||
|
'parallel_version_en',
|
||||||
|
'--------- NeedleBench-8k Multi-Needles ---------', # category
|
||||||
|
'multi_needle',
|
||||||
|
'multi_needle_en',
|
||||||
|
'multi_needle_zh',
|
||||||
|
'multi_needle2_en',
|
||||||
|
'multi_needle3_en',
|
||||||
|
'multi_needle4_en',
|
||||||
|
'multi_needle5_en',
|
||||||
|
'multi_needle2_zh',
|
||||||
|
'multi_needle3_zh',
|
||||||
|
'multi_needle4_zh',
|
||||||
|
'multi_needle5_zh',
|
||||||
|
|
||||||
|
# *_needlebench_8k_origin, *_needlebench_8k_multi_needle, *_needlebench_8k_parallel,
|
||||||
|
],
|
||||||
|
summary_groups=needlebench_summary_groups,
|
||||||
|
)
|
||||||
|
|
||||||
|
# ----------NeedleBench-32k-summarizer----------
|
||||||
|
|
||||||
|
context_lengths_32k = [9000, 13000, 17000, 21000, 25000, 29000, 31000, 32000]
|
||||||
|
|
||||||
|
# Initialize the lists
|
||||||
|
_needlebench_32k_2needle_en = []
|
||||||
|
_needlebench_32k_3needle_en = []
|
||||||
|
_needlebench_32k_4needle_en = []
|
||||||
|
_needlebench_32k_5needle_en = []
|
||||||
|
_needlebench_32k_2needle_zh = []
|
||||||
|
_needlebench_32k_3needle_zh = []
|
||||||
|
_needlebench_32k_4needle_zh = []
|
||||||
|
_needlebench_32k_5needle_zh = []
|
||||||
|
_needlebench_32k_origin_en = []
|
||||||
|
_needlebench_32k_origin_zh = []
|
||||||
|
|
||||||
|
# Fill the lists using nested loops
|
||||||
|
for original_context_length in context_lengths_32k:
|
||||||
|
for depth_percent in depths:
|
||||||
|
_needlebench_32k_2needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_2needle_en_32k')
|
||||||
|
_needlebench_32k_3needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_3needle_en_32k')
|
||||||
|
_needlebench_32k_4needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_4needle_en_32k')
|
||||||
|
_needlebench_32k_5needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_5needle_en_32k')
|
||||||
|
_needlebench_32k_2needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_2needle_zh_32k')
|
||||||
|
_needlebench_32k_3needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_3needle_zh_32k')
|
||||||
|
_needlebench_32k_4needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_4needle_zh_32k')
|
||||||
|
_needlebench_32k_5needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_5needle_zh_32k')
|
||||||
|
|
||||||
|
_needlebench_32k_origin_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_origin_en_32k')
|
||||||
|
_needlebench_32k_origin_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_origin_zh_32k')
|
||||||
|
|
||||||
|
# Concatenate the multi-needle and origin lists
|
||||||
|
_needlebench_32k_multi_needle_en = _needlebench_32k_2needle_en + _needlebench_32k_3needle_en + _needlebench_32k_4needle_en + _needlebench_32k_5needle_en
|
||||||
|
_needlebench_32k_multi_needle_zh = _needlebench_32k_2needle_zh + _needlebench_32k_3needle_zh + _needlebench_32k_4needle_zh + _needlebench_32k_5needle_zh
|
||||||
|
_needlebench_32k_origin = _needlebench_32k_origin_en + _needlebench_32k_origin_zh
|
||||||
|
_needlebench_32k_multi_needle = _needlebench_32k_multi_needle_en + _needlebench_32k_multi_needle_zh
|
||||||
|
|
||||||
|
# Repeating the same process for parallel (assuming it's similar to origin_en)
|
||||||
|
_needlebench_32k_parallel_en = []
|
||||||
|
_needlebench_32k_parallel_zh = []
|
||||||
|
for original_context_length in context_lengths_32k:
|
||||||
|
_needlebench_32k_parallel_en.append(f'Length{original_context_length}_parallel_en_32k')
|
||||||
|
for original_context_length in context_lengths_32k:
|
||||||
|
_needlebench_32k_parallel_zh.append(f'Length{original_context_length}_parallel_zh_32k')
|
||||||
|
_needlebench_32k_parallel = _needlebench_32k_parallel_en + _needlebench_32k_parallel_zh
|
||||||
|
|
||||||
|
needlebench_summary_groups = [
|
||||||
|
{'name': 'original_version', 'subsets': _needlebench_32k_origin},
|
||||||
|
{'name': 'original_version_zh', 'subsets': _needlebench_32k_origin_zh},
|
||||||
|
{'name': 'original_version_en', 'subsets': _needlebench_32k_origin_en},
|
||||||
|
|
||||||
|
{'name': 'multi_needle_en', 'subsets': _needlebench_32k_multi_needle_en},
|
||||||
|
{'name': 'multi_needle2_en', 'subsets': _needlebench_32k_2needle_en},
|
||||||
|
{'name': 'multi_needle3_en', 'subsets': _needlebench_32k_3needle_en},
|
||||||
|
{'name': 'multi_needle4_en', 'subsets': _needlebench_32k_4needle_en},
|
||||||
|
{'name': 'multi_needle5_en', 'subsets': _needlebench_32k_5needle_en},
|
||||||
|
|
||||||
|
{'name': 'multi_needle_zh', 'subsets': _needlebench_32k_multi_needle_zh},
|
||||||
|
{'name': 'multi_needle2_zh', 'subsets': _needlebench_32k_2needle_zh},
|
||||||
|
{'name': 'multi_needle3_zh', 'subsets': _needlebench_32k_3needle_zh},
|
||||||
|
{'name': 'multi_needle4_zh', 'subsets': _needlebench_32k_4needle_zh},
|
||||||
|
{'name': 'multi_needle5_zh', 'subsets': _needlebench_32k_5needle_zh},
|
||||||
|
|
||||||
|
{'name': 'multi_needle', 'subsets': _needlebench_32k_multi_needle},
|
||||||
|
|
||||||
|
{'name': 'parallel_version', 'subsets': _needlebench_32k_parallel},
|
||||||
|
{'name': 'parallel_version_zh', 'subsets': _needlebench_32k_parallel_zh},
|
||||||
|
{'name': 'parallel_version_en', 'subsets': _needlebench_32k_parallel_en},
|
||||||
|
|
||||||
|
|
||||||
|
{'name': 'overall',
|
||||||
|
'subsets': [['original_version', 'naive_average'],
|
||||||
|
['multi_needle', 'naive_average'],
|
||||||
|
['parallel_version', 'average_score']],
|
||||||
|
'weights': {'original_version': 0.4,
|
||||||
|
'multi_needle': 0.3,
|
||||||
|
'parallel_version': 0.3}},
|
||||||
|
]
|
||||||
|
needlebench_32k_summarizer = dict(
|
||||||
|
type=NeedleBenchSummarizer,
|
||||||
|
dataset_abbrs=[
|
||||||
|
'overall',
|
||||||
|
'--------- NeedleBench-32k Single-Needle ---------', # category
|
||||||
|
'original_version',
|
||||||
|
'original_version_zh',
|
||||||
|
'original_version_en',
|
||||||
|
'--------- NeedleBench-32k Parallel-Needles ---------', # category
|
||||||
|
'parallel_version',
|
||||||
|
'parallel_version_zh',
|
||||||
|
'parallel_version_en',
|
||||||
|
'--------- NeedleBench-32k Multi-Needles ---------', # category
|
||||||
|
'multi_needle',
|
||||||
|
'multi_needle_en',
|
||||||
|
'multi_needle_zh',
|
||||||
|
'multi_needle2_en',
|
||||||
|
'multi_needle3_en',
|
||||||
|
'multi_needle4_en',
|
||||||
|
'multi_needle5_en',
|
||||||
|
'multi_needle2_zh',
|
||||||
|
'multi_needle3_zh',
|
||||||
|
'multi_needle4_zh',
|
||||||
|
'multi_needle5_zh',
|
||||||
|
|
||||||
|
# *_needlebench_32k_origin, *_needlebench_32k_multi_needle, *_needlebench_32k_parallel,
|
||||||
|
],
|
||||||
|
summary_groups=needlebench_summary_groups,
|
||||||
|
)
|
||||||
|
|
||||||
|
# ----------NeedleBench-128k-summarizer----------
|
||||||
|
|
||||||
|
context_lengths_128k = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000])
|
||||||
|
|
||||||
|
# Initialize the lists
|
||||||
|
_needlebench_128k_2needle_en = []
|
||||||
|
_needlebench_128k_3needle_en = []
|
||||||
|
_needlebench_128k_4needle_en = []
|
||||||
|
_needlebench_128k_5needle_en = []
|
||||||
|
_needlebench_128k_2needle_zh = []
|
||||||
|
_needlebench_128k_3needle_zh = []
|
||||||
|
_needlebench_128k_4needle_zh = []
|
||||||
|
_needlebench_128k_5needle_zh = []
|
||||||
|
_needlebench_128k_origin_en = []
|
||||||
|
_needlebench_128k_origin_zh = []
|
||||||
|
|
||||||
|
# Fill the lists using nested loops
|
||||||
|
for original_context_length in context_lengths_128k:
|
||||||
|
for depth_percent in depths:
|
||||||
|
_needlebench_128k_2needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_2needle_en_128k')
|
||||||
|
_needlebench_128k_3needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_3needle_en_128k')
|
||||||
|
_needlebench_128k_4needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_4needle_en_128k')
|
||||||
|
_needlebench_128k_5needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_5needle_en_128k')
|
||||||
|
_needlebench_128k_2needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_2needle_zh_128k')
|
||||||
|
_needlebench_128k_3needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_3needle_zh_128k')
|
||||||
|
_needlebench_128k_4needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_4needle_zh_128k')
|
||||||
|
_needlebench_128k_5needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_5needle_zh_128k')
|
||||||
|
|
||||||
|
_needlebench_128k_origin_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_origin_en_128k')
|
||||||
|
_needlebench_128k_origin_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_origin_zh_128k')
|
||||||
|
|
||||||
|
# Concatenate the multi-needle and origin lists
|
||||||
|
_needlebench_128k_multi_needle_en = _needlebench_128k_2needle_en + _needlebench_128k_3needle_en + _needlebench_128k_4needle_en + _needlebench_128k_5needle_en
|
||||||
|
_needlebench_128k_multi_needle_zh = _needlebench_128k_2needle_zh + _needlebench_128k_3needle_zh + _needlebench_128k_4needle_zh + _needlebench_128k_5needle_zh
|
