mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
feat
This commit is contained in:
parent
c3ad4b5603
commit
8a52351e41
@ -141,6 +141,12 @@ def parse_args():
|
||||
type=str,
|
||||
default=None,
|
||||
)
|
||||
parser.add_argument(
|
||||
'--read-from-station',
|
||||
help='Whether to save the evaluation results to the '
|
||||
'data station.',
|
||||
action='store_true',
|
||||
)
|
||||
|
||||
|
||||
# set srun args
|
||||
@ -256,8 +262,6 @@ def main():
|
||||
else:
|
||||
dirs = os.listdir(cfg.work_dir)
|
||||
dir_time_str = sorted(dirs)[-1]
|
||||
elif args.reuse == 'station':
|
||||
Read_From_Station(cfg, args, dir_time_str)
|
||||
else:
|
||||
dir_time_str = args.reuse
|
||||
logger.info(f'Reusing experiements from {dir_time_str}')
|
||||
@ -280,6 +284,13 @@ def main():
|
||||
# types cannot be serialized
|
||||
cfg = Config.fromfile(output_config_path, format_python_code=False)
|
||||
|
||||
# get existed results from station
|
||||
if args.read_from_station:
|
||||
existing_results_list = Read_From_Station(cfg, args)
|
||||
rs_exist_results = [comb['combination'] for comb in existing_results_list]
|
||||
cfg['rs_exist_results'] = rs_exist_results
|
||||
|
||||
|
||||
# report to lark bot if specify --lark
|
||||
if not args.lark:
|
||||
cfg['lark_bot_url'] = None
|
||||
@ -371,12 +382,7 @@ def main():
|
||||
|
||||
# save to station
|
||||
if args.save_to_station:
|
||||
if Save_To_Station(cfg, args):
|
||||
logger.info('Successfully saved to station.')
|
||||
else:
|
||||
logger.warning('Failed to save result to station.')
|
||||
|
||||
|
||||
Save_To_Station(cfg, args)
|
||||
|
||||
# visualize
|
||||
if args.mode in ['all', 'eval', 'viz']:
|
||||
|
@ -102,6 +102,7 @@ class BasePartitioner:
|
||||
return tasks
|
||||
|
||||
def parse_model_dataset_args(self, cfg: ConfigDict):
|
||||
#breakpoint()
|
||||
models = cfg['models']
|
||||
datasets = cfg['datasets']
|
||||
|
||||
@ -109,7 +110,24 @@ class BasePartitioner:
|
||||
if 'model_dataset_combinations' in sig.parameters:
|
||||
combs = cfg.get('model_dataset_combinations', None)
|
||||
if combs is None:
|
||||
combs = [{'models': models, 'datasets': datasets}]
|
||||
if 'rs_exist_results' in cfg.keys():
|
||||
rs_exist_results = cfg['rs_exist_results']
|
||||
combs = []
|
||||
for model in models:
|
||||
comb = {'models': [model], 'datasets': datasets}
|
||||
combs.append(comb)
|
||||
for i in range(len(combs)):
|
||||
combs[i]['datasets'] = [
|
||||
dataset for dataset in combs[i]['datasets'] if [
|
||||
model_abbr_from_cfg(combs[i]['models'][0]),
|
||||
dataset_abbr_from_cfg(dataset)
|
||||
] not in rs_exist_results
|
||||
]
|
||||
combs = [
|
||||
comb for comb in combs if len(comb['datasets']) != 0
|
||||
]
|
||||
else:
|
||||
combs = [{'models': models, 'datasets': datasets}]
|
||||
else:
|
||||
# sanity check
|
||||
model_abbrs = [model_abbr_from_cfg(model) for model in models]
|
||||
|
@ -3,6 +3,8 @@ import os
|
||||
import os.path as osp
|
||||
import re
|
||||
|
||||
from opencompass.utils.abbr import dataset_abbr_from_cfg, model_abbr_from_cfg
|
||||
|
||||
|
||||
def Save_To_Station(cfg, args):
|
||||
|
||||
@ -14,8 +16,13 @@ def Save_To_Station(cfg, args):
|
||||
station_path = args.station_path
|
||||
|
||||
work_dict = cfg['work_dir']
|
||||
model_list = [i['abbr'] for i in cfg['models']]
|
||||
dataset_list = [i['abbr'] for i in cfg['datasets']]
|
||||
model_list = [model_abbr_from_cfg(model) for model in cfg['models']]
|
||||
dataset_list = [
|
||||
dataset_abbr_from_cfg(dataset) for dataset in cfg['datasets']
|
||||
]
|
||||
|
||||
# model_list = [i['abbr'] for i in cfg['models']]
|
||||
# dataset_list = [i['abbr'] for i in cfg['datasets']]
|
||||
|
||||
for dataset in dataset_list:
|
||||
result_path = osp.join(station_path, dataset)
|
||||
@ -61,10 +68,21 @@ def Save_To_Station(cfg, args):
|
||||
this_prediction.append(
|
||||
this_prediction_load_json[prekey])
|
||||
|
||||
# get config dict
|
||||
model_cfg = [
|
||||
i for i in cfg['models'] if model_abbr_from_cfg(i) == model
|
||||
][0]
|
||||
dataset_cfg = [
|
||||
i for i in cfg['datasets']
|
||||
if dataset_abbr_from_cfg(i) == dataset
|
||||
][0]
|
||||
this_cfg = {'models': model_cfg, 'datasets': dataset_cfg}
|
||||
|
||||
# dict combine
|
||||
data_model_results = {
|
||||
'predictions': this_prediction,
|
||||
'results': this_result
|
||||
'results': this_result,
|
||||
'cfg': this_cfg
|
||||
}
|
||||
with open(osp.join(result_path, result_file_name), 'w') as f:
|
||||
json.dump(data_model_results,
|
||||
@ -72,13 +90,13 @@ def Save_To_Station(cfg, args):
|
||||
ensure_ascii=False,
|
||||
indent=4)
|
||||
f.close()
|
||||
print('result of {} with {} already exists'.format(
|
||||
dataset, model))
|
||||
print('successfully save result of {} with {} to the station'.
