[Feature] Longbench dataset update

This commit is contained in:
Linchen Xiao 2024-09-06 15:50:12 +08:00 committed by GitHub
parent 928d0cfc3a
commit 87ffa71d68
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
64 changed files with 730 additions and 437 deletions

View File

@ -7,7 +7,7 @@ LongBench_2wikimqa_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_2wikimqa_infer_cfg = dict( LongBench_2wikimqa_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_2wikimqa_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:'), dict(
], )), role='HUMAN',
prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_2wikimqa_eval_cfg = dict( LongBench_2wikimqa_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator), evaluator=dict(type=LongBenchF1Evaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_2wikimqa_datasets = [ LongBench_2wikimqa_datasets = [
dict( dict(
type=LongBench2wikimqaDataset, type=LongBench2wikimqaDataset,
abbr='LongBench_2wikimqa', abbr='LongBench_2wikimqa',
path='THUDM/LongBench', path='opencompass/Longbench',
name='2wikimqa', name='2wikimqa',
reader_cfg=LongBench_2wikimqa_reader_cfg, reader_cfg=LongBench_2wikimqa_reader_cfg,
infer_cfg=LongBench_2wikimqa_infer_cfg, infer_cfg=LongBench_2wikimqa_infer_cfg,
eval_cfg=LongBench_2wikimqa_eval_cfg) eval_cfg=LongBench_2wikimqa_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_dureader_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_dureader_infer_cfg = dict( LongBench_dureader_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_dureader_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='请基于给定的文章回答下述问题。\n\n文章:{context}\n\n请基于上述文章回答下面的问题。\n\n问题:{input}\n回答:'), dict(
], )), role='HUMAN',
prompt='请基于给定的文章回答下述问题。\n\n文章:{context}\n\n请基于上述文章回答下面的问题。\n\n问题:{input}\n回答:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=128) inferencer=dict(type=GenInferencer, max_out_len=128),
) )
LongBench_dureader_eval_cfg = dict( LongBench_dureader_eval_cfg = dict(
evaluator=dict(type=LongBenchRougeEvaluator, language='zh'), evaluator=dict(type=LongBenchRougeEvaluator, language='zh'), pred_role='BOT'
pred_role='BOT'
) )
LongBench_dureader_datasets = [ LongBench_dureader_datasets = [
dict( dict(
type=LongBenchdureaderDataset, type=LongBenchdureaderDataset,
abbr='LongBench_dureader', abbr='LongBench_dureader',
path='THUDM/LongBench', path='opencompass/Longbench',
name='dureader', name='dureader',
reader_cfg=LongBench_dureader_reader_cfg, reader_cfg=LongBench_dureader_reader_cfg,
infer_cfg=LongBench_dureader_infer_cfg, infer_cfg=LongBench_dureader_infer_cfg,
eval_cfg=LongBench_dureader_eval_cfg) eval_cfg=LongBench_dureader_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_gov_report_reader_cfg = dict(
input_columns=['context'], input_columns=['context'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_gov_report_infer_cfg = dict( LongBench_gov_report_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_gov_report_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='You are given a report by a government agency. Write a one-page summary of the report.\n\nReport:\n{context}\n\nNow, write a one-page summary of the report.\n\nSummary:'), dict(
], )), role='HUMAN',
prompt='You are given a report by a government agency. Write a one-page summary of the report.\n\nReport:\n{context}\n\nNow, write a one-page summary of the report.\n\nSummary:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512) inferencer=dict(type=GenInferencer, max_out_len=512),
) )
LongBench_gov_report_eval_cfg = dict( LongBench_gov_report_eval_cfg = dict(
evaluator=dict(type=LongBenchRougeEvaluator), evaluator=dict(type=LongBenchRougeEvaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_gov_report_datasets = [ LongBench_gov_report_datasets = [
dict( dict(
type=LongBenchgov_reportDataset, type=LongBenchgov_reportDataset,
abbr='LongBench_gov_report', abbr='LongBench_gov_report',
path='THUDM/LongBench', path='opencompass/Longbench',
name='gov_report', name='gov_report',
reader_cfg=LongBench_gov_report_reader_cfg, reader_cfg=LongBench_gov_report_reader_cfg,
infer_cfg=LongBench_gov_report_infer_cfg, infer_cfg=LongBench_gov_report_infer_cfg,
eval_cfg=LongBench_gov_report_eval_cfg) eval_cfg=LongBench_gov_report_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_hotpotqa_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_hotpotqa_infer_cfg = dict( LongBench_hotpotqa_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_hotpotqa_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:'), dict(
], )), role='HUMAN',
prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_hotpotqa_eval_cfg = dict( LongBench_hotpotqa_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator), evaluator=dict(type=LongBenchF1Evaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_hotpotqa_datasets = [ LongBench_hotpotqa_datasets = [
dict( dict(
type=LongBenchhotpotqaDataset, type=LongBenchhotpotqaDataset,
abbr='LongBench_hotpotqa', abbr='LongBench_hotpotqa',
path='THUDM/LongBench', path='opencompass/Longbench',
name='hotpotqa', name='hotpotqa',
reader_cfg=LongBench_hotpotqa_reader_cfg, reader_cfg=LongBench_hotpotqa_reader_cfg,
infer_cfg=LongBench_hotpotqa_infer_cfg, infer_cfg=LongBench_hotpotqa_infer_cfg,
eval_cfg=LongBench_hotpotqa_eval_cfg) eval_cfg=LongBench_hotpotqa_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_lcc_reader_cfg = dict(
input_columns=['context'], input_columns=['context'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_lcc_infer_cfg = dict( LongBench_lcc_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_lcc_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Please complete the code given below. \n{context}Next line of code:\n'), dict(
], )), role='HUMAN',
prompt='Please complete the code given below. \n{context}Next line of code:\n',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=64) inferencer=dict(type=GenInferencer, max_out_len=64),
) )
LongBench_lcc_eval_cfg = dict( LongBench_lcc_eval_cfg = dict(
evaluator=dict(type=LongBenchCodeSimEvaluator), evaluator=dict(type=LongBenchCodeSimEvaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_lcc_datasets = [ LongBench_lcc_datasets = [
dict( dict(
type=LongBenchlccDataset, type=LongBenchlccDataset,
abbr='LongBench_lcc', abbr='LongBench_lcc',
path='THUDM/LongBench', path='opencompass/Longbench',
name='lcc', name='lcc',
reader_cfg=LongBench_lcc_reader_cfg, reader_cfg=LongBench_lcc_reader_cfg,
infer_cfg=LongBench_lcc_infer_cfg, infer_cfg=LongBench_lcc_infer_cfg,
eval_cfg=LongBench_lcc_eval_cfg) eval_cfg=LongBench_lcc_eval_cfg,
)
] ]