||||||
|
_needlebench_128k_origin = _needlebench_128k_origin_en + _needlebench_128k_origin_zh
|
||||||
|
_needlebench_128k_multi_needle = _needlebench_128k_multi_needle_en + _needlebench_128k_multi_needle_zh
|
||||||
|
|
||||||
|
# Repeating the same process for parallel (assuming it's similar to origin_en)
|
||||||
|
_needlebench_128k_parallel_en = []
|
||||||
|
_needlebench_128k_parallel_zh = []
|
||||||
|
for original_context_length in context_lengths_128k:
|
||||||
|
_needlebench_128k_parallel_en.append(f'Length{original_context_length}_parallel_en_128k')
|
||||||
|
for original_context_length in context_lengths_128k:
|
||||||
|
_needlebench_128k_parallel_zh.append(f'Length{original_context_length}_parallel_zh_128k')
|
||||||
|
_needlebench_128k_parallel = _needlebench_128k_parallel_en + _needlebench_128k_parallel_zh
|
||||||
|
|
||||||
|
needlebench_summary_groups = [
|
||||||
|
{'name': 'original_version', 'subsets': _needlebench_128k_origin},
|
||||||
|
{'name': 'original_version_zh', 'subsets': _needlebench_128k_origin_zh},
|
||||||
|
{'name': 'original_version_en', 'subsets': _needlebench_128k_origin_en},
|
||||||
|
|
||||||
|
{'name': 'multi_needle_en', 'subsets': _needlebench_128k_multi_needle_en},
|
||||||
|
{'name': 'multi_needle2_en', 'subsets': _needlebench_128k_2needle_en},
|
||||||
|
{'name': 'multi_needle3_en', 'subsets': _needlebench_128k_3needle_en},
|
||||||
|
{'name': 'multi_needle4_en', 'subsets': _needlebench_128k_4needle_en},
|
||||||
|
{'name': 'multi_needle5_en', 'subsets': _needlebench_128k_5needle_en},
|
||||||
|
|
||||||
|
{'name': 'multi_needle_zh', 'subsets': _needlebench_128k_multi_needle_zh},
|
||||||
|
{'name': 'multi_needle2_zh', 'subsets': _needlebench_128k_2needle_zh},
|
||||||
|
{'name': 'multi_needle3_zh', 'subsets': _needlebench_128k_3needle_zh},
|
||||||
|
{'name': 'multi_needle4_zh', 'subsets': _needlebench_128k_4needle_zh},
|
||||||
|
{'name': 'multi_needle5_zh', 'subsets': _needlebench_128k_5needle_zh},
|
||||||
|
|
||||||
|
{'name': 'multi_needle', 'subsets': _needlebench_128k_multi_needle},
|
||||||
|
|
||||||
|
{'name': 'parallel_version', 'subsets': _needlebench_128k_parallel},
|
||||||
|
{'name': 'parallel_version_zh', 'subsets': _needlebench_128k_parallel_zh},
|
||||||
|
{'name': 'parallel_version_en', 'subsets': _needlebench_128k_parallel_en},
|
||||||
|
|
||||||
|
|
||||||
|
{'name': 'overall',
|
||||||
|
'subsets': [['original_version', 'naive_average'],
|
||||||
|
['multi_needle', 'naive_average'],
|
||||||
|
['parallel_version', 'average_score']],
|
||||||
|
'weights': {'original_version': 0.4,
|
||||||
|
'multi_needle': 0.3,
|
||||||
|
'parallel_version': 0.3}},
|
||||||
|
]
|
||||||
|
needlebench_128k_summarizer = dict(
|
||||||
|
type=NeedleBenchSummarizer,
|
||||||
|
dataset_abbrs=[
|
||||||
|
'overall',
|
||||||
|
'--------- NeedleBench-128k Single-Needle ---------', # category
|
||||||
|
'original_version',
|
||||||
|
'original_version_zh',
|
||||||
|
'original_version_en',
|
||||||
|
'--------- NeedleBench-128k Parallel-Needles ---------', # category
|
||||||
|
'parallel_version',
|
||||||
|
'parallel_version_zh',
|
||||||
|
'parallel_version_en',
|
||||||
|
'--------- NeedleBench-128k Multi-Needles ---------', # category
|
||||||
|
'multi_needle',
|
||||||
|
'multi_needle_en',
|
||||||
|
'multi_needle_zh',
|
||||||
|
'multi_needle2_en',
|
||||||
|
'multi_needle3_en',
|
||||||
|
'multi_needle4_en',
|
||||||
|
'multi_needle5_en',
|
||||||
|
'multi_needle2_zh',
|
||||||
|
'multi_needle3_zh',
|
||||||
|
'multi_needle4_zh',
|
||||||
|
'multi_needle5_zh',
|
||||||
|
|
||||||
|
# *_needlebench_128k_origin, *_needlebench_128k_multi_needle, *_needlebench_128k_parallel,
|
||||||
|
],
|
||||||
|
summary_groups=needlebench_summary_groups,
|
||||||
|
)
|
||||||
|
|
||||||
|
# ----------NeedleBench-200k-summarizer----------
|
||||||
|
|
||||||
|
context_lengths_200k = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
|
||||||
|
|
||||||
|
# Initialize the lists
|
||||||
|
_needlebench_200k_2needle_en = []
|
||||||
|
_needlebench_200k_3needle_en = []
|
||||||
|
_needlebench_200k_4needle_en = []
|
||||||
|
_needlebench_200k_5needle_en = []
|
||||||
|
_needlebench_200k_2needle_zh = []
|
||||||
|
_needlebench_200k_3needle_zh = []
|
||||||
|
_needlebench_200k_4needle_zh = []
|
||||||
|
_needlebench_200k_5needle_zh = []
|
||||||
|
_needlebench_200k_origin_en = []
|
||||||
|
_needlebench_200k_origin_zh = []
|
||||||
|
|
||||||
|
# Fill the lists using nested loops
|
||||||
|
for original_context_length in context_lengths_200k:
|
||||||
|
for depth_percent in depths:
|
||||||
|
_needlebench_200k_2needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_2needle_en_200k')
|
||||||
|
_needlebench_200k_3needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_3needle_en_200k')
|
||||||
|
_needlebench_200k_4needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_4needle_en_200k')
|
||||||
|
_needlebench_200k_5needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_5needle_en_200k')
|
||||||
|
_needlebench_200k_2needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_2needle_zh_200k')
|
||||||
|
_needlebench_200k_3needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_3needle_zh_200k')
|
||||||
|
_needlebench_200k_4needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_4needle_zh_200k')
|
||||||
|
_needlebench_200k_5needle_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_5needle_zh_200k')
|
||||||
|
|
||||||
|
_needlebench_200k_origin_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_origin_en_200k')
|
||||||
|
_needlebench_200k_origin_zh.append(f'Length{original_context_length}Depth{int(depth_percent)}_origin_zh_200k')
|
||||||
|
|
||||||
|
# Concatenate the multi-needle and origin lists
|
||||||
|
_needlebench_200k_multi_needle_en = _needlebench_200k_2needle_en + _needlebench_200k_3needle_en + _needlebench_200k_4needle_en + _needlebench_200k_5needle_en
|
||||||
|
_needlebench_200k_multi_needle_zh = _needlebench_200k_2needle_zh + _needlebench_200k_3needle_zh + _needlebench_200k_4needle_zh + _needlebench_200k_5needle_zh
|
||||||
|
_needlebench_200k_origin = _needlebench_200k_origin_en + _needlebench_200k_origin_zh
|
||||||
|
_needlebench_200k_multi_needle = _needlebench_200k_multi_needle_en + _needlebench_200k_multi_needle_zh
|
||||||
|
|
||||||
|
# Repeating the same process for parallel (assuming it's similar to origin_en)
|
||||||
|
_needlebench_200k_parallel_en = []
|
||||||
|
_needlebench_200k_parallel_zh = []
|
||||||
|
for original_context_length in context_lengths_200k:
|
||||||
|
_needlebench_200k_parallel_en.append(f'Length{original_context_length}_parallel_en_200k')
|
||||||
|
for original_context_length in context_lengths_200k:
|
||||||
|
_needlebench_200k_parallel_zh.append(f'Length{original_context_length}_parallel_zh_200k')
|
||||||
|
_needlebench_200k_parallel = _needlebench_200k_parallel_en + _needlebench_200k_parallel_zh
|
||||||
|
|
||||||
|
needlebench_summary_groups = [
|
||||||
|
{'name': 'original_version', 'subsets': _needlebench_200k_origin},
|
||||||
|
{'name': 'original_version_zh', 'subsets': _needlebench_200k_origin_zh},
|
||||||
|
{'name': 'original_version_en', 'subsets': _needlebench_200k_origin_en},
|
||||||
|
|
||||||
|
{'name': 'multi_needle_en', 'subsets': _needlebench_200k_multi_needle_en},
|
||||||
|
{'name': 'multi_needle2_en', 'subsets': _needlebench_200k_2needle_en},
|
||||||
|
{'name': 'multi_needle3_en', 'subsets': _needlebench_200k_3needle_en},
|
||||||
|
{'name': 'multi_needle4_en', 'subsets': _needlebench_200k_4needle_en},
|
||||||
|
{'name': 'multi_needle5_en', 'subsets': _needlebench_200k_5needle_en},
|
||||||
|
|
||||||
|
{'name': 'multi_needle_zh', 'subsets': _needlebench_200k_multi_needle_zh},
|
||||||
|
{'name': 'multi_needle2_zh', 'subsets': _needlebench_200k_2needle_zh},
|
||||||
|
{'name': 'multi_needle3_zh', 'subsets': _needlebench_200k_3needle_zh},
|
||||||
|
{'name': 'multi_needle4_zh', 'subsets': _needlebench_200k_4needle_zh},
|
||||||
|
{'name': 'multi_needle5_zh', 'subsets': _needlebench_200k_5needle_zh},
|
||||||
|
|
||||||
|
{'name': 'multi_needle', 'subsets': _needlebench_200k_multi_needle},
|
||||||
|
|
||||||
|
{'name': 'parallel_version', 'subsets': _needlebench_200k_parallel},
|
||||||
|
{'name': 'parallel_version_zh', 'subsets': _needlebench_200k_parallel_zh},
|
||||||
|
{'name': 'parallel_version_en', 'subsets': _needlebench_200k_parallel_en},
|
||||||
|
|
||||||
|
{'name': 'overall',
|
||||||
|
'subsets': [['original_version', 'naive_average'],
|
||||||
|
['multi_needle', 'naive_average'],
|
||||||
|
['parallel_version', 'average_score']],
|
||||||
|
'weights': {'original_version': 0.4,
|
||||||
|
'multi_needle': 0.3,
|
||||||
|
'parallel_version': 0.3}},
|
||||||
|
]
|
||||||
|
needlebench_200k_summarizer = dict(
|
||||||
|
type=NeedleBenchSummarizer,
|
||||||
|
dataset_abbrs=[
|
||||||
|
'overall',
|
||||||
|