|
||||
format(dataset, model))
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def Read_From_Station(cfg, args, dir_time_str):
|
||||
def Read_From_Station(cfg, args):
|
||||
|
||||
assert args.station_path is not None or 'station_path' in cfg.keys(
|
||||
) and cfg['station_path'] is not None
|
||||
@ -87,70 +105,50 @@ def Read_From_Station(cfg, args, dir_time_str):
|
||||
else:
|
||||
station_path = args.station_path
|
||||
|
||||
work_dict = osp.join(cfg.work_dir, dir_time_str)
|
||||
model_list = [i['abbr'] for i in cfg['models']]
|
||||
dataset_list = [i['abbr'] for i in cfg['datasets']]
|
||||
model_list = [model_abbr_from_cfg(model) for model in cfg['models']]
|
||||
dataset_list = [
|
||||
dataset_abbr_from_cfg(dataset) for dataset in cfg['datasets']
|
||||
]
|
||||
# model_list = [i['abbr'] for i in cfg['models']]
|
||||
# dataset_list = [i['abbr'] for i in cfg['datasets']]
|
||||
|
||||
if not osp.exists(work_dict):
|
||||
os.makedirs(work_dict)
|
||||
local_prediction_path = osp.join(work_dict, 'predictions')
|
||||
if not osp.exists(local_prediction_path):
|
||||
os.makedirs(local_prediction_path)
|
||||
local_result_path = osp.join(work_dict, 'results')
|
||||
if not osp.exists(local_result_path):
|
||||
os.makedirs(local_result_path)
|
||||
existing_results_list = []
|
||||
|
||||
for model in model_list:
|
||||
|
||||
for data in dataset_list:
|
||||
result_file_path = osp.join(station_path, data, model + '.json')
|
||||
for dataset in dataset_list:
|
||||
result_file_path = osp.join(station_path, dataset, model + '.json')
|
||||
if not osp.exists(result_file_path):
|
||||
print('do not find result file: {} with {} at station'.format(
|
||||
model, data))
|
||||
model, dataset))
|
||||
continue
|
||||
else:
|
||||
print('find result file: {} with {} at station'.format(
|
||||
model, data))
|
||||
|
||||
model, dataset))
|
||||
with open(result_file_path, 'r') as f:
|
||||
download_json = json.load(f)
|
||||
f.close()
|
||||
existing_results_list.append({
|
||||
'combination': [model, dataset],
|
||||
'file': download_json
|
||||
})
|
||||
|
||||
this_local_prediction_path = osp.join(local_prediction_path,
|
||||
model)
|
||||
if not osp.exists(this_local_prediction_path):
|
||||
os.makedirs(this_local_prediction_path)
|
||||
this_local_result_path = osp.join(local_result_path, model)
|
||||
if not osp.exists(this_local_result_path):
|
||||
os.makedirs(this_local_result_path)
|
||||
# save results to local
|
||||
result_local_path = osp.join(cfg['work_dir'], 'results')
|
||||
if not osp.exists(result_local_path):
|
||||
os.makedirs(result_local_path)
|
||||
for i in existing_results_list:
|
||||
this_result = i['file']['results']
|
||||
this_result_local_path = osp.join(result_local_path,
|
||||
i['combination'][0])
|
||||
if not osp.exists(this_result_local_path):
|
||||
os.makedirs(this_result_local_path)
|
||||
this_result_local_file_path = osp.join(this_result_local_path,
|
||||
i['combination'][1] + '.json')
|
||||
with open(this_result_local_file_path, 'w') as f:
|
||||
json.dump(this_result, f, ensure_ascii=False, indent=4)
|
||||
f.close()
|
||||
|
||||
this_local_prediction_path = osp.join(
|
||||
this_local_prediction_path, data + '.json')
|
||||
this_local_result_path = osp.join(this_local_result_path,
|
||||
data + '.json')
|
||||
|
||||
download_json_prediction = download_json['predictions']
|
||||
download_json_result = download_json['results']
|
||||
|
||||
# save predictions
|
||||
local_prediction = {}
|
||||
for i in range(len(download_json_prediction)):
|
||||
local_prediction[str(i)] = download_json_prediction[i]
|
||||
with open(this_local_prediction_path, 'w') as f:
|
||||
json.dump(local_prediction,
|
||||
f,
|
||||
ensure_ascii=False,
|
||||
indent=4)
|
||||
f.close()
|
||||
|
||||
# save results
|
||||
with open(this_local_result_path, 'w') as f:
|
||||
json.dump(download_json_result,
|
||||
f,
|
||||
ensure_ascii=False,
|
||||
indent=4)
|
||||
f.close()
|
||||
return True
|
||||
return existing_results_list
|
||||
|
||||
|
||||
def find_files_by_regex(directory, pattern):
|
||||
|
Loading…
Reference in New Issue
Block a user