[Feature] Add ChemBench (#1032)

* add ChemBench

* update results

* molbench -> ChemBench

---------

Co-authored-by: Leymore <zfz-960727@163.com>
This commit is contained in:
liuwei130 2024-04-12 08:46:26 +08:00 committed by GitHub
parent bd7c11bb89
commit a00e57296f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 134 additions and 0 deletions

View File

@ -0,0 +1,77 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import ChemBenchDataset
from opencompass.utils.text_postprocessors import first_capital_postprocess
chembench_reader_cfg = dict(
input_columns=["input", "A", "B", "C", "D"],
output_column="target",
train_split='dev')
chembench_all_sets = [
'Name_Conversion',
'Property_Prediction',
'Mol2caption',
'Caption2mol',
'Product_Prediction',
'Retrosynthesis',
'Yield_Prediction',
'Temperature_Prediction',
'Solvent_Prediction'
]
chembench_datasets = []
for _name in chembench_all_sets:
# _hint = f'There is a single choice question about {_name.replace("_", " ")}. Answer the question by replying A, B, C or D.'
_hint = f'There is a single choice question about chemistry. Answer the question by replying A, B, C or D.'
chembench_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt=
f"{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: "
),
dict(role="BOT", prompt="{target}\n")
]),
),
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin="</E>",
round=[
dict(
role="HUMAN",
prompt=
f"{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: "
),
],
),
ice_token="</E>",
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=GenInferencer),
)
chembench_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=first_capital_postprocess))
chembench_datasets.append(
dict(
abbr=f"ChemBench_{_name}",
type=ChemBenchDataset,
path="./data/ChemBench/",
name=_name,
reader_cfg=chembench_reader_cfg,
infer_cfg=chembench_infer_cfg,
eval_cfg=chembench_eval_cfg,
))
del _name, _hint

22
configs/eval_chembench.py Normal file
View File

@ -0,0 +1,22 @@
from mmengine.config import read_base
with read_base():
from .datasets.ChemBench.ChemBench_gen import chembench_datasets
from .models.mistral.hf_mistral_7b_instruct_v0_2 import models
datasets = [*chembench_datasets]
models = [*models]
'''
dataset version metric mode mistral-7b-instruct-v0.2-hf
-------------------------------- --------- -------- ------ -----------------------------
ChemBench_Name_Conversion d4e6a1 accuracy gen 45.43
ChemBench_Property_Prediction d4e6a1 accuracy gen 47.11
ChemBench_Mol2caption d4e6a1 accuracy gen 64.21
ChemBench_Caption2mol d4e6a1 accuracy gen 35.38
ChemBench_Product_Prediction d4e6a1 accuracy gen 38.67
ChemBench_Retrosynthesis d4e6a1 accuracy gen 27
ChemBench_Yield_Prediction d4e6a1 accuracy gen 27
ChemBench_Temperature_Prediction d4e6a1 accuracy gen 26.73
ChemBench_Solvent_Prediction d4e6a1 accuracy gen 32.67
'''

View File

@ -12,6 +12,7 @@ from .bustum import * # noqa: F401, F403
from .c3 import * # noqa: F401, F403 from .c3 import * # noqa: F401, F403
from .cb import * # noqa: F401, F403 from .cb import * # noqa: F401, F403
from .ceval import * # noqa: F401, F403 from .ceval import * # noqa: F401, F403
from .chembench import * # noqa: F401, F403
from .chid import * # noqa: F401, F403 from .chid import * # noqa: F401, F403
from .cibench import * # noqa: F401, F403 from .cibench import * # noqa: F401, F403
from .circular import * # noqa: F401, F403 from .circular import * # noqa: F401, F403

View File

@ -0,0 +1,34 @@
import json
import os.path as osp
from datasets import Dataset, DatasetDict
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class ChemBenchDataset(BaseDataset):
@staticmethod
def load(path: str, name: str):
dataset = DatasetDict()
for split in ['dev', 'test']:
raw_data = []
filename = osp.join(path, split, f'{name}_benchmark.json')
with open(filename, 'r', encoding='utf-8') as json_file:
data = json.load(json_file)
for item in data:
raw_data.append({
'input': item['question'],
'A': item['A'],
'B': item['B'],
'C': item['C'],
'D': item['D'],
'target': item['answer'],
})
dataset[split] = Dataset.from_list(raw_data)
return dataset