'--------- NeedleBench-200k Single-Needle ---------', # category
|
||||||
|
'original_version',
|
||||||
|
'original_version_zh',
|
||||||
|
'original_version_en',
|
||||||
|
'--------- NeedleBench-200k Parallel-Needles ---------', # category
|
||||||
|
'parallel_version',
|
||||||
|
'parallel_version_zh',
|
||||||
|
'parallel_version_en',
|
||||||
|
'--------- NeedleBench-200k Multi-Needles ---------', # category
|
||||||
|
'multi_needle',
|
||||||
|
'multi_needle_en',
|
||||||
|
'multi_needle_zh',
|
||||||
|
'multi_needle2_en',
|
||||||
|
'multi_needle3_en',
|
||||||
|
'multi_needle4_en',
|
||||||
|
'multi_needle5_en',
|
||||||
|
'multi_needle2_zh',
|
||||||
|
'multi_needle3_zh',
|
||||||
|
'multi_needle4_zh',
|
||||||
|
'multi_needle5_zh',
|
||||||
|
|
||||||
|
# *_needlebench_200k_origin, *_needlebench_200k_multi_needle, *_needlebench_200k_parallel,
|
||||||
|
],
|
||||||
|
summary_groups=needlebench_summary_groups,
|
||||||
|
)
|
||||||
|
context_lengths_8k = list(range(5000, 9000, 1000))
|
||||||
|
|
||||||
|
# Repeating the same process for parallel (assuming it's similar to origin_en)
|
||||||
|
_needlebench_8k_parallel_en_batch1 = []
|
||||||
|
_needlebench_8k_parallel_en_batch5 = []
|
||||||
|
_needlebench_8k_parallel_en_batch10 = []
|
||||||
|
_needlebench_8k_parallel_en_batch15 = []
|
||||||
|
_needlebench_8k_parallel_en_batch20 = []
|
||||||
|
_needlebench_8k_parallel_zh_batch1 = []
|
||||||
|
_needlebench_8k_parallel_zh_batch5 = []
|
||||||
|
_needlebench_8k_parallel_zh_batch10 = []
|
||||||
|
_needlebench_8k_parallel_zh_batch15 = []
|
||||||
|
_needlebench_8k_parallel_zh_batch20 = []
|
||||||
|
for original_context_length in context_lengths_8k:
|
||||||
|
_needlebench_8k_parallel_en_batch1.append(f'Length{original_context_length}_parallel_en_8k_batch1')
|
||||||
|
_needlebench_8k_parallel_en_batch5.append(f'Length{original_context_length}_parallel_en_8k_batch5')
|
||||||
|
_needlebench_8k_parallel_en_batch10.append(f'Length{original_context_length}_parallel_en_8k_batch10')
|
||||||
|
_needlebench_8k_parallel_en_batch15.append(f'Length{original_context_length}_parallel_en_8k_batch15')
|
||||||
|
_needlebench_8k_parallel_en_batch20.append(f'Length{original_context_length}_parallel_en_8k_batch20')
|
||||||
|
_needlebench_8k_parallel_zh_batch1.append(f'Length{original_context_length}_parallel_zh_8k_batch1')
|
||||||
|
_needlebench_8k_parallel_zh_batch5.append(f'Length{original_context_length}_parallel_zh_8k_batch5')
|
||||||
|
_needlebench_8k_parallel_zh_batch10.append(f'Length{original_context_length}_parallel_zh_8k_batch10')
|
||||||
|
_needlebench_8k_parallel_zh_batch15.append(f'Length{original_context_length}_parallel_zh_8k_batch15')
|
||||||
|
_needlebench_8k_parallel_zh_batch20.append(f'Length{original_context_length}_parallel_zh_8k_batch20')
|
||||||
|
|
||||||
|
|
||||||
|
_needlebench_8k_parallel_batch1 = _needlebench_8k_parallel_en_batch1 + _needlebench_8k_parallel_zh_batch1
|
||||||
|
_needlebench_8k_parallel_batch5 = _needlebench_8k_parallel_en_batch5 + _needlebench_8k_parallel_zh_batch5
|
||||||
|
_needlebench_8k_parallel_batch10 = _needlebench_8k_parallel_en_batch10 + _needlebench_8k_parallel_zh_batch10
|
||||||
|
_needlebench_8k_parallel_batch15 = _needlebench_8k_parallel_en_batch15 + _needlebench_8k_parallel_zh_batch15
|
||||||
|
_needlebench_8k_parallel_batch20 = _needlebench_8k_parallel_en_batch20 + _needlebench_8k_parallel_zh_batch20
|
||||||
|
|
||||||
|
needlebench_summary_groups = [
|
||||||
|
{'name': 'parallel_version_batch1', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_batch1]},
|
||||||
|
{'name': 'parallel_version_zh_batch1', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_zh_batch1]},
|
||||||
|
{'name': 'parallel_version_en_batch1', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_en_batch1]},
|
||||||
|
{'name': 'parallel_version_batch5', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_batch5]},
|
||||||
|
{'name': 'parallel_version_zh_batch5', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_zh_batch5]},
|
||||||
|
{'name': 'parallel_version_en_batch5', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_en_batch5]},
|
||||||
|
{'name': 'parallel_version_batch10', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_batch10]},
|
||||||
|
{'name': 'parallel_version_zh_batch10', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_zh_batch10]},
|
||||||
|
{'name': 'parallel_version_en_batch10', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_en_batch10]},
|
||||||
|
{'name': 'parallel_version_batch15', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_batch15]},
|
||||||
|
{'name': 'parallel_version_zh_batch15', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_zh_batch15]},
|
||||||
|
{'name': 'parallel_version_en_batch15', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_en_batch15]},
|
||||||
|
{'name': 'parallel_version_batch20', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_batch20]},
|
||||||
|
{'name': 'parallel_version_zh_batch20', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_zh_batch20]},
|
||||||
|
{'name': 'parallel_version_en_batch20', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_en_batch20]},
|
||||||
|
]
|
||||||
|
|
||||||
|
needlebench_8k_batch_overall_summarizer = dict(
|
||||||
|
dataset_abbrs=[
|
||||||
|
'--------- NeedleBench-8k Parallel-Needles ---------', # category
|
||||||
|
'parallel_version_batch1',
|
||||||
|
'parallel_version_batch5',
|
||||||
|
'parallel_version_batch10',
|
||||||
|
'parallel_version_batch15',
|
||||||
|
'parallel_version_batch20',
|
||||||
|
'parallel_version_zh_batch1',
|
||||||
|
'parallel_version_en_batch1',
|
||||||
|
'parallel_version_zh_batch5',
|
||||||
|
'parallel_version_en_batch5',
|
||||||
|
'parallel_version_zh_batch10',
|
||||||
|
'parallel_version_en_batch10',
|
||||||
|
'parallel_version_zh_batch15',
|
||||||
|
'parallel_version_en_batch15',
|
||||||
|
'parallel_version_zh_batch20',
|
||||||
|
'parallel_version_en_batch20',
|
||||||
|
# *_needlebench_8k_origin, *_needlebench_8k_multi_needle, *_needlebench_8k_parallel,
|
||||||
|
],
|
||||||
|
summary_groups=needlebench_summary_groups,
|
||||||
|
)
|
||||||
|
|
||||||
|
needlebench_summary_groups = [
|
||||||
|
{'name': 'parallel_version_batch1', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_batch1]},
|
||||||
|
{'name': 'parallel_version_zh_batch1', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_zh_batch1]},
|
||||||
|
{'name': 'parallel_version_en_batch1', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_en_batch1]},
|
||||||
|
{'name': 'parallel_version_batch5', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_batch5]},
|
||||||
|
{'name': 'parallel_version_zh_batch5', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_zh_batch5]},
|
||||||
|
{'name': 'parallel_version_en_batch5', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_en_batch5]},
|
||||||
|
{'name': 'parallel_version_batch10', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_batch10]},
|
||||||
|
{'name': 'parallel_version_zh_batch10', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_zh_batch10]},
|
||||||
|
{'name': 'parallel_version_en_batch10', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_en_batch10]},
|
||||||
|
{'name': 'parallel_version_batch15', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_batch15]},
|
||||||
|
{'name': 'parallel_version_zh_batch15', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_zh_batch15]},
|
||||||
|
{'name': 'parallel_version_en_batch15', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_en_batch15]},
|
||||||
|
{'name': 'parallel_version_batch20', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_batch20]},
|
||||||
|
{'name': 'parallel_version_zh_batch20', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_zh_batch20]},
|
||||||
|
{'name': 'parallel_version_en_batch20', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_en_batch20]},
|
||||||
|
]
|
||||||
|
|
||||||
|
needlebench_8k_batch_depth0_summarizer = dict(
|
||||||
|
dataset_abbrs=[
|
||||||
|
'--------- NeedleBench-8k Parallel-Needles ---------', # category
|
||||||
|
'parallel_version_batch1',
|
||||||
|
'parallel_version_batch5',
|
||||||
|
'parallel_version_batch10',
|
||||||
|
'parallel_version_batch15',
|
||||||
|
'parallel_version_batch20',
|
||||||
|
'parallel_version_zh_batch1',
|
||||||
|
'parallel_version_en_batch1',
|
||||||
|
'parallel_version_zh_batch5',
|
||||||
|
'parallel_version_en_batch5',
|
||||||
|
'parallel_version_zh_batch10',
|
||||||
|
'parallel_version_en_batch10',
|
||||||
|
'parallel_version_zh_batch15',
|
||||||
|
'parallel_version_en_batch15',
|
||||||
|
'parallel_version_zh_batch20',
|
||||||
|
'parallel_version_en_batch20',
|
||||||
|
# *_needlebench_8k_origin, *_needlebench_8k_multi_needle, *_needlebench_8k_parallel,
|
||||||
|
],
|
||||||
|
summary_groups=needlebench_summary_groups,
|
||||||
|
)
|
||||||
|
needlebench_atc_summarizer = dict(