View File

@ -1,13 +1,17 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import LongBenchClassificationEvaluator, LongBenchlshtDataset, lsht_postprocess from opencompass.datasets import (
LongBenchClassificationEvaluator,
LongBenchlshtDataset,
lsht_postprocess,
)
LongBench_lsht_reader_cfg = dict( LongBench_lsht_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='all_labels', output_column='all_labels',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_lsht_infer_cfg = dict( LongBench_lsht_infer_cfg = dict(
@ -15,10 +19,15 @@ LongBench_lsht_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='请判断给定新闻的类别,下面是一些例子。\n\n{context}\n{input}'), dict(
], )), role='HUMAN',
prompt='请判断给定新闻的类别,下面是一些例子。\n\n{context}\n{input}',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=64) inferencer=dict(type=GenInferencer, max_out_len=64),
) )
LongBench_lsht_eval_cfg = dict( LongBench_lsht_eval_cfg = dict(
@ -31,9 +40,10 @@ LongBench_lsht_datasets = [
dict( dict(
type=LongBenchlshtDataset, type=LongBenchlshtDataset,
abbr='LongBench_lsht', abbr='LongBench_lsht',
path='THUDM/LongBench', path='opencompass/Longbench',
name='lsht', name='lsht',
reader_cfg=LongBench_lsht_reader_cfg, reader_cfg=LongBench_lsht_reader_cfg,
infer_cfg=LongBench_lsht_infer_cfg, infer_cfg=LongBench_lsht_infer_cfg,
eval_cfg=LongBench_lsht_eval_cfg) eval_cfg=LongBench_lsht_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_multi_news_reader_cfg = dict(
input_columns=['context'], input_columns=['context'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_multi_news_infer_cfg = dict( LongBench_multi_news_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_multi_news_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='You are given several news passages. Write a one-page summary of all news. \n\nNews:\n{context}\n\nNow, write a one-page summary of all the news.\n\nSummary:\n'), dict(
], )), role='HUMAN',
prompt='You are given several news passages. Write a one-page summary of all news. \n\nNews:\n{context}\n\nNow, write a one-page summary of all the news.\n\nSummary:\n',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512) inferencer=dict(type=GenInferencer, max_out_len=512),
) )
LongBench_multi_news_eval_cfg = dict( LongBench_multi_news_eval_cfg = dict(
evaluator=dict(type=LongBenchRougeEvaluator), evaluator=dict(type=LongBenchRougeEvaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_multi_news_datasets = [ LongBench_multi_news_datasets = [
dict( dict(
type=LongBenchmulti_newsDataset, type=LongBenchmulti_newsDataset,
abbr='LongBench_multi_news', abbr='LongBench_multi_news',
path='THUDM/LongBench', path='opencompass/Longbench',
name='multi_news', name='multi_news',
reader_cfg=LongBench_multi_news_reader_cfg, reader_cfg=LongBench_multi_news_reader_cfg,
infer_cfg=LongBench_multi_news_infer_cfg, infer_cfg=LongBench_multi_news_infer_cfg,
eval_cfg=LongBench_multi_news_eval_cfg) eval_cfg=LongBench_multi_news_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_multifieldqa_en_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_multifieldqa_en_infer_cfg = dict( LongBench_multifieldqa_en_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_multifieldqa_en_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Read the following text and answer briefly.\n\n{context}\n\nNow, answer the following question based on the above text, only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:'), dict(
], )), role='HUMAN',
prompt='Read the following text and answer briefly.\n\n{context}\n\nNow, answer the following question based on the above text, only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=64) inferencer=dict(type=GenInferencer, max_out_len=64),
) )
LongBench_multifieldqa_en_eval_cfg = dict( LongBench_multifieldqa_en_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator), evaluator=dict(type=LongBenchF1Evaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_multifieldqa_en_datasets = [ LongBench_multifieldqa_en_datasets = [
dict( dict(
type=LongBenchmultifieldqa_enDataset, type=LongBenchmultifieldqa_enDataset,
abbr='LongBench_multifieldqa_en', abbr='LongBench_multifieldqa_en',
path='THUDM/LongBench', path='opencompass/Longbench',
name='multifieldqa_en', name='multifieldqa_en',
reader_cfg=LongBench_multifieldqa_en_reader_cfg, reader_cfg=LongBench_multifieldqa_en_reader_cfg,
infer_cfg=LongBench_multifieldqa_en_infer_cfg, infer_cfg=LongBench_multifieldqa_en_infer_cfg,
eval_cfg=LongBench_multifieldqa_en_eval_cfg) eval_cfg=LongBench_multifieldqa_en_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_multifieldqa_zh_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_multifieldqa_zh_infer_cfg = dict( LongBench_multifieldqa_zh_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_multifieldqa_zh_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='阅读以下文字并用中文简短回答:\n\n{context}\n\n现在请基于上面的文章回答下面的问题,只告诉我答案,不要输出任何其他字词。\n\n问题:{input}\n回答:'), dict(
], )), role='HUMAN',
prompt='阅读以下文字并用中文简短回答:\n\n{context}\n\n现在请基于上面的文章回答下面的问题,只告诉我答案,不要输出任何其他字词。\n\n问题:{input}\n回答:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=64) inferencer=dict(type=GenInferencer, max_out_len=64),
) )
LongBench_multifieldqa_zh_eval_cfg = dict( LongBench_multifieldqa_zh_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator, language='zh'), evaluator=dict(type=LongBenchF1Evaluator, language='zh'), pred_role='BOT'
pred_role='BOT'
) )
LongBench_multifieldqa_zh_datasets = [ LongBench_multifieldqa_zh_datasets = [
dict( dict(
type=LongBenchmultifieldqa_zhDataset, type=LongBenchmultifieldqa_zhDataset,
abbr='LongBench_multifieldqa_zh', abbr='LongBench_multifieldqa_zh',
path='THUDM/LongBench', path='opencompass/Longbench',
name='multifieldqa_zh', name='multifieldqa_zh',
reader_cfg=LongBench_multifieldqa_zh_reader_cfg, reader_cfg=LongBench_multifieldqa_zh_reader_cfg,
infer_cfg=LongBench_multifieldqa_zh_infer_cfg, infer_cfg=LongBench_multifieldqa_zh_infer_cfg,
eval_cfg=LongBench_multifieldqa_zh_eval_cfg) eval_cfg=LongBench_multifieldqa_zh_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_musique_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_musique_infer_cfg = dict( LongBench_musique_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_musique_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:'), dict(
], )), role='HUMAN',
prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_musique_eval_cfg = dict( LongBench_musique_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator), evaluator=dict(type=LongBenchF1Evaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_musique_datasets = [ LongBench_musique_datasets = [
dict( dict(
type=LongBenchmusiqueDataset, type=LongBenchmusiqueDataset,
abbr='LongBench_musique', abbr='LongBench_musique',
path='THUDM/LongBench', path='opencompass/Longbench',
name='musique', name='musique',
reader_cfg=LongBench_musique_reader_cfg, reader_cfg=LongBench_musique_reader_cfg,
infer_cfg=LongBench_musique_infer_cfg, infer_cfg=LongBench_musique_infer_cfg,
eval_cfg=LongBench_musique_eval_cfg) eval_cfg=LongBench_musique_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_narrativeqa_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_narrativeqa_infer_cfg = dict( LongBench_narrativeqa_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_narrativeqa_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='You are given a story, which can be either a novel or a movie script, and a question. Answer the question as concisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nStory: {context}\n\nNow, answer the question based on the story as concisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nQuestion: {input}\n\nAnswer:'), dict(
], )), role='HUMAN',
prompt='You are given a story, which can be either a novel or a movie script, and a question. Answer the question as concisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nStory: {context}\n\nNow, answer the question based on the story as concisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nQuestion: {input}\n\nAnswer:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=128) inferencer=dict(type=GenInferencer, max_out_len=128),
) )
LongBench_narrativeqa_eval_cfg = dict( LongBench_narrativeqa_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator), evaluator=dict(type=LongBenchF1Evaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_narrativeqa_datasets = [ LongBench_narrativeqa_datasets = [
dict( dict(
type=LongBenchnarrativeqaDataset, type=LongBenchnarrativeqaDataset,
abbr='LongBench_narrativeqa', abbr='LongBench_narrativeqa',
path='THUDM/LongBench', path='opencompass/Longbench',
name='narrativeqa', name='narrativeqa',
reader_cfg=LongBench_narrativeqa_reader_cfg, reader_cfg=LongBench_narrativeqa_reader_cfg,
infer_cfg=LongBench_narrativeqa_infer_cfg, infer_cfg=LongBench_narrativeqa_infer_cfg,
eval_cfg=LongBench_narrativeqa_eval_cfg) eval_cfg=LongBench_narrativeqa_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_passage_count_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_passage_count_infer_cfg = dict( LongBench_passage_count_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_passage_count_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='There are some paragraphs below sourced from Wikipedia. Some of them may be duplicates. Please carefully read these paragraphs and determine how many unique paragraphs there are after removing duplicates. In other words, how many non-repeating paragraphs are there in total?\n\n{context}\n\nPlease enter the final count of unique paragraphs after removing duplicates. The output format should only contain the number, such as 1, 2, 3, and so on.\n\nThe final answer is: '), dict(
], )), role='HUMAN',
prompt='There are some paragraphs below sourced from Wikipedia. Some of them may be duplicates. Please carefully read these paragraphs and determine how many unique paragraphs there are after removing duplicates. In other words, how many non-repeating paragraphs are there in total?\n\n{context}\n\nPlease enter the final count of unique paragraphs after removing duplicates. The output format should only contain the number, such as 1, 2, 3, and so on.\n\nThe final answer is: ',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_passage_count_eval_cfg = dict( LongBench_passage_count_eval_cfg = dict(
evaluator=dict(type=LongBenchCountEvaluator), evaluator=dict(type=LongBenchCountEvaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_passage_count_datasets = [ LongBench_passage_count_datasets = [
dict( dict(
type=LongBenchpassage_countDataset, type=LongBenchpassage_countDataset,
abbr='LongBench_passage_count', abbr='LongBench_passage_count',
path='THUDM/LongBench', path='opencompass/Longbench',
name='passage_count', name='passage_count',
reader_cfg=LongBench_passage_count_reader_cfg, reader_cfg=LongBench_passage_count_reader_cfg,
infer_cfg=LongBench_passage_count_infer_cfg, infer_cfg=LongBench_passage_count_infer_cfg,
eval_cfg=LongBench_passage_count_eval_cfg) eval_cfg=LongBench_passage_count_eval_cfg,
)
] ]

View File

@ -1,13 +1,16 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import LongBenchRetrievalEvaluator, LongBenchpassage_retrieval_enDataset from opencompass.datasets import (
LongBenchRetrievalEvaluator,
LongBenchpassage_retrieval_enDataset,
)
LongBench_passage_retrieval_en_reader_cfg = dict( LongBench_passage_retrieval_en_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_passage_retrieval_en_infer_cfg = dict( LongBench_passage_retrieval_en_infer_cfg = dict(
@ -15,24 +18,29 @@ LongBench_passage_retrieval_en_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph the abstract is from.\n\n{context}\n\nThe following is an abstract.\n\n{input}\n\nPlease enter the number of the paragraph that the abstract is from. The answer format must be like \"Paragraph 1\", \"Paragraph 2\", etc.\n\nThe answer is: '), dict(
], )), role='HUMAN',
prompt='Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph the abstract is from.\n\n{context}\n\nThe following is an abstract.\n\n{input}\n\nPlease enter the number of the paragraph that the abstract is from. The answer format must be like "Paragraph 1", "Paragraph 2", etc.\n\nThe answer is: ',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_passage_retrieval_en_eval_cfg = dict( LongBench_passage_retrieval_en_eval_cfg = dict(
evaluator=dict(type=LongBenchRetrievalEvaluator), evaluator=dict(type=LongBenchRetrievalEvaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_passage_retrieval_en_datasets = [ LongBench_passage_retrieval_en_datasets = [
dict( dict(
type=LongBenchpassage_retrieval_enDataset, type=LongBenchpassage_retrieval_enDataset,
abbr='LongBench_passage_retrieval_en', abbr='LongBench_passage_retrieval_en',
path='THUDM/LongBench', path='opencompass/Longbench',
name='passage_retrieval_en', name='passage_retrieval_en',
reader_cfg=LongBench_passage_retrieval_en_reader_cfg, reader_cfg=LongBench_passage_retrieval_en_reader_cfg,
infer_cfg=LongBench_passage_retrieval_en_infer_cfg, infer_cfg=LongBench_passage_retrieval_en_infer_cfg,
eval_cfg=LongBench_passage_retrieval_en_eval_cfg) eval_cfg=LongBench_passage_retrieval_en_eval_cfg,
)
] ]

View File

@ -1,13 +1,16 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import LongBenchRetrievalEvaluator, LongBenchpassage_retrieval_zhDataset from opencompass.datasets import (
LongBenchRetrievalEvaluator,
LongBenchpassage_retrieval_zhDataset,
)
LongBench_passage_retrieval_zh_reader_cfg = dict( LongBench_passage_retrieval_zh_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_passage_retrieval_zh_infer_cfg = dict( LongBench_passage_retrieval_zh_infer_cfg = dict(
@ -15,24 +18,29 @@ LongBench_passage_retrieval_zh_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='以下是若干段落文字,以及其中一个段落的摘要。请确定给定的摘要出自哪一段。\n\n{context}\n\n下面是一个摘要\n\n{input}\n\n请输入摘要所属段落的编号。答案格式必须是\"段落1\"\"段落2\"等格式\n\n答案是:'), dict(
], )), role='HUMAN',
prompt='以下是若干段落文字,以及其中一个段落的摘要。请确定给定的摘要出自哪一段。\n\n{context}\n\n下面是一个摘要\n\n{input}\n\n请输入摘要所属段落的编号。答案格式必须是"段落1""段落2"等格式\n\n答案是:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_passage_retrieval_zh_eval_cfg = dict( LongBench_passage_retrieval_zh_eval_cfg = dict(
evaluator=dict(type=LongBenchRetrievalEvaluator, language='zh'), evaluator=dict(type=LongBenchRetrievalEvaluator, language='zh'), pred_role='BOT'
pred_role='BOT'
) )
LongBench_passage_retrieval_zh_datasets = [ LongBench_passage_retrieval_zh_datasets = [
dict( dict(
type=LongBenchpassage_retrieval_zhDataset, type=LongBenchpassage_retrieval_zhDataset,
abbr='LongBench_passage_retrieval_zh', abbr='LongBench_passage_retrieval_zh',
path='THUDM/LongBench', path='opencompass/Longbench',
name='passage_retrieval_zh', name='passage_retrieval_zh',
reader_cfg=LongBench_passage_retrieval_zh_reader_cfg, reader_cfg=LongBench_passage_retrieval_zh_reader_cfg,
infer_cfg=LongBench_passage_retrieval_zh_infer_cfg, infer_cfg=LongBench_passage_retrieval_zh_infer_cfg,
eval_cfg=LongBench_passage_retrieval_zh_eval_cfg) eval_cfg=LongBench_passage_retrieval_zh_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_qasper_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_qasper_infer_cfg = dict( LongBench_qasper_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_qasper_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:'), dict(
], )), role='HUMAN',
prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_qasper_eval_cfg = dict( LongBench_qasper_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator), evaluator=dict(type=LongBenchF1Evaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_qasper_datasets = [ LongBench_qasper_datasets = [
dict( dict(
type=LongBenchqasperDataset, type=LongBenchqasperDataset,
abbr='LongBench_qasper', abbr='LongBench_qasper',
path='THUDM/LongBench', path='opencompass/Longbench',
name='qasper', name='qasper',
reader_cfg=LongBench_qasper_reader_cfg, reader_cfg=LongBench_qasper_reader_cfg,
infer_cfg=LongBench_qasper_infer_cfg, infer_cfg=LongBench_qasper_infer_cfg,
eval_cfg=LongBench_qasper_eval_cfg) eval_cfg=LongBench_qasper_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_qmsum_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_qmsum_infer_cfg = dict( LongBench_qmsum_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_qmsum_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='You are given a meeting transcript and a query containing a question or instruction. Answer the query in one or more sentences.\n\nTranscript:\n{context}\n\nNow, answer the query based on the above meeting transcript in one or more sentences.\n\nQuery: {input}\nAnswer:'), dict(
], )), role='HUMAN',
prompt='You are given a meeting transcript and a query containing a question or instruction. Answer the query in one or more sentences.\n\nTranscript:\n{context}\n\nNow, answer the query based on the above meeting transcript in one or more sentences.\n\nQuery: {input}\nAnswer:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512) inferencer=dict(type=GenInferencer, max_out_len=512),
) )
LongBench_qmsum_eval_cfg = dict( LongBench_qmsum_eval_cfg = dict(
evaluator=dict(type=LongBenchRougeEvaluator), evaluator=dict(type=LongBenchRougeEvaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_qmsum_datasets = [ LongBench_qmsum_datasets = [
dict( dict(
type=LongBenchqmsumDataset, type=LongBenchqmsumDataset,
abbr='LongBench_qmsum', abbr='LongBench_qmsum',
path='THUDM/LongBench', path='opencompass/Longbench',
name='qmsum', name='qmsum',
reader_cfg=LongBench_qmsum_reader_cfg, reader_cfg=LongBench_qmsum_reader_cfg,
infer_cfg=LongBench_qmsum_infer_cfg, infer_cfg=LongBench_qmsum_infer_cfg,
eval_cfg=LongBench_qmsum_eval_cfg) eval_cfg=LongBench_qmsum_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_repobench_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_repobench_infer_cfg = dict( LongBench_repobench_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_repobench_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Please complete the code given below. \n{context}{input}Next line of code:\n'), dict(
], )), role='HUMAN',
prompt='Please complete the code given below. \n{context}{input}Next line of code:\n',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=64) inferencer=dict(type=GenInferencer, max_out_len=64),
) )
LongBench_repobench_eval_cfg = dict( LongBench_repobench_eval_cfg = dict(
evaluator=dict(type=LongBenchCodeSimEvaluator), evaluator=dict(type=LongBenchCodeSimEvaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_repobench_datasets = [ LongBench_repobench_datasets = [
dict( dict(
type=LongBenchrepobenchDataset, type=LongBenchrepobenchDataset,
abbr='LongBench_repobench-p', abbr='LongBench_repobench-p',
path='THUDM/LongBench', path='opencompass/Longbench',
name='repobench-p', name='repobench-p',
reader_cfg=LongBench_repobench_reader_cfg, reader_cfg=LongBench_repobench_reader_cfg,
infer_cfg=LongBench_repobench_infer_cfg, infer_cfg=LongBench_repobench_infer_cfg,
eval_cfg=LongBench_repobench_eval_cfg) eval_cfg=LongBench_repobench_eval_cfg,
)
] ]

View File

@ -1,13 +1,17 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import LongBenchRougeEvaluator, LongBenchsamsumDataset, samsum_postprocess from opencompass.datasets import (
LongBenchRougeEvaluator,
LongBenchsamsumDataset,
samsum_postprocess,
)
LongBench_samsum_reader_cfg = dict( LongBench_samsum_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_samsum_infer_cfg = dict( LongBench_samsum_infer_cfg = dict(
@ -15,10 +19,15 @@ LongBench_samsum_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Summarize the dialogue into a few short sentences. The following are some examples.\n\n{context}\n\n{input}'), dict(
], )), role='HUMAN',
prompt='Summarize the dialogue into a few short sentences. The following are some examples.\n\n{context}\n\n{input}',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=128) inferencer=dict(type=GenInferencer, max_out_len=128),
) )
LongBench_samsum_eval_cfg = dict( LongBench_samsum_eval_cfg = dict(
@ -31,9 +40,10 @@ LongBench_samsum_datasets = [
dict( dict(
type=LongBenchsamsumDataset, type=LongBenchsamsumDataset,
abbr='LongBench_samsum', abbr='LongBench_samsum',
path='THUDM/LongBench', path='opencompass/Longbench',
name='samsum', name='samsum',
reader_cfg=LongBench_samsum_reader_cfg, reader_cfg=LongBench_samsum_reader_cfg,
infer_cfg=LongBench_samsum_infer_cfg, infer_cfg=LongBench_samsum_infer_cfg,
eval_cfg=LongBench_samsum_eval_cfg) eval_cfg=LongBench_samsum_eval_cfg,
)
] ]

View File

@ -1,13 +1,17 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import LongBenchClassificationEvaluator, LongBenchtrecDataset, trec_postprocess from opencompass.datasets import (
LongBenchClassificationEvaluator,
LongBenchtrecDataset,
trec_postprocess,
)
LongBench_trec_reader_cfg = dict( LongBench_trec_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='all_labels', output_column='all_labels',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_trec_infer_cfg = dict( LongBench_trec_infer_cfg = dict(
@ -15,10 +19,15 @@ LongBench_trec_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Please determine the type of the question below. Here are some examples of questions.\n\n{context}\n{input}'), dict(
], )), role='HUMAN',
prompt='Please determine the type of the question below. Here are some examples of questions.\n\n{context}\n{input}',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=64) inferencer=dict(type=GenInferencer, max_out_len=64),
) )
LongBench_trec_eval_cfg = dict( LongBench_trec_eval_cfg = dict(
@ -31,9 +40,10 @@ LongBench_trec_datasets = [
dict( dict(
type=LongBenchtrecDataset, type=LongBenchtrecDataset,
abbr='LongBench_trec', abbr='LongBench_trec',
path='THUDM/LongBench', path='opencompass/Longbench',
name='trec', name='trec',
reader_cfg=LongBench_trec_reader_cfg, reader_cfg=LongBench_trec_reader_cfg,
infer_cfg=LongBench_trec_infer_cfg, infer_cfg=LongBench_trec_infer_cfg,
eval_cfg=LongBench_trec_eval_cfg) eval_cfg=LongBench_trec_eval_cfg,
)
] ]

View File

@ -1,13 +1,17 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import LongBenchF1Evaluator, LongBenchtriviaqaDataset, triviaqa_postprocess from opencompass.datasets import (
LongBenchF1Evaluator,
LongBenchtriviaqaDataset,
triviaqa_postprocess,
)
LongBench_triviaqa_reader_cfg = dict( LongBench_triviaqa_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_triviaqa_infer_cfg = dict( LongBench_triviaqa_infer_cfg = dict(
@ -15,10 +19,15 @@ LongBench_triviaqa_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Answer the question based on the given passage. Only give me the answer and do not output any other words. The following are some examples.\n\n{context}\n\n{input}'), dict(
], )), role='HUMAN',
prompt='Answer the question based on the given passage. Only give me the answer and do not output any other words. The following are some examples.\n\n{context}\n\n{input}',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_triviaqa_eval_cfg = dict( LongBench_triviaqa_eval_cfg = dict(
@ -31,9 +40,10 @@ LongBench_triviaqa_datasets = [
dict( dict(
type=LongBenchtriviaqaDataset, type=LongBenchtriviaqaDataset,
abbr='LongBench_triviaqa', abbr='LongBench_triviaqa',
path='THUDM/LongBench', path='opencompass/Longbench',
name='triviaqa', name='triviaqa',
reader_cfg=LongBench_triviaqa_reader_cfg, reader_cfg=LongBench_triviaqa_reader_cfg,
infer_cfg=LongBench_triviaqa_infer_cfg, infer_cfg=LongBench_triviaqa_infer_cfg,
eval_cfg=LongBench_triviaqa_eval_cfg) eval_cfg=LongBench_triviaqa_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_vcsum_reader_cfg = dict(
input_columns=['context'], input_columns=['context'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_vcsum_infer_cfg = dict( LongBench_vcsum_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_vcsum_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='下面有一段会议记录,请你阅读后,写一段总结,总结会议的内容。\n会议记录:\n{context}\n\n会议总结:'), dict(
], )), role='HUMAN',
prompt='下面有一段会议记录,请你阅读后,写一段总结,总结会议的内容。\n会议记录:\n{context}\n\n会议总结:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512) inferencer=dict(type=GenInferencer, max_out_len=512),
) )
LongBench_vcsum_eval_cfg = dict( LongBench_vcsum_eval_cfg = dict(
evaluator=dict(type=LongBenchRougeEvaluator, language='zh'), evaluator=dict(type=LongBenchRougeEvaluator, language='zh'), pred_role='BOT'
pred_role='BOT'
) )
LongBench_vcsum_datasets = [ LongBench_vcsum_datasets = [
dict( dict(
type=LongBenchvcsumDataset, type=LongBenchvcsumDataset,
abbr='LongBench_vcsum', abbr='LongBench_vcsum',
path='THUDM/LongBench', path='opencompass/Longbench',
name='vcsum', name='vcsum',
reader_cfg=LongBench_vcsum_reader_cfg, reader_cfg=LongBench_vcsum_reader_cfg,
infer_cfg=LongBench_vcsum_infer_cfg, infer_cfg=LongBench_vcsum_infer_cfg,
eval_cfg=LongBench_vcsum_eval_cfg) eval_cfg=LongBench_vcsum_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_2wikimqa_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_2wikimqa_infer_cfg = dict( LongBench_2wikimqa_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_2wikimqa_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:'), dict(
], )), role='HUMAN',
prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_2wikimqa_eval_cfg = dict( LongBench_2wikimqa_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator), evaluator=dict(type=LongBenchF1Evaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_2wikimqa_datasets = [ LongBench_2wikimqa_datasets = [
dict( dict(
type=LongBench2wikimqaDataset, type=LongBench2wikimqaDataset,
abbr='LongBench_2wikimqa', abbr='LongBench_2wikimqa',
path='THUDM/LongBench', path='opencompass/Longbench',
name='2wikimqa', name='2wikimqa',
reader_cfg=LongBench_2wikimqa_reader_cfg, reader_cfg=LongBench_2wikimqa_reader_cfg,
infer_cfg=LongBench_2wikimqa_infer_cfg, infer_cfg=LongBench_2wikimqa_infer_cfg,
eval_cfg=LongBench_2wikimqa_eval_cfg) eval_cfg=LongBench_2wikimqa_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_dureader_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_dureader_infer_cfg = dict( LongBench_dureader_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_dureader_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='请基于给定的文章回答下述问题。\n\n文章:{context}\n\n请基于上述文章回答下面的问题。\n\n问题:{input}\n回答:'), dict(
], )), role='HUMAN',
prompt='请基于给定的文章回答下述问题。\n\n文章:{context}\n\n请基于上述文章回答下面的问题。\n\n问题:{input}\n回答:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=128) inferencer=dict(type=GenInferencer, max_out_len=128),
) )
LongBench_dureader_eval_cfg = dict( LongBench_dureader_eval_cfg = dict(
evaluator=dict(type=LongBenchRougeEvaluator, language='zh'), evaluator=dict(type=LongBenchRougeEvaluator, language='zh'), pred_role='BOT'
pred_role='BOT'
) )
LongBench_dureader_datasets = [ LongBench_dureader_datasets = [
dict( dict(
type=LongBenchdureaderDataset, type=LongBenchdureaderDataset,
abbr='LongBench_dureader', abbr='LongBench_dureader',
path='THUDM/LongBench', path='opencompass/Longbench',
name='dureader', name='dureader',
reader_cfg=LongBench_dureader_reader_cfg, reader_cfg=LongBench_dureader_reader_cfg,
infer_cfg=LongBench_dureader_infer_cfg, infer_cfg=LongBench_dureader_infer_cfg,
eval_cfg=LongBench_dureader_eval_cfg) eval_cfg=LongBench_dureader_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_gov_report_reader_cfg = dict(
input_columns=['context'], input_columns=['context'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_gov_report_infer_cfg = dict( LongBench_gov_report_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_gov_report_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='You are given a report by a government agency. Write a one-page summary of the report.\n\nReport:\n{context}\n\nNow, write a one-page summary of the report.\n\nSummary:'), dict(
], )), role='HUMAN',
prompt='You are given a report by a government agency. Write a one-page summary of the report.\n\nReport:\n{context}\n\nNow, write a one-page summary of the report.\n\nSummary:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512) inferencer=dict(type=GenInferencer, max_out_len=512),
) )
LongBench_gov_report_eval_cfg = dict( LongBench_gov_report_eval_cfg = dict(
evaluator=dict(type=LongBenchRougeEvaluator), evaluator=dict(type=LongBenchRougeEvaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_gov_report_datasets = [ LongBench_gov_report_datasets = [
dict( dict(
type=LongBenchgov_reportDataset, type=LongBenchgov_reportDataset,
abbr='LongBench_gov_report', abbr='LongBench_gov_report',
path='THUDM/LongBench', path='opencompass/Longbench',
name='gov_report', name='gov_report',
reader_cfg=LongBench_gov_report_reader_cfg, reader_cfg=LongBench_gov_report_reader_cfg,
infer_cfg=LongBench_gov_report_infer_cfg, infer_cfg=LongBench_gov_report_infer_cfg,
eval_cfg=LongBench_gov_report_eval_cfg) eval_cfg=LongBench_gov_report_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_hotpotqa_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_hotpotqa_infer_cfg = dict( LongBench_hotpotqa_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_hotpotqa_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:'), dict(
], )), role='HUMAN',
prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_hotpotqa_eval_cfg = dict( LongBench_hotpotqa_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator), evaluator=dict(type=LongBenchF1Evaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_hotpotqa_datasets = [ LongBench_hotpotqa_datasets = [
dict( dict(
type=LongBenchhotpotqaDataset, type=LongBenchhotpotqaDataset,
abbr='LongBench_hotpotqa', abbr='LongBench_hotpotqa',
path='THUDM/LongBench', path='opencompass/Longbench',
name='hotpotqa', name='hotpotqa',
reader_cfg=LongBench_hotpotqa_reader_cfg, reader_cfg=LongBench_hotpotqa_reader_cfg,
infer_cfg=LongBench_hotpotqa_infer_cfg, infer_cfg=LongBench_hotpotqa_infer_cfg,
eval_cfg=LongBench_hotpotqa_eval_cfg) eval_cfg=LongBench_hotpotqa_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_lcc_reader_cfg = dict(
input_columns=['context'], input_columns=['context'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_lcc_infer_cfg = dict( LongBench_lcc_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_lcc_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Please complete the code given below. \n{context}Next line of code:\n'), dict(
], )), role='HUMAN',
prompt='Please complete the code given below. \n{context}Next line of code:\n',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=64) inferencer=dict(type=GenInferencer, max_out_len=64),
) )
LongBench_lcc_eval_cfg = dict( LongBench_lcc_eval_cfg = dict(
evaluator=dict(type=LongBenchCodeSimEvaluator), evaluator=dict(type=LongBenchCodeSimEvaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_lcc_datasets = [ LongBench_lcc_datasets = [
dict( dict(
type=LongBenchlccDataset, type=LongBenchlccDataset,
abbr='LongBench_lcc', abbr='LongBench_lcc',
path='THUDM/LongBench', path='opencompass/Longbench',
name='lcc', name='lcc',
reader_cfg=LongBench_lcc_reader_cfg, reader_cfg=LongBench_lcc_reader_cfg,
infer_cfg=LongBench_lcc_infer_cfg, infer_cfg=LongBench_lcc_infer_cfg,
eval_cfg=LongBench_lcc_eval_cfg) eval_cfg=LongBench_lcc_eval_cfg,
)
] ]

View File

@ -1,13 +1,17 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import LongBenchClassificationEvaluator, LongBenchlshtDataset, lsht_postprocess from opencompass.datasets import (
LongBenchClassificationEvaluator,
LongBenchlshtDataset,
lsht_postprocess,
)
LongBench_lsht_reader_cfg = dict( LongBench_lsht_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='all_labels', output_column='all_labels',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_lsht_infer_cfg = dict( LongBench_lsht_infer_cfg = dict(
@ -15,10 +19,15 @@ LongBench_lsht_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='请判断给定新闻的类别,下面是一些例子。\n\n{context}\n{input}'), dict(
], )), role='HUMAN',
prompt='请判断给定新闻的类别,下面是一些例子。\n\n{context}\n{input}',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=64) inferencer=dict(type=GenInferencer, max_out_len=64),
) )
LongBench_lsht_eval_cfg = dict( LongBench_lsht_eval_cfg = dict(
@ -31,9 +40,10 @@ LongBench_lsht_datasets = [
dict( dict(
type=LongBenchlshtDataset, type=LongBenchlshtDataset,
abbr='LongBench_lsht', abbr='LongBench_lsht',
path='THUDM/LongBench', path='opencompass/Longbench',
name='lsht', name='lsht',
reader_cfg=LongBench_lsht_reader_cfg, reader_cfg=LongBench_lsht_reader_cfg,
infer_cfg=LongBench_lsht_infer_cfg, infer_cfg=LongBench_lsht_infer_cfg,
eval_cfg=LongBench_lsht_eval_cfg) eval_cfg=LongBench_lsht_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_multi_news_reader_cfg = dict(
input_columns=['context'], input_columns=['context'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_multi_news_infer_cfg = dict( LongBench_multi_news_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_multi_news_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='You are given several news passages. Write a one-page summary of all news. \n\nNews:\n{context}\n\nNow, write a one-page summary of all the news.\n\nSummary:\n'), dict(
], )), role='HUMAN',
prompt='You are given several news passages. Write a one-page summary of all news. \n\nNews:\n{context}\n\nNow, write a one-page summary of all the news.\n\nSummary:\n',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512) inferencer=dict(type=GenInferencer, max_out_len=512),
) )
LongBench_multi_news_eval_cfg = dict( LongBench_multi_news_eval_cfg = dict(
evaluator=dict(type=LongBenchRougeEvaluator), evaluator=dict(type=LongBenchRougeEvaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_multi_news_datasets = [ LongBench_multi_news_datasets = [
dict( dict(
type=LongBenchmulti_newsDataset, type=LongBenchmulti_newsDataset,
abbr='LongBench_multi_news', abbr='LongBench_multi_news',
path='THUDM/LongBench', path='opencompass/Longbench',
name='multi_news', name='multi_news',
reader_cfg=LongBench_multi_news_reader_cfg, reader_cfg=LongBench_multi_news_reader_cfg,
infer_cfg=LongBench_multi_news_infer_cfg, infer_cfg=LongBench_multi_news_infer_cfg,
eval_cfg=LongBench_multi_news_eval_cfg) eval_cfg=LongBench_multi_news_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_multifieldqa_en_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_multifieldqa_en_infer_cfg = dict( LongBench_multifieldqa_en_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_multifieldqa_en_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Read the following text and answer briefly.\n\n{context}\n\nNow, answer the following question based on the above text, only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:'), dict(
], )), role='HUMAN',
prompt='Read the following text and answer briefly.\n\n{context}\n\nNow, answer the following question based on the above text, only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=64) inferencer=dict(type=GenInferencer, max_out_len=64),
) )
LongBench_multifieldqa_en_eval_cfg = dict( LongBench_multifieldqa_en_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator), evaluator=dict(type=LongBenchF1Evaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_multifieldqa_en_datasets = [ LongBench_multifieldqa_en_datasets = [
dict( dict(
type=LongBenchmultifieldqa_enDataset, type=LongBenchmultifieldqa_enDataset,
abbr='LongBench_multifieldqa_en', abbr='LongBench_multifieldqa_en',
path='THUDM/LongBench', path='opencompass/Longbench',
name='multifieldqa_en', name='multifieldqa_en',
reader_cfg=LongBench_multifieldqa_en_reader_cfg, reader_cfg=LongBench_multifieldqa_en_reader_cfg,
infer_cfg=LongBench_multifieldqa_en_infer_cfg, infer_cfg=LongBench_multifieldqa_en_infer_cfg,
eval_cfg=LongBench_multifieldqa_en_eval_cfg) eval_cfg=LongBench_multifieldqa_en_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_multifieldqa_zh_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_multifieldqa_zh_infer_cfg = dict( LongBench_multifieldqa_zh_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_multifieldqa_zh_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='阅读以下文字并用中文简短回答:\n\n{context}\n\n现在请基于上面的文章回答下面的问题,只告诉我答案,不要输出任何其他字词。\n\n问题:{input}\n回答:'), dict(
], )), role='HUMAN',
prompt='阅读以下文字并用中文简短回答:\n\n{context}\n\n现在请基于上面的文章回答下面的问题,只告诉我答案,不要输出任何其他字词。\n\n问题:{input}\n回答:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=64) inferencer=dict(type=GenInferencer, max_out_len=64),
) )
LongBench_multifieldqa_zh_eval_cfg = dict( LongBench_multifieldqa_zh_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator, language='zh'), evaluator=dict(type=LongBenchF1Evaluator, language='zh'), pred_role='BOT'
pred_role='BOT'
) )
LongBench_multifieldqa_zh_datasets = [ LongBench_multifieldqa_zh_datasets = [
dict( dict(
type=LongBenchmultifieldqa_zhDataset, type=LongBenchmultifieldqa_zhDataset,
abbr='LongBench_multifieldqa_zh', abbr='LongBench_multifieldqa_zh',
path='THUDM/LongBench', path='opencompass/Longbench',
name='multifieldqa_zh', name='multifieldqa_zh',
reader_cfg=LongBench_multifieldqa_zh_reader_cfg, reader_cfg=LongBench_multifieldqa_zh_reader_cfg,
infer_cfg=LongBench_multifieldqa_zh_infer_cfg, infer_cfg=LongBench_multifieldqa_zh_infer_cfg,
eval_cfg=LongBench_multifieldqa_zh_eval_cfg) eval_cfg=LongBench_multifieldqa_zh_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_musique_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_musique_infer_cfg = dict( LongBench_musique_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_musique_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:'), dict(
], )), role='HUMAN',
prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_musique_eval_cfg = dict( LongBench_musique_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator), evaluator=dict(type=LongBenchF1Evaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_musique_datasets = [ LongBench_musique_datasets = [
dict( dict(
type=LongBenchmusiqueDataset, type=LongBenchmusiqueDataset,
abbr='LongBench_musique', abbr='LