add judgedatasetall

This commit is contained in:
bittersweet1999 2025-05-07 02:44:58 +00:00
parent 36d085d3e2
commit a77a040ba7
2 changed files with 151 additions and 0 deletions

View File

@ -0,0 +1,61 @@
from mmengine.config import read_base
with read_base():
from opencompass.configs.datasets.judge.judgerbenchv2 import get_judgerbenchv2_dataset as get_judgerbenchv2_datasets
from opencompass.configs.datasets.judge.rmb import get_rmb_dataset as get_rmb_datasets
from opencompass.configs.datasets.judge.rewardbench import get_rewardbench_datasets
from opencompass.configs.datasets.judge.judgebench import get_judgebench_datasets
from opencompass.configs.summarizers.judgedataset_all import summarizer
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner, NumWorkerPartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.partitioners.sub_num_worker import SubjectiveNumWorkerPartitioner
from opencompass.runners import LocalRunner, DLCRunner, VOLCRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask
from opencompass.models import TurboMindModelwithChatTemplate
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
datasets = sum(
(v for k, v in locals().items() if k.endswith('_datasets')),
[],
)
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr='qwen-7b-hf',
path='Qwen/Qwen-7B',
engine_config=dict(session_len=16384, max_batch_size=16, tp=1),
gen_config=dict(top_k=1, temperature=1e-6, top_p=0.9, max_new_tokens=2048),
max_seq_len=16384,
max_out_len=2048,
batch_size=16,
run_cfg=dict(num_gpus=1),
),
]
infer = dict(
partitioner=dict(type=NumWorkerPartitioner, num_worker=8),
runner=dict(
type=LocalRunner,
max_num_workers=72,
task=dict(type=OpenICLInferTask),
),
)
work_dir = './outputs/judge_dataset_all/'

View File

@ -0,0 +1,90 @@
Judge_all_summary_groups = []
# RewardBench
_Chat_weights = {
'alpacaeval-easy': 0.32355305466237944,
'alpacaeval-length': 0.32355305466237944,
'alpacaeval-hard': 0.32355305466237944,
'mt-bench-easy': 0.011254019292604502,
'mt-bench-med': 0.018086816720257234,
}
_Chat_Hard_weights = {
'mt-bench-hard': 0.09698275862068965,
'llmbar-natural': 0.21551724137931033,
'llmbar-adver-neighbor': 0.28879310344827586,
'llmbar-adver-GPTInst': 0.19827586206896552,
'llmbar-adver-GPTOut': 0.10129310344827586,
'llmbar-adver-manual': 0.09913793103448276,
}
_Safety_weights = {
'refusals-dangerous': 0.13513513513513514,
'refusals-offensive': 0.13513513513513514,
'xstest-should-refuse': 0.20810810810810812,
'xstest-should-respond': 0.33783783783783783,
'donotanswer': 0.1837837837837838,
}
_Reasoning_weights = {
'math-prm': 0.31236897274633124,
'hep-cpp': 0.1146051712089448,
'hep-go': 0.1146051712089448,
'hep-java': 0.1146051712089448,
'hep-js': 0.1146051712089448,
'hep-python': 0.1146051712089448,
'hep-rust': 0.1146051712089448,
}
_RewardBench_weights = {'alpacaeval-easy': 0.08088826366559486,'alpacaeval-length': 0.08088826366559486,'alpacaeval-hard': 0.08088826366559486,'mt-bench-easy': 0.0028135048231511255,'mt-bench-med': 0.004521704180064309,'mt-bench-hard': 0.024245689655172414,'llmbar-natural': 0.05387931034482758,'llmbar-adver-neighbor': 0.07219827586206896,'llmbar-adver-GPTInst': 0.04956896551724138,'llmbar-adver-GPTOut': 0.025323275862068964,'llmbar-adver-manual': 0.02478448275862069,'refusals-dangerous': 0.033783783783783786,'refusals-offensive': 0.033783783783783786,'xstest-should-refuse': 0.05202702702702703,'xstest-should-respond': 0.08445945945945946,'donotanswer': 0.04594594594594595,'math-prm': 0.07809224318658281,'hep-cpp': 0.0286512928022362,'hep-go': 0.0286512928022362,'hep-java': 0.0286512928022362,'hep-js': 0.0286512928022362,'hep-python': 0.0286512928022362,'hep-rust': 0.0286512928022362,}
Judge_all_summary_groups.append({'name': 'RewardBench_avg', 'subsets': list(_RewardBench_weights.keys()), 'weights': _RewardBench_weights})
Judge_all_summary_groups.append({'name': 'RewardBench_Chat', 'subsets': list(_Chat_weights.keys()), 'weights': _Chat_weights})
Judge_all_summary_groups.append({'name': 'RewardBench_Chat Hard', 'subsets': list(_Chat_Hard_weights.keys()), 'weights': _Chat_Hard_weights})
Judge_all_summary_groups.append({'name': 'RewardBench_Safety', 'subsets': list(_Safety_weights.keys()), 'weights': _Safety_weights})
Judge_all_summary_groups.append({'name': 'RewardBench_Reasoning', 'subsets': list(_Reasoning_weights.keys()), 'weights': _Reasoning_weights})
# Judgerbenchv2
Judgerbenchv2_tasks = ['Code_and_AI', 'Creation', 'LanTask', 'IF', 'chatQA', 'Hallucination', 'safe', 'Reason_and_analysis', 'Longtext', 'Knowledge']
Judgerbenchv2_metrics = ['final_score', 'accuracy', 'normalized_diff', 'rank_diff', 'score_diff']
Judgerbenchv2_summary_names = []
for metric in Judgerbenchv2_metrics:
for task in Judgerbenchv2_tasks:
Judgerbenchv2_summary_names.append([task, metric])
Judge_all_summary_groups.append({'name': 'Judgerbenchv2_final_score', 'subsets': [[name, metric] for name, metric in Judgerbenchv2_summary_names if metric == 'final_score']})
Judge_all_summary_groups.append({'name': 'Judgerbenchv2_accuracy', 'subsets': [[name, metric] for name, metric in Judgerbenchv2_summary_names if metric == 'accuracy']})
Judge_all_summary_groups.append({'name': 'Judgerbenchv2_normalized_diff', 'subsets': [[name, metric] for name, metric in Judgerbenchv2_summary_names if metric == 'normalized_diff']})
Judge_all_summary_groups.append({'name': 'Judgerbenchv2_rank_diff', 'subsets': [[name, metric] for name, metric in Judgerbenchv2_summary_names if metric == 'rank_diff']})
Judge_all_summary_groups.append({'name': 'Judgerbenchv2_score_diff', 'subsets': [[name, metric] for name, metric in Judgerbenchv2_summary_names if metric == 'score_diff']})
Judge_all_summary_groups.append({'name': 'Judgebench', 'subsets': ['judgebench']})
Judge_all_summary_groups.append({'name': 'rmb_dataset_total_avg', 'subsets': [['rmb_dataset', 'total_accuracy']]})
Judge_all_summary_groups.append({'name': 'rmb_dataset_pair', 'subsets': [['rmb_dataset', 'pair_average']]})
Judge_all_summary_groups.append({'name': 'rmb_dataset_bon', 'subsets': [['rmb_dataset', 'bon_average']]})
summarizer = dict(
dataset_abbrs=[
'Judgerbenchv2_final_score',
'Judgebench',
'rmb_dataset_total_avg',
'RewardBench_avg',
'',
'Judgerbenchv2_accuracy',
'Judgerbenchv2_normalized_diff',
'Judgerbenchv2_rank_diff',
'Judgerbenchv2_score_diff',
'',
'rmb_dataset_pair',
'rmb_dataset_bon',
'',
'RewardBench_Chat',
'RewardBench_Chat Hard',
'RewardBench_Safety',
'RewardBench_Reasoning',
],
summary_groups=Judge_all_summary_groups,
)