[Feature] Add support for Rendu API (#1468)

* Add support for Rendu API

* fix lint issue

* fix lint issue

* fix lint issue

* Update

---------

Co-authored-by: 13190 <zeyu.yan@transn.com>
Co-authored-by: tonysy <sy.zhangbuaa@gmail.com>
This commit is contained in:
Albert Yan 2024-09-06 02:00:43 +09:00 committed by GitHub
parent faf5260155
commit 928d0cfc3a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 215 additions and 0 deletions

View File

@ -0,0 +1,39 @@
from mmengine.config import read_base
from opencompass.models import Rendu
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets
]
models = [
dict(
abbr='Rendu',
type=Rendu,
path='rendu',
key='xxxxxx',
url='xxxxxx',
generation_kwargs={
'temperature': 0.1,
'top_p': 0.9,
},
query_per_second=10,
max_out_len=2048,
max_seq_len=2048,
batch_size=8),
]
infer = dict(partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=1,
concurrent_users=1,
task=dict(type=OpenICLInferTask)), )
work_dir = 'outputs/api_rendu/'

View File

@ -35,6 +35,7 @@ from .openai_api import OpenAI # noqa: F401
from .openai_api import OpenAISDK # noqa: F401
from .pangu_api import PanGu # noqa: F401
from .qwen_api import Qwen # noqa: F401
from .rendu_api import Rendu # noqa: F401
from .sensetime_api import SenseTime # noqa: F401
from .stepfun_api import StepFun # noqa: F401
from .turbomind import TurboMindModel # noqa: F401

View File

@ -0,0 +1,175 @@
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union
import requests
from opencompass.utils.prompt import PromptList
from .base_api import BaseAPIModel
PromptType = Union[PromptList, str]
class Rendu(BaseAPIModel):
"""Model wrapper around Rendu.
Documentation:
Args:
path (str): The name of Rendu model.
e.g. `Rendu`
key (str): Authorization key.
url (str): model url.
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 1.
max_seq_len (int): Unused here.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
retry (int): Number of retires if the API call fails. Defaults to 2.
"""
is_api: bool = True
def __init__(self,
path: str,
key: str,
url: str,
query_per_second: int = 2,
max_seq_len: int = 2048,
meta_template: Optional[Dict] = None,
retry: int = 2,
generation_kwargs: Dict = {
'temperature': 0.7,
'top_p': 0.9,
}):
super().__init__(path=path,
max_seq_len=max_seq_len,
query_per_second=query_per_second,
meta_template=meta_template,
retry=retry,
generation_kwargs=generation_kwargs)
self.url = url
self.key = key
self.model = path
self.headers = {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + self.key,
}
def generate(
self,
inputs: List[PromptType],
max_out_len: int = 512,
) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[PromptType]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[max_out_len] * len(inputs)))
self.flush()
return results
def _generate(
self,
input: PromptType,
max_out_len: int = 512,
) -> str:
"""Generate results given an input.
Args:
input (PromptType): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
if isinstance(input, str):
messages = [{'role': 'user', 'content': input}]
else:
messages = []
msg_buffer, last_role = [], None
for item in input:
item['role'] = 'assistant' if item['role'] == 'BOT' else 'user'
if item['role'] != last_role and last_role is not None:
messages.append({
'content': '\n'.join(msg_buffer),
'role': last_role
})
msg_buffer = []
msg_buffer.append(item['prompt'])
last_role = item['role']
messages.append({
'content': '\n'.join(msg_buffer),
'role': last_role
})
data = {
'model': self.model,
'messages': messages,
}
data.update(self.generation_kwargs)
max_num_retries = 0
while max_num_retries < self.retry:
self.acquire()
try:
raw_response = requests.request('POST',
url=self.url,
headers=self.headers,
json=data)
except Exception as err:
print('Request Error:{}'.format(err))
time.sleep(2)
continue
response = raw_response.json()
self.release()
if response is None:
print('Connection error, reconnect.')
# if connect error, frequent requests will casuse
# continuous unstable network, therefore wait here
# to slow down the request
self.wait()
continue
if raw_response.status_code == 200:
# msg = json.load(response.text)
# response
msg = response['choices'][0]['message']['content']
return msg
if raw_response.status_code == 403:
print('请求被拒绝 api_key错误')
continue
elif raw_response.status_code == 400:
print(messages, response)
print('请求失败,状态码:', raw_response)
msg = 'The request was rejected because high risk'
return msg
time.sleep(1)
continue
elif raw_response.status_code == 429:
print(messages, response)
print('请求失败,状态码:', raw_response)
time.sleep(5)
continue
max_num_retries += 1
raise RuntimeError(raw_response)