|
||||||
|
type=NeedleBenchATCSummarizer,
|
||||||
|
)
|
247
opencompass/datasets/needlebench/atc.py
Normal file
247
opencompass/datasets/needlebench/atc.py
Normal file
@ -0,0 +1,247 @@
|
|||||||
|
# flake8: noqa
|
||||||
|
import json
|
||||||
|
import random
|
||||||
|
|
||||||
|
from datasets import Dataset
|
||||||
|
|
||||||
|
from opencompass.datasets.base import BaseDataset
|
||||||
|
from opencompass.registry import LOAD_DATASET
|
||||||
|
|
||||||
|
|
||||||
|
@LOAD_DATASET.register_module()
|
||||||
|
class NeedleBenchATCDataset(BaseDataset):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load(
|
||||||
|
path,
|
||||||
|
num_needles: int,
|
||||||
|
language: str,
|
||||||
|
repeats: int,
|
||||||
|
):
|
||||||
|
data = {'prompt': [], 'answer': []}
|
||||||
|
|
||||||
|
with open(path, 'r', encoding='utf-8') as file:
|
||||||
|
names_data = json.load(file)
|
||||||
|
|
||||||
|
all_names = names_data[language].split(',')
|
||||||
|
|
||||||
|
for _ in range(repeats):
|
||||||
|
names = random.sample(all_names, num_needles)
|
||||||
|
if language == 'Chinese':
|
||||||
|
|
||||||
|
relationship_terms = [
|
||||||
|
'父亲', '母亲', '爸爸', '妈妈', '爷爷', '奶奶', '姥姥', '姥爷', '外公', '外婆'
|
||||||
|
]
|
||||||
|
|
||||||
|
relationship_templates = [
|
||||||
|
'{A}是{B}的{relationship}。',
|
||||||
|
'{B}的{relationship}是{A}。',
|
||||||
|
'{A}作为{B}的{relationship},对{B}的成长有重要影响。',
|
||||||
|
'{A}不仅是{B}的{relationship},还是{B}的榜样。',
|
||||||
|
'{B}是{A}所生的孩子。',
|
||||||
|
'{A}对{B}来说,不只是一个{relationship},还是一个朋友。',
|
||||||
|
'{A}在{B}的生命中扮演着{relationship}的角色。',
|
||||||
|
'{B}把{A}视为其{relationship}。',
|
||||||
|
]
|
||||||
|
elif language == 'English':
|
||||||
|
|
||||||
|
relationship_terms = [
|
||||||
|
'father', 'mother', 'dad', 'mom', 'grandfather',
|
||||||
|
'grandmother', 'maternal grandmother',
|
||||||
|
'maternal grandfather', 'paternal grandfather',
|
||||||
|
'paternal grandmother'
|
||||||
|
]
|
||||||
|
|
||||||
|
relationship_templates = [
|
||||||
|
"{A} is {B}'s {relationship}.",
|
||||||
|
"{B}'s {relationship} is {A}.",
|
||||||
|
("{A}, as {B}'s {relationship}, "
|
||||||
|
"has a significant impact on {B}'s upbringing."),
|
||||||
|
("{A} is not only {B}'s {relationship} "
|
||||||
|
"but also {B}'s role model."),
|
||||||
|
'{B} is the child of {A}.',
|
||||||
|
('For {B}, {A} is not just a {relationship}, '
|
||||||
|
'but also a friend.'),
|
||||||
|
("{A} plays the role of {B}'s {relationship} "
|
||||||
|
"in {B}'s life."),
|
||||||
|
'{B} considers {A} as their {relationship}.',
|
||||||
|
]
|
||||||
|
|
||||||
|
def generate_chain_family_story(names, templates,
|
||||||
|
relationship_terms):
|
||||||
|
story = ''
|
||||||
|
for i in range(len(names) - 1):
|
||||||
|
template = random.choice(templates)
|
||||||
|
relation_term = random.choice(relationship_terms)
|
||||||
|
relation = template.format(A=names[i],
|
||||||
|
B=names[i + 1],
|
||||||
|
relationship=relation_term)
|
||||||
|
story += f'{relation}*'
|
||||||
|
return story
|
||||||
|
|
||||||
|
chain_story = generate_chain_family_story(names,
|
||||||
|
relationship_templates,
|
||||||
|
relationship_terms)
|
||||||
|
|
||||||
|
# Splitting the chain_story into a list of fragments
|
||||||
|
family_story_fragments = chain_story.split('*')
|
||||||
|
|
||||||
|
# Shuffling the list of fragments
|
||||||
|
random.shuffle(family_story_fragments)
|
||||||
|
|
||||||
|
# Joining the shuffled fragments back into a string
|
||||||
|
shuffled_story = ''.join(family_story_fragments)
|
||||||
|
|
||||||
|
last_person = names[-1]
|
||||||
|
|
||||||
|
# Generating the prompt based on the language
|
||||||
|
if language == 'Chinese':
|
||||||
|
prompt = (f"""
|
||||||
|
在上面提供的打乱的家族关系文本中,'{last_person}'的能够向上追溯到的最年长的亲人是谁?
|
||||||
|
例如:
|
||||||
|
例子1.如果张强的父亲是马克,此外提供的文本中没有更多关于亲属关系的信息,那么在提供的文本中张强能够向上追溯到的最年长的亲人就是马克。
|
||||||
|
例子2.如果李明的姥姥是张红,而张红的父亲是张强,此外提供的文本中没有更多关于亲属关系的信息,那么在提供的文本中李明能够向上追溯到的最年长的亲人就是张强。
|
||||||
|
例子3.如果小明是张红的曾孙女,张红的祖母是王华,王华的父亲是王刚,此外提供的文本中没有更多关于亲属关系的信息,那么小明能够向上追溯到的最年长的亲人就是王刚。
|
||||||
|
""")
|
||||||
|
elif language == 'English':
|
||||||
|
prompt = (f"""
|
||||||
|
Given the scrambled family relationships described above, who is the eldest relative that '{last_person}' can trace back to in the context?
|
||||||
|
For example:
|
||||||
|
Example 1: If Zhang Qiang's father is Mark, and no further information about familial relationships is provided in the text, then the oldest relative Zhang Qiang can trace back to in the provided text is Mark.
|
||||||
|
Example 2: If Li Ming's grandmother is Zhang Hong, and Zhang Hong's father is Zhang Qiang, and no further information about familial relationships is provided in the text, then the oldest relative Li Ming can trace back to in the provided text is Zhang Qiang.
|
||||||
|
Example 3: If Xiao Ming is Zhang Hong's great-granddaughter, Zhang Hong's grandmother is Wang Hua, and Wang Hua's father is Wang Gang, and no further information about familial relationships is provided in the text, then the oldest relative Xiao Ming can trace back to in the provided text is Wang Gang."""
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
prompt = 'Language not supported.'
|
||||||
|
raise Exception('Unsupported language specified. '
|
||||||
|
"Please choose either 'Chinese' or 'English'.")
|
||||||
|
|
||||||
|
# Combine story and prompt
|
||||||
|
shuffled_story_with_prompt = shuffled_story + ' ' + prompt
|
||||||
|
|
||||||
|
data['prompt'].append(shuffled_story_with_prompt)
|
||||||
|
data['answer'].append(names[0] + '*' + names[0])
|
||||||
|
|
||||||
|
dataset = Dataset.from_dict({
|
||||||
|
'prompt': data['prompt'],
|
||||||
|
'answer': data['answer'],
|
||||||
|
})
|
||||||
|
return dataset
|
||||||
|
|
||||||
|
|
||||||
|
@LOAD_DATASET.register_module()
|
||||||
|
class NeedleBenchATCOrderedDataset(BaseDataset):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load(
|
||||||
|
path,
|
||||||
|
num_needles: int,
|
||||||
|
language: str,
|
||||||
|
repeats: int,
|
||||||
|
):
|
||||||
|
data = {'prompt': [], 'answer': []}
|
||||||
|
|
||||||
|
with open(path, 'r', encoding='utf-8') as file:
|
||||||
|
names_data = json.load(file)
|
||||||
|
|
||||||
|
all_names = names_data[language].split(',')
|
||||||
|
|
||||||
|
for _ in range(repeats):
|
||||||
|
names = random.sample(all_names, num_needles)
|
||||||
|
if language == 'Chinese':
|
||||||
|
|
||||||
|
relationship_terms = [
|
||||||
|
'父亲', '母亲', '爸爸', '妈妈', '爷爷', '奶奶', '姥姥', '姥爷', '外公', '外婆'
|
||||||
|
]
|
||||||
|
|
||||||
|
relationship_templates = [
|
||||||
|
'{A}是{B}的{relationship}。',
|
||||||
|
'{B}的{relationship}是{A}。',
|
||||||
|
'{A}作为{B}的{relationship},对{B}的成长有重要影响。',
|
||||||
|
'{A}不仅是{B}的{relationship},还是{B}的榜样。',
|
||||||
|
'{B}是{A}所生的孩子。',
|
||||||
|
'{A}对{B}来说,不只是一个{relationship},还是一个朋友。',
|
||||||
|
'{A}在{B}的生命中扮演着{relationship}的角色。',
|
||||||
|
'{B}把{A}视为其{relationship}。',
|
||||||
|
]
|
||||||
|
elif language == 'English':
|
||||||
|
|
||||||
|
relationship_terms = [
|
||||||
|
'father', 'mother', 'dad', 'mom', 'grandfather',
|
||||||
|
'grandmother', 'maternal grandmother',
|
||||||
|
'maternal grandfather', 'paternal grandfather',
|
||||||
|
'paternal grandmother'
|
||||||
|
]
|
||||||
|
|
||||||
|
relationship_templates = [
|
||||||
|
"{A} is {B}'s {relationship}.",
|
||||||
|
"{B}'s {relationship} is {A}.",
|
||||||
|
("{A}, as {B}'s {relationship}, "
|
||||||
|
"has a significant impact on {B}'s upbringing."),
|
||||||
|
("{A} is not only {B}'s {relationship} "
|
||||||
|
"but also {B}'s role model."),
|
||||||
|
'{B} is the child of {A}.',
|
||||||
|
('For {B}, {A} is not just a {relationship}, '
|
||||||
|
'but also a friend.'),
|
||||||
|
("{A} plays the role of {B}'s {relationship} "
|
||||||
|
"in {B}'s life."),
|
||||||
|
'{B} considers {A} as their {relationship}.',
|
||||||
|
]
|
||||||
|
|
||||||
|
def generate_chain_family_story(names, templates,
|
||||||
|
relationship_terms):
|
||||||
|
story = ''
|
||||||
|
for i in range(len(names) - 1):
|
||||||
|
template = random.choice(templates)
|
||||||
|
relation_term = random.choice(relationship_terms)
|
||||||
|
relation = template.format(A=names[i],
|
||||||
|
B=names[i + 1],
|
||||||
|
relationship=relation_term)
|
||||||
|
story += f'{relation}*'
|
||||||
|
return story
|
||||||
|
|
||||||
|
chain_story = generate_chain_family_story(names,
|
||||||
|
relationship_templates,
|
||||||
|
relationship_terms)
|
||||||
|
|
||||||
|
# Splitting the chain_story into a list of fragments
|
||||||
|
family_story_fragments = chain_story.split('*')
|
||||||
|
|
||||||
|
# Joining the shuffled fragments back into a string
|
||||||
|
shuffled_story = ''.join(family_story_fragments)
|
||||||
|
|
||||||
|
last_person = names[-1]
|
||||||
|
|
||||||
|
# Generating the prompt based on the language
|
||||||
|
if language == 'Chinese':
|
||||||
|
prompt = (f"""
|
||||||
|
在上面提供的打乱的家族关系文本中,'{last_person}'的能够向上追溯到的最年长的亲人是谁?
|
||||||
|
例如:
|
||||||
|
例子1.如果张强的父亲是马克,除此以外提供的文本中没有更多关于亲属关系的信息,那么在提供的文本中张强能够向上追溯到的最年长的亲人就是马克。
|
||||||
|
例子2.如果李明的姥姥是张红,而张红的父亲是张强,除此以外提供的文本中没有更多关于亲属关系的信息,那么在提供的文本中李明能够向上追溯到的最年长的亲人就是张强。
|
||||||
|
例子3.如果小明是张红的曾孙女,张红的祖母是王华,王华的父亲是王刚,除此以外提供的文本中没有更多关于亲属关系的信息,那么小明能够向上追溯到的最年长的亲人就是王刚。
|
||||||
|
""")
|
||||||
|
elif language == 'English':
|
||||||
|
prompt = (f"""
|
||||||
|
Given the scrambled family relationships described above, who is the eldest relative that '{last_person}' can trace back to in the context?
|
||||||
|
For example:
|
||||||
|
Example 1: If Zhang Qiang's father is Mark, and no further information about familial relationships is provided in the text, then the oldest relative Zhang Qiang can trace back to in the provided text is Mark.
|
||||||
|
Example 2: If Li Ming's grandmother is Zhang Hong, and Zhang Hong's father is Zhang Qiang, and no further information about familial relationships is provided in the text, then the oldest relative Li Ming can trace back to in the provided text is Zhang Qiang.
|
||||||
|
Example 3: If Xiao Ming is Zhang Hong's great-granddaughter, Zhang Hong's grandmother is Wang Hua, and Wang Hua's father is Wang Gang, and no further information about familial relationships is provided in the text, then the oldest relative Xiao Ming can trace back to in the provided text is Wang Gang."""
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
prompt = 'Language not supported.'
|
||||||
|
raise Exception('Unsupported language specified. '
|
||||||
|
"Please choose either 'Chinese' or 'English'.")
|
||||||
|
|
||||||
|
# Combine story and prompt
|
||||||
|
shuffled_story_with_prompt = shuffled_story + ' ' + prompt
|
||||||
|
|
||||||
|
data['prompt'].append(shuffled_story_with_prompt)
|
||||||
|
data['answer'].append(names[0] + '*' + names[0])
|
||||||
|
|
||||||
|
dataset = Dataset.from_dict({
|
||||||
|
'prompt': data['prompt'],
|
||||||
|
'answer': data['answer'],
|
||||||
|
})
|
||||||
|
return dataset
|
@ -1,6 +1,6 @@
|
|||||||
import json
|
import json
|
||||||
|
import os
|
||||||
import random
|
import random
|
||||||
import re
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import tiktoken
|
import tiktoken
|
||||||
@ -8,11 +8,31 @@ from datasets import Dataset
|
|||||||
|
|
||||||
from opencompass.datasets.base import BaseDataset
|
from opencompass.datasets.base import BaseDataset
|
||||||
from opencompass.openicl import BaseEvaluator
|
from opencompass.openicl import BaseEvaluator
|
||||||
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
|
from opencompass.registry import LOAD_DATASET
|
||||||
|
|
||||||
|
|
||||||
|
def get_random_needles(file_path, needle_count):
|
||||||
|
with open(file_path, 'r', encoding='utf-8') as file:
|
||||||
|
data = json.load(file)
|
||||||
|
|
||||||
|
matching_records = [
|
||||||
|
record for record in data
|
||||||
|
if record.get('derivation_count') == needle_count
|
||||||
|
]
|
||||||
|
|
||||||
|
if matching_records:
|
||||||
|
random_record = random.choice(matching_records)
|
||||||
|
return {
|
||||||
|
'needles': random_record['derivations'],
|
||||||
|
'answer': random_record['answer'],
|
||||||
|
'retrieval_question': random_record['question']
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
@LOAD_DATASET.register_module()
|
@LOAD_DATASET.register_module()
|
||||||
class CDMEDataset(BaseDataset):
|
class NeedleBenchMultiDataset(BaseDataset):
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def load(
|
def load(
|
||||||
@ -25,11 +45,9 @@ class CDMEDataset(BaseDataset):
|
|||||||
length_buffer: int,
|
length_buffer: int,
|
||||||
guide: bool,
|
guide: bool,
|
||||||
language: str,
|
language: str,
|
||||||
needles: 'list[str]',
|
needle_file_name: str,
|
||||||
|
num_needles: int,
|
||||||
diff: int,
|
diff: int,
|
||||||
retrieval_question: str,
|
|
||||||
answer: str,
|
|
||||||
keyword: str,
|
|
||||||
):
|
):
|
||||||
data = {'prompt': [], 'answer': []}
|
data = {'prompt': [], 'answer': []}
|
||||||
tokenizer = tiktoken.encoding_for_model(tokenizer_model)
|
tokenizer = tiktoken.encoding_for_model(tokenizer_model)
|
||||||
@ -73,16 +91,14 @@ class CDMEDataset(BaseDataset):
|
|||||||
|
|
||||||
def _modify_retrieval_question(retrieval_question):
|
def _modify_retrieval_question(retrieval_question):
|
||||||
if language == 'Chinese':
|
if language == 'Chinese':
|
||||||
parts = retrieval_question.split('请按照')
|
guide_retrieval_question = (retrieval_question +
|
||||||
guide_retrieval_question = (parts[0] + '在回答之前,请思考文档中与此问题'
|
'在回答之前,请思考文档中与此问题'
|
||||||
'最相关的内容是什么。请按照' + parts[1])
|
'最相关的内容是什么。')
|
||||||
return guide_retrieval_question
|
return guide_retrieval_question
|
||||||
elif language == 'English':
|
elif language == 'English':
|
||||||
parts = retrieval_question.split('Please answer in the format')
|
|
||||||
guide_retrieval_question = (
|
guide_retrieval_question = (
|
||||||
parts[0] + 'Before answering, please consider'
|
retrieval_question + 'Before answering, please consider'
|
||||||
' what in the document is most relevant to this question.'
|
' what in the document is most relevant to this question.')
|
||||||
' Please answer in the format' + parts[1])
|
|
||||||
return guide_retrieval_question
|
return guide_retrieval_question
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Language '{language}' is not supported.")
|
raise ValueError(f"Language '{language}' is not supported.")
|
||||||
@ -112,6 +128,7 @@ class CDMEDataset(BaseDataset):
|
|||||||
return prompt
|
return prompt
|
||||||
|
|
||||||
files = Path(path).glob('*.jsonl')
|
files = Path(path).glob('*.jsonl')
|
||||||
|
needle_file_path = os.path.join(path, needle_file_name)
|
||||||
for file in files:
|
for file in files:
|
||||||
if file.name not in file_list:
|
if file.name not in file_list:
|
||||||
continue
|
continue
|
||||||
@ -122,12 +139,20 @@ class CDMEDataset(BaseDataset):
|
|||||||
for counter in range(num_repeats_per_file):
|
for counter in range(num_repeats_per_file):
|
||||||
random.seed(counter)
|
random.seed(counter)
|
||||||
random.shuffle(lines)
|
random.shuffle(lines)
|
||||||
|
random_needle_data = get_random_needles(
|
||||||
|
needle_file_path, num_needles)
|
||||||
|
needles = [
|
||||||
|
'\n' + needle + '\n'
|
||||||
|
for needle in random_needle_data['needles']
|
||||||
|
]
|
||||||
|
answer = random_needle_data['answer']
|
||||||
|
keyword = answer
|
||||||
|
retrieval_question = random_needle_data['retrieval_question']
|
||||||
context_length = length - length_buffer
|
context_length = length - length_buffer
|
||||||
target_length_per_record = context_length - \
|
target_length_per_record = context_length - \
|
||||||
sum(len(tokens) for tokens
|
sum(len(tokens) for tokens
|
||||||
in _get_tokens_from_context(needles))
|
in _get_tokens_from_context(needles))
|
||||||
|
target_length_per_record = max(target_length_per_record, 0)
|
||||||
accumulated_tokens = []
|
accumulated_tokens = []
|
||||||
for line in lines:
|
for line in lines:
|
||||||
tokens_current_line = _get_tokens_from_context(
|
tokens_current_line = _get_tokens_from_context(
|
||||||
@ -154,7 +179,7 @@ class CDMEDataset(BaseDataset):
|
|||||||
return dataset
|
return dataset
|
||||||
|
|
||||||
|
|
||||||
class CDMEEvaluator(BaseEvaluator):
|
class NeedleBenchMultiEvaluator(BaseEvaluator):
|
||||||
|
|
||||||
def levenshtein_distance(self, s1, s2):
|
def levenshtein_distance(self, s1, s2):
|
||||||
if len(s1) < len(s2):
|
if len(s1) < len(s2):
|
||||||
@ -175,50 +200,33 @@ class CDMEEvaluator(BaseEvaluator):
|
|||||||
|
|
||||||
return previous_row[-1]
|
return previous_row[-1]
|
||||||
|
|
||||||
def score(self, predictions, references):
|
def score(self, predictions, gold):
|
||||||
if len(predictions) != len(references):
|
if len(predictions) != len(gold):
|
||||||
return {
|
return {'error': 'predictions and gold have different lengths'}
|
||||||
'error': 'predictions and references have different lengths'
|
|
||||||
}
|
|
||||||
|
|
||||||
total_score = 0
|
total_score = 0
|
||||||
details = []
|
details = []
|
||||||
for prediction, reference in zip(predictions, references):
|
|
||||||
keyword = reference.split('*')[1]
|
|
||||||
reference = reference.split('*')[0]
|
|
||||||
prediction = re.sub(r'\s+', '', prediction)
|
|
||||||
reference = re.sub(r'\s+', '', reference)
|
|
||||||
edit_distance = self.levenshtein_distance(prediction, reference)
|
|
||||||
max_len = max(len(prediction), len(reference))
|
|
||||||
score = 100 * (1 -
|
|
||||||
edit_distance / max_len) if max_len != 0 else 100
|
|
||||||
|
|
||||||
if keyword in prediction:
|
for prediction, reference in zip(predictions, gold):
|
||||||
print(f'{keyword} is in {prediction}')
|
answer, keyword = reference.split('*')
|
||||||
score = 100
|
keywords = keyword.lower().split()
|
||||||
else:
|
prediction = prediction.lower()
|
||||||
print(f'{keyword} is not in {prediction}')
|
|
||||||
score = 0.2 * score
|
keyword_score = 100 / len(keywords) if keywords else 0
|
||||||
|
|
||||||
|
matched_keywords = sum(1 for kword in keywords
|
||||||
|
if kword in prediction)
|
||||||
|
score = matched_keywords * keyword_score
|
||||||
|
|
||||||
detail = {
|
detail = {
|
||||||
'pred': prediction,
|
'pred': prediction,
|
||||||
'answer': reference,
|
'answer': reference,
|
||||||
'edit_distance': edit_distance,
|
'matched_keywords': matched_keywords,
|
||||||
'score': score
|
'score': score
|
||||||
}
|
}
|
||||||
|
|
||||||
total_score += score
|
total_score += score
|
||||||
details.append(detail)
|
details.append(detail)
|
||||||
|
|
||||||
average_score = total_score / len(predictions) if predictions else 0
|
average_score = total_score / len(predictions) if predictions else 0
|
||||||
result = {'score': average_score, 'details': details}
|
return {'score': average_score, 'details': details}
|
||||||
return result
|
|
||||||
|
|
||||||
|
|
||||||
@TEXT_POSTPROCESSORS.register_module('cdme')
|
|
||||||
def cdme_postprocess(text: str) -> str:
|
|
||||||
return text
|
|
||||||
|
|
||||||
|
|
||||||
@TEXT_POSTPROCESSORS.register_module('cdme_dataset')
|
|
||||||
def cdme_dataset_postprocess(text: str) -> str:
|
|
||||||
return text
|
|
@ -1,4 +1,5 @@
|
|||||||
import json
|
import json
|
||||||
|
import os
|
||||||
import random
|
import random
|
||||||
import re
|
import re
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
@ -11,8 +12,26 @@ from opencompass.openicl import BaseEvaluator
|
|||||||
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
|
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
|
||||||
|
|
||||||
|
|
||||||
|
def get_random_line_by_language(file_path, language):
|
||||||
|
with open(file_path, 'r', encoding='utf-8') as file:
|
||||||
|
lines = [
|
||||||
|
json.loads(line.strip()) for line in file
|
||||||
|
if json.loads(line.strip())['language'] == language
|
||||||
|
]
|
||||||
|
|
||||||
|
if lines:
|
||||||
|
random_line = random.choice(lines)
|
||||||
|
return {
|
||||||
|
'needle': random_line['needle'],
|
||||||
|
'retrieval_question': random_line['retrieval_question'],
|
||||||
|
'keyword': random_line['arg2']
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
@LOAD_DATASET.register_module()
|
@LOAD_DATASET.register_module()
|
||||||
class CDMEDataset(BaseDataset):
|
class NeedleBenchOriginDataset(BaseDataset):
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def load(
|
def load(
|
||||||
@ -25,8 +44,7 @@ class CDMEDataset(BaseDataset):
|
|||||||
length_buffer: int,
|
length_buffer: int,
|
||||||
guide: bool,
|
guide: bool,
|
||||||
language: str,
|
language: str,
|
||||||
needle: str,
|
needle_file_name: str,
|
||||||
retrieval_question: str,
|
|
||||||
):
|
):
|
||||||
data = {'prompt': [], 'answer': []}
|
data = {'prompt': [], 'answer': []}
|
||||||
tokenizer = tiktoken.encoding_for_model(tokenizer_model)
|
tokenizer = tiktoken.encoding_for_model(tokenizer_model)
|
||||||
@ -96,11 +114,17 @@ class CDMEDataset(BaseDataset):
|
|||||||
for counter in range(num_repeats_per_file):
|
for counter in range(num_repeats_per_file):
|
||||||
random.seed(counter)
|
random.seed(counter)
|
||||||
random.shuffle(lines)
|
random.shuffle(lines)
|
||||||
|
needle_file_path = os.path.join(path, needle_file_name)
|
||||||
|
random_needle = get_random_line_by_language(
|
||||||
|
needle_file_path, language)
|
||||||
|
needle = '\n' + random_needle['needle'] + '\n'
|
||||||
|
retrieval_question = random_needle['retrieval_question']
|
||||||
|
keyword = random_needle['keyword']
|
||||||
|
|
||||||
context_length = length - length_buffer
|
context_length = length - length_buffer
|
||||||
target_length_per_record = context_length - len(
|
target_length_per_record = context_length - len(
|
||||||
_get_tokens_from_context(needle))
|
_get_tokens_from_context(needle))
|
||||||
|
target_length_per_record = max(target_length_per_record, 0)
|
||||||
accumulated_tokens = []
|
accumulated_tokens = []
|
||||||
for line in lines:
|
for line in lines:
|
||||||
tokens_current_line = _get_tokens_from_context(
|
tokens_current_line = _get_tokens_from_context(
|
||||||
@ -118,7 +142,7 @@ class CDMEDataset(BaseDataset):
|
|||||||
retrieval_question)
|
retrieval_question)
|
||||||
|
|
||||||
data['prompt'].append(processed_prompt)
|
data['prompt'].append(processed_prompt)
|
||||||
data['answer'].append(needle)
|
data['answer'].append(needle + '*' + keyword)
|
||||||
|
|
||||||
dataset = Dataset.from_dict({
|
dataset = Dataset.from_dict({
|
||||||
'prompt': data['prompt'],
|
'prompt': data['prompt'],
|
||||||
@ -127,7 +151,7 @@ class CDMEDataset(BaseDataset):
|
|||||||
return dataset
|
return dataset
|
||||||
|
|
||||||
|
|
||||||
class CDMEEvaluator(BaseEvaluator):
|
class NeedleBenchOriginEvaluator(BaseEvaluator):
|
||||||
|
|
||||||
def __init__(self, use_trim=False):
|
def __init__(self, use_trim=False):
|
||||||
self.use_trim = use_trim
|
self.use_trim = use_trim
|
||||||
@ -174,20 +198,22 @@ class CDMEEvaluator(BaseEvaluator):
|
|||||||
|
|
||||||
return previous_row[-1]
|
return previous_row[-1]
|
||||||
|
|
||||||
def score(self, predictions, references):
|
def score(self, predictions, gold):
|
||||||
if len(predictions) != len(references):
|
|
||||||
return {
|
if len(predictions) != len(gold):
|
||||||
'error': 'predictions and references have different lengths'
|
return {'error': 'predictions and gold have different lengths'}
|
||||||
}
|
|
||||||
|
|
||||||
total_score = 0
|
total_score = 0
|
||||||
details = []
|
details = []
|
||||||
for prediction, reference in zip(predictions, references):
|
for prediction, reference in zip(predictions, gold):
|
||||||
|
keyword = reference.split('*')[1]
|
||||||
|
reference = reference.split('*')[0]
|
||||||
|
raw_prediction = prediction
|
||||||
prediction = re.sub(r'\s+', '', prediction)
|
prediction = re.sub(r'\s+', '', prediction)
|
||||||
reference = re.sub(r'\s+', '', reference)
|
reference = re.sub(r'\s+', '', reference)
|
||||||
|
|
||||||
if self.use_trim:
|
if self.use_trim:
|
||||||
prediction = CDMEEvaluator._trim_prediction(
|
prediction = NeedleBenchOriginEvaluator._trim_prediction(
|
||||||
prediction, reference)
|
prediction, reference)
|
||||||
|
|
||||||
edit_distance = self.levenshtein_distance(prediction, reference)
|
edit_distance = self.levenshtein_distance(prediction, reference)
|
||||||
@ -195,6 +221,13 @@ class CDMEEvaluator(BaseEvaluator):
|
|||||||
score = 100 * (1 -
|
score = 100 * (1 -
|
||||||
edit_distance / max_len) if max_len != 0 else 100
|
edit_distance / max_len) if max_len != 0 else 100
|
||||||
|
|
||||||
|
if keyword in raw_prediction:
|
||||||
|
print(f'{keyword} is in {prediction}')
|
||||||
|
score = 100
|
||||||
|
else:
|
||||||
|
print(f'{keyword} is not in {prediction}')
|
||||||
|
score = 0.2 * score
|
||||||
|
|
||||||
detail = {
|
detail = {
|
||||||
'pred': prediction,
|
'pred': prediction,
|
||||||
'answer': reference,
|
'answer': reference,
|
||||||
@ -209,11 +242,11 @@ class CDMEEvaluator(BaseEvaluator):
|
|||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
@TEXT_POSTPROCESSORS.register_module('cdme')
|
@TEXT_POSTPROCESSORS.register_module('needlebench')
|
||||||
def cdme_postprocess(text: str) -> str:
|
def needlebench_postprocess(text: str) -> str:
|
||||||
return text
|
return text
|
||||||
|
|
||||||
|
|
||||||
@TEXT_POSTPROCESSORS.register_module('cdme_dataset')
|
@TEXT_POSTPROCESSORS.register_module('needlebench_dataset')
|
||||||
def cdme_dataset_postprocess(text: str) -> str:
|
def needlebench_dataset_postprocess(text: str) -> str:
|
||||||
return text
|
return text
|
285
opencompass/datasets/needlebench/parallel.py
Normal file
285
opencompass/datasets/needlebench/parallel.py
Normal file
@ -0,0 +1,285 @@
|
|||||||
|
import json
|
||||||
|
import random
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import tiktoken
|
||||||
|
from datasets import Dataset
|
||||||
|
|
||||||
|
from opencompass.datasets.base import BaseDataset
|
||||||
|
from opencompass.openicl import BaseEvaluator
|
||||||
|
from opencompass.registry import LOAD_DATASET
|
||||||
|
|
||||||
|
|
||||||
|
def get_unique_entries(file_path,
|
||||||
|
n,
|
||||||
|
language,
|
||||||
|
unique_arg1=False,
|
||||||
|
unique_arg2=False,
|
||||||
|
unique_combination=False):
|
||||||
|
seen_arg1 = set()
|
||||||
|
seen_arg2 = set()
|
||||||
|
seen_combinations = set()
|
||||||
|
results = []
|
||||||
|
|
||||||
|
with open(file_path, 'r', encoding='utf-8') as file:
|
||||||
|
lines = file.readlines()
|
||||||
|
random.shuffle(lines)
|
||||||
|
|
||||||
|
for line in lines:
|
||||||
|
try:
|
||||||
|
entry = json.loads(line.strip())
|
||||||
|
except json.JSONDecodeError:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if entry.get('language') != language:
|
||||||
|
continue
|
||||||
|
|
||||||
|
key1 = entry.get('arg1', '') if unique_arg1 else ''
|
||||||
|
key2 = entry.get('arg2', '') if unique_arg2 else ''
|
||||||
|
combination = (key1, key2) if unique_combination else ''
|
||||||
|
|
||||||
|
if (key1 not in seen_arg1 or not unique_arg1) and \
|
||||||
|
(key2 not in seen_arg2 or not unique_arg2) and \
|
||||||
|
(combination not in seen_combinations or not unique_combination):
|
||||||
|
seen_arg1.add(key1)
|
||||||
|
seen_arg2.add(key2)
|
||||||
|
seen_combinations.add(combination)
|
||||||
|
results.append(entry)
|
||||||
|
|
||||||
|
if len(results) == n:
|
||||||
|
break
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
@LOAD_DATASET.register_module()
|
||||||
|
class NeedleBenchParallelDataset(BaseDataset):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load(
|
||||||
|
path: str,
|
||||||
|
needle_file_name: str,
|
||||||
|
length: int,
|
||||||
|
depths: list[int],
|
||||||
|
tokenizer_model: str,
|
||||||
|
file_list: list[str],
|
||||||
|
num_repeats_per_file: int,
|
||||||
|
length_buffer: int,
|
||||||
|
guide: bool,
|
||||||
|
language: str,
|
||||||
|
):
|
||||||
|
data = {'prompt': [], 'answer': []}
|
||||||
|
tokenizer = tiktoken.encoding_for_model(tokenizer_model)
|
||||||
|
|
||||||
|
files = Path(path).glob('*.jsonl')
|
||||||
|
for file in files:
|
||||||
|
if file.name == needle_file_name:
|
||||||
|
needle_file_path = file
|
||||||
|
|
||||||
|
predefined_needles_bak = get_unique_entries(needle_file_path,
|
||||||
|
len(depths),
|
||||||
|
language,
|
||||||
|
unique_arg1=True,
|
||||||
|
unique_arg2=True,
|
||||||
|
unique_combination=True)
|
||||||
|
|
||||||
|
def _generate_context(tokens_context, depths, needles):
|
||||||
|
insertion_points = [
|
||||||
|
int(len(tokens_context) * (depth / 100)) for depth in depths
|
||||||
|
]
|
||||||
|
|
||||||
|
cumulative_inserted_length = 0
|
||||||
|
|
||||||
|
for i, needle in enumerate(needles):
|
||||||
|
needle_tokens = _get_tokens_from_context(needle)
|
||||||
|
current_insertion_point = min(
|
||||||
|
insertion_points[i] + cumulative_inserted_length,
|
||||||
|
len(tokens_context))
|
||||||
|
|
||||||
|
tokens_context = tokens_context[:current_insertion_point] + \
|
||||||
|
needle_tokens + tokens_context[current_insertion_point:]
|
||||||
|
cumulative_inserted_length += len(needle_tokens)
|
||||||
|
|
||||||
|
new_context = _decode_tokens(tokens_context)
|
||||||
|
return new_context
|
||||||
|
|
||||||
|
def _get_tokens_from_context(context):
|
||||||
|
if isinstance(context, list):
|
||||||
|
return [tokenizer.encode(item) for item in context]
|
||||||
|
else:
|
||||||
|
return tokenizer.encode(context)
|
||||||
|
|
||||||
|
def _decode_tokens(tokens):
|
||||||
|
return tokenizer.decode(tokens)
|
||||||
|
|
||||||
|
def _modify_retrieval_question(retrieval_question):
|
||||||
|
if language == 'Chinese':
|
||||||
|
parts = retrieval_question.split('请按照')
|
||||||
|
guide_retrieval_question = (parts[0] + '在回答之前,请思考文档中与此问题'
|
||||||
|
'最相关的内容是什么。请按照' + parts[1])
|
||||||
|
return guide_retrieval_question
|
||||||
|
elif language == 'English':
|
||||||
|
parts = retrieval_question.split('Please answer in the format')
|
||||||
|
guide_retrieval_question = (
|
||||||
|
parts[0] + 'Before answering, please consider'
|
||||||
|
' what in the document is most relevant to this question.'
|
||||||
|
' Please answer in the format' + parts[1])
|
||||||
|
return guide_retrieval_question
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Language '{language}' is not supported.")
|
||||||
|
|
||||||
|
def _generate_prompt(context, retrieval_question):
|
||||||
|
if guide:
|
||||||
|
retrieval_question = _modify_retrieval_question(
|
||||||
|
retrieval_question)
|
||||||
|
|
||||||
|
if language == 'Chinese':
|
||||||
|
prompt = ('你是一个善于回答用户问题的智能AI助手\n'
|
||||||
|
'请保持你的回答简洁清楚。不要说和下面文档中的无关的话'
|
||||||
|
',或重复你的回答\n请先仔细阅读下面的文档再依次回答'
|
||||||
|
f'最后提出的问题\n用户现在给你的文档是{context}\n\n'
|
||||||
|
f'现在请问:{retrieval_question}\n')
|
||||||
|
elif language == 'English':
|
||||||
|
prompt = (
|
||||||
|
'You are an intelligent AI assistant skilled in '
|
||||||
|
'answering user questions.\n'
|
||||||
|
'Please keep your answers concise and clear. Do not'
|
||||||
|
' talk about irrelevant topics or repeat your '
|
||||||
|
'answers.\n'
|
||||||
|
f'The document given to you by the user is {context}'
|
||||||
|
f'\n\nNow, the questions are: {retrieval_question}\n')
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Language '{language}' is not supported.")
|
||||||
|
|
||||||
|
return prompt
|
||||||
|
|
||||||
|
files = Path(path).glob('*.jsonl')
|
||||||
|
for file in files:
|
||||||
|
if file.name not in file_list:
|
||||||
|
continue
|
||||||
|
|
||||||
|
with open(file, 'r', encoding='utf-8') as f:
|
||||||
|
lines_bak = [json.loads(line.strip()) for line in f]
|
||||||
|
lines = lines_bak.copy()
|
||||||
|
for counter in range(num_repeats_per_file):
|
||||||
|
random.seed(counter)
|
||||||
|
random.shuffle(lines)
|
||||||
|
predefined_needles = predefined_needles_bak.copy()
|
||||||
|
random.shuffle(predefined_needles)
|
||||||
|
|
||||||
|
needles = [
|
||||||
|
'\n' + item['needle'] + '\n' for item in predefined_needles
|
||||||
|
]
|
||||||
|
keywords = [item['arg2'] for item in predefined_needles]
|
||||||
|
if language == 'Chinese':
|
||||||
|
questions = '、'.join([
|
||||||
|
item['retrieval_question'].split('?')[0] + '?'
|
||||||
|
for item in predefined_needles
|
||||||
|
])
|
||||||
|
|
||||||
|
answers_format = '、'.join([
|
||||||
|
item['retrieval_question'].split("'")[1].split('。')[0]
|
||||||
|
for item in predefined_needles
|
||||||
|
])
|
||||||
|
retrieval_question = questions + "请按照'" + \
|
||||||
|
answers_format + "'的格式回答。"
|
||||||
|
elif language == 'English':
|
||||||
|
questions = '、'.join([
|
||||||
|
item['retrieval_question'].split('?')[0] + '?'
|
||||||
|
for item in predefined_needles
|
||||||
|
])
|
||||||
|
|
||||||
|
answers_format = '、'.join([
|
||||||
|
item['retrieval_question'].split("'")[1].split('.')[0]
|
||||||
|
for item in predefined_needles
|
||||||
|
])
|
||||||
|
retrieval_question = questions + \
|
||||||
|
"Please answer in the format of '" + \
|
||||||
|
answers_format + "'"
|
||||||
|
|
||||||
|
context_length = length - length_buffer
|
||||||
|
target_length_per_record = context_length - \
|
||||||
|
sum(len(tokens) for tokens
|
||||||
|
in _get_tokens_from_context(needles))
|
||||||
|
target_length_per_record = max(target_length_per_record, 0)
|
||||||
|
accumulated_tokens = []
|
||||||
|
for line in lines:
|
||||||
|
tokens_current_line = _get_tokens_from_context(
|
||||||
|
line['text'])
|
||||||
|
accumulated_tokens.extend(tokens_current_line)
|
||||||
|
|
||||||
|
if len(accumulated_tokens) >= target_length_per_record:
|
||||||
|
break
|
||||||
|
|
||||||
|
processed_text = _generate_context(
|
||||||
|
accumulated_tokens[:target_length_per_record], depths,
|
||||||
|
needles)
|
||||||
|
|
||||||
|
processed_prompt = _generate_prompt(processed_text,
|
||||||
|
retrieval_question)
|
||||||
|
|
||||||
|
data['prompt'].append(processed_prompt)
|
||||||
|
|
||||||
|
data['answer'].append('*'.join(keywords) + '#' +
|
||||||
|
'*'.join(map(str, depths)))
|
||||||
|
|
||||||
|
dataset = Dataset.from_dict({
|
||||||
|
'prompt': data['prompt'],
|
||||||
|
'answer': data['answer'],
|
||||||
|
})
|
||||||
|
return dataset
|
||||||
|
|
||||||
|
|
||||||
|
class NeedleBenchParallelEvaluator(BaseEvaluator):
|
||||||
|
|
||||||
|
def levenshtein_distance(self, s1, s2):
|
||||||
|
if len(s1) < len(s2):
|
||||||
|
return self.levenshtein_distance(s2, s1)
|
||||||
|
|
||||||
|
if len(s2) == 0:
|
||||||
|
return len(s1)
|
||||||
|
|
||||||
|
previous_row = range(len(s2) + 1)
|
||||||
|
for i, c1 in enumerate(s1):
|
||||||
|
current_row = [i + 1]
|
||||||
|
for j, c2 in enumerate(s2):
|
||||||
|
insertions = previous_row[j + 1] + 1
|
||||||
|
deletions = current_row[j] + 1
|
||||||
|
substitutions = previous_row[j] + (c1 != c2)
|
||||||
|
current_row.append(min(insertions, deletions, substitutions))
|
||||||
|
previous_row = current_row
|
||||||
|
|
||||||
|
return previous_row[-1]
|
||||||
|
|
||||||
|
def score(self, predictions, gold):
|
||||||
|
if len(predictions) != len(gold):
|
||||||
|
return {'error': 'predictions and gold have different lengths'}
|
||||||
|
print('predictions:', predictions)
|
||||||
|
print('gold:', gold)
|
||||||
|
|
||||||
|
details = []
|
||||||
|
depths = [int(i) for i in gold[0].split('#')[1].split('*')]
|
||||||
|
scores_by_depth = {depth: 0 for depth in depths}
|
||||||
|
|
||||||
|
for prediction, reference in zip(predictions, gold):
|
||||||
|
print(reference)
|
||||||
|
keywords = reference.split('#')[0].split('*')
|
||||||
|
print(keywords)
|
||||||
|
for keyword, depth in zip(keywords, depths):
|
||||||
|
print('iterating:', keyword, depth)
|
||||||
|
if keyword in prediction:
|
||||||
|
print(f'{keyword} at depth {depth} is in {prediction}')
|
||||||
|
scores_by_depth[depth] += 100 / (len(predictions))
|
||||||
|
|
||||||
|
average_score = sum(scores_by_depth.values()) / len(scores_by_depth)
|
||||||
|
|
||||||
|
flattened_scores = {
|
||||||
|
'Depth' + str(depth): score
|
||||||
|
for depth, score in scores_by_depth.items()
|
||||||
|
}
|
||||||
|
|
||||||
|
result = {
|
||||||
|
**flattened_scores, 'details': details,
|
||||||
|
'average_score': average_score
|
||||||
|
}
|
||||||
|
return result
|
1090
opencompass/summarizers/needlebench.py
Normal file
1090
opencompass/summarizers/needlebench.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,136 +0,0 @@
|
|||||||
import argparse
|
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import pandas as pd
|
|
||||||
import seaborn as sns
|
|
||||||
from matplotlib.colors import LinearSegmentedColormap
|
|
||||||
|
|
||||||
|
|
||||||
class CDMEDataset():
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def visualize(path: str, dataset_length: str):
|
|
||||||
for file_path in path:
|
|
||||||
df = pd.read_csv(file_path)
|
|
||||||
|
|
||||||
df['Context Length'] = df['dataset'].apply(
|
|
||||||
lambda x: int(x.split('Length')[1].split('Depth')[0]))
|
|
||||||
df['Document Depth'] = df['dataset'].apply(
|
|
||||||
lambda x: float(x.split('Depth')[1].split('_')[0]))
|
|
||||||
|
|
||||||
# Exclude 'Context Length' and 'Document Depth' columns
|
|
||||||
model_columns = [
|
|
||||||
col for col in df.columns
|
|
||||||
if col not in ['Context Length', 'Document Depth']
|
|
||||||
]
|
|
||||||
|
|
||||||
for model_name in model_columns[4:]:
|
|
||||||
model_df = df[['Document Depth', 'Context Length',
|
|
||||||
model_name]].copy()
|
|
||||||
model_df.rename(columns={model_name: 'Score'}, inplace=True)
|
|
||||||
|
|
||||||
# Create pivot table
|
|
||||||
pivot_table = pd.pivot_table(model_df,
|
|
||||||
values='Score',
|
|
||||||
index=['Document Depth'],
|
|
||||||
columns=['Context Length'],
|
|
||||||
aggfunc='mean')
|
|
||||||
|
|
||||||
# Calculate mean scores
|
|
||||||
mean_scores = pivot_table.mean().values
|
|
||||||
|
|
||||||
# Calculate overall score
|
|
||||||
overall_score = mean_scores.mean()
|
|
||||||
|
|
||||||
# Create heatmap and line plot
|
|
||||||
plt.figure(figsize=(15.5, 8))
|
|
||||||
ax = plt.gca()
|
|
||||||
cmap = LinearSegmentedColormap.from_list(
|
|
||||||
'custom_cmap', ['#F0496E', '#EBB839', '#0CD79F'])
|
|
||||||
|
|
||||||
# Draw heatmap
|
|
||||||
sns.heatmap(pivot_table,
|
|
||||||
cmap=cmap,
|
|
||||||
ax=ax,
|
|
||||||
cbar_kws={'label': 'Score'},
|
|
||||||
vmin=0,
|
|
||||||
vmax=100)
|
|
||||||
|
|
||||||
# Set line plot data
|
|
||||||
x_data = [i + 0.5 for i in range(len(mean_scores))]
|
|
||||||
y_data = mean_scores
|
|
||||||
|
|
||||||
# Create twin axis for line plot
|
|
||||||
ax2 = ax.twinx()
|
|
||||||
# Draw line plot
|
|
||||||
ax2.plot(x_data,
|
|
||||||
y_data,
|
|
||||||
color='white',
|
|
||||||
marker='o',
|
|
||||||
linestyle='-',
|
|
||||||
linewidth=2,
|
|
||||||
markersize=8,
|
|
||||||
label='Average Depth Score')
|
|
||||||
# Set y-axis range
|
|
||||||
ax2.set_ylim(0, 100)
|
|
||||||
|
|
||||||
# Hide original y-axis ticks and labels
|
|
||||||
ax2.set_yticklabels([])
|
|
||||||
ax2.set_yticks([])
|
|
||||||
|
|
||||||
# Add legend
|
|
||||||
ax2.legend(loc='upper left')
|
|
||||||
|
|
||||||
# Set chart title and labels
|
|
||||||
ax.set_title(f'{model_name} {dataset_length} Context '
|
|
||||||
'Performance\nFact Retrieval Across '
|
|
||||||
'Context Lengths ("Needle In A Haystack")')
|
|
||||||
ax.set_xlabel('Token Limit')
|
|
||||||
ax.set_ylabel('Depth Percent')
|
|
||||||
ax.set_xticklabels(pivot_table.columns.values, rotation=45)
|
|
||||||
ax.set_yticklabels(pivot_table.index.values, rotation=0)
|
|
||||||
# Add overall score as a subtitle
|
|
||||||
plt.text(0.5,
|
|
||||||
-0.13, f'Overall Score for {model_name}: '
|
|
||||||
f'{overall_score:.2f}',
|
|
||||||
ha='center',
|
|
||||||
va='center',
|
|
||||||
transform=ax.transAxes,
|
|
||||||
fontsize=13)
|
|
||||||
|
|
||||||
# Save heatmap as PNG
|
|
||||||
png_file_path = file_path.replace('.csv', f'_{model_name}.png')
|
|
||||||
plt.tight_layout()
|
|
||||||
plt.subplots_adjust(right=1)
|
|
||||||
plt.draw()
|
|
||||||
plt.savefig(png_file_path)
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
plt.close() # Close figure to prevent memory leaks
|
|
||||||
|
|
||||||
# Print saved PNG file path
|
|
||||||
print(f'Heatmap for {model_name} saved as: {png_file_path}')
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
parser = argparse.ArgumentParser(description='Generate NeedleInAHaystack'
|
|
||||||
'Test Plots')
|
|
||||||
|
|
||||||
parser.add_argument('--path',
|
|
||||||
nargs='*',
|
|
||||||
default=['path/to/your/result.csv'],
|
|
||||||
help='Paths to CSV files for visualization')
|
|
||||||
parser.add_argument('--dataset_length',
|
|
||||||
default='8K',
|
|
||||||
type=str,
|
|
||||||
help='Dataset_length for visualization')
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
if not args.path:
|
|
||||||
print("Error: '--path' is required for visualization.")
|
|
||||||
exit(1)
|
|
||||||
CDMEDataset.visualize(args.path, args.dataset_length)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
Loading…
Reference in New Issue
Block a user