mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
[Feature] Add ChemBench (#1032)
* add ChemBench * update results * molbench -> ChemBench --------- Co-authored-by: Leymore <zfz-960727@163.com>
This commit is contained in:
parent
bd7c11bb89
commit
a00e57296f
77
configs/datasets/ChemBench/ChemBench_gen.py
Normal file
77
configs/datasets/ChemBench/ChemBench_gen.py
Normal file
@ -0,0 +1,77 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import FixKRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.openicl.icl_evaluator import AccEvaluator
|
||||||
|
from opencompass.datasets import ChemBenchDataset
|
||||||
|
from opencompass.utils.text_postprocessors import first_capital_postprocess
|
||||||
|
|
||||||
|
|
||||||
|
chembench_reader_cfg = dict(
|
||||||
|
input_columns=["input", "A", "B", "C", "D"],
|
||||||
|
output_column="target",
|
||||||
|
train_split='dev')
|
||||||
|
|
||||||
|
chembench_all_sets = [
|
||||||
|
'Name_Conversion',
|
||||||
|
'Property_Prediction',
|
||||||
|
'Mol2caption',
|
||||||
|
'Caption2mol',
|
||||||
|
'Product_Prediction',
|
||||||
|
'Retrosynthesis',
|
||||||
|
'Yield_Prediction',
|
||||||
|
'Temperature_Prediction',
|
||||||
|
'Solvent_Prediction'
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
chembench_datasets = []
|
||||||
|
for _name in chembench_all_sets:
|
||||||
|
# _hint = f'There is a single choice question about {_name.replace("_", " ")}. Answer the question by replying A, B, C or D.'
|
||||||
|
_hint = f'There is a single choice question about chemistry. Answer the question by replying A, B, C or D.'
|
||||||
|
|
||||||
|
chembench_infer_cfg = dict(
|
||||||
|
ice_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(round=[
|
||||||
|
dict(
|
||||||
|
role="HUMAN",
|
||||||
|
prompt=
|
||||||
|
f"{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: "
|
||||||
|
),
|
||||||
|
dict(role="BOT", prompt="{target}\n")
|
||||||
|
]),
|
||||||
|
),
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
begin="</E>",
|
||||||
|
round=[
|
||||||
|
dict(
|
||||||
|
role="HUMAN",
|
||||||
|
prompt=
|
||||||
|
f"{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: "
|
||||||
|
),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
ice_token="</E>",
|
||||||
|
),
|
||||||
|
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
|
||||||
|
inferencer=dict(type=GenInferencer),
|
||||||
|
)
|
||||||
|
|
||||||
|
chembench_eval_cfg = dict(
|
||||||
|
evaluator=dict(type=AccEvaluator),
|
||||||
|
pred_postprocessor=dict(type=first_capital_postprocess))
|
||||||
|
|
||||||
|
chembench_datasets.append(
|
||||||
|
dict(
|
||||||
|
abbr=f"ChemBench_{_name}",
|
||||||
|
type=ChemBenchDataset,
|
||||||
|
path="./data/ChemBench/",
|
||||||
|
name=_name,
|
||||||
|
reader_cfg=chembench_reader_cfg,
|
||||||
|
infer_cfg=chembench_infer_cfg,
|
||||||
|
eval_cfg=chembench_eval_cfg,
|
||||||
|
))
|
||||||
|
|
||||||
|
del _name, _hint
|
22
configs/eval_chembench.py
Normal file
22
configs/eval_chembench.py
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
from mmengine.config import read_base
|
||||||
|
|
||||||
|
with read_base():
|
||||||
|
from .datasets.ChemBench.ChemBench_gen import chembench_datasets
|
||||||
|
from .models.mistral.hf_mistral_7b_instruct_v0_2 import models
|
||||||
|
|
||||||
|
datasets = [*chembench_datasets]
|
||||||
|
models = [*models]
|
||||||
|
|
||||||
|
'''
|
||||||
|
dataset version metric mode mistral-7b-instruct-v0.2-hf
|
||||||
|
-------------------------------- --------- -------- ------ -----------------------------
|
||||||
|
ChemBench_Name_Conversion d4e6a1 accuracy gen 45.43
|
||||||
|
ChemBench_Property_Prediction d4e6a1 accuracy gen 47.11
|
||||||
|
ChemBench_Mol2caption d4e6a1 accuracy gen 64.21
|
||||||
|
ChemBench_Caption2mol d4e6a1 accuracy gen 35.38
|
||||||
|
ChemBench_Product_Prediction d4e6a1 accuracy gen 38.67
|
||||||
|
ChemBench_Retrosynthesis d4e6a1 accuracy gen 27
|
||||||
|
ChemBench_Yield_Prediction d4e6a1 accuracy gen 27
|
||||||
|
ChemBench_Temperature_Prediction d4e6a1 accuracy gen 26.73
|
||||||
|
ChemBench_Solvent_Prediction d4e6a1 accuracy gen 32.67
|
||||||
|
'''
|
@ -12,6 +12,7 @@ from .bustum import * # noqa: F401, F403
|
|||||||
from .c3 import * # noqa: F401, F403
|
from .c3 import * # noqa: F401, F403
|
||||||
from .cb import * # noqa: F401, F403
|
from .cb import * # noqa: F401, F403
|
||||||
from .ceval import * # noqa: F401, F403
|
from .ceval import * # noqa: F401, F403
|
||||||
|
from .chembench import * # noqa: F401, F403
|
||||||
from .chid import * # noqa: F401, F403
|
from .chid import * # noqa: F401, F403
|
||||||
from .cibench import * # noqa: F401, F403
|
from .cibench import * # noqa: F401, F403
|
||||||
from .circular import * # noqa: F401, F403
|
from .circular import * # noqa: F401, F403
|
||||||
|
34
opencompass/datasets/chembench.py
Normal file
34
opencompass/datasets/chembench.py
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
import json
|
||||||
|
import os.path as osp
|
||||||
|
|
||||||
|
from datasets import Dataset, DatasetDict
|
||||||
|
|
||||||
|
from opencompass.registry import LOAD_DATASET
|
||||||
|
|
||||||
|
from .base import BaseDataset
|
||||||
|
|
||||||
|
|
||||||
|
@LOAD_DATASET.register_module()
|
||||||
|
class ChemBenchDataset(BaseDataset):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load(path: str, name: str):
|
||||||
|
dataset = DatasetDict()
|
||||||
|
for split in ['dev', 'test']:
|
||||||
|
raw_data = []
|
||||||
|
filename = osp.join(path, split, f'{name}_benchmark.json')
|
||||||
|
with open(filename, 'r', encoding='utf-8') as json_file:
|
||||||
|
data = json.load(json_file)
|
||||||
|
|
||||||
|
for item in data:
|
||||||
|
raw_data.append({
|
||||||
|
'input': item['question'],
|
||||||
|
'A': item['A'],
|
||||||
|
'B': item['B'],
|
||||||
|
'C': item['C'],
|
||||||
|
'D': item['D'],
|
||||||
|
'target': item['answer'],
|
||||||
|
})
|
||||||
|
|
||||||
|
dataset[split] = Dataset.from_list(raw_data)
|
||||||
|
return dataset
|
Loading…
Reference in New Issue
Block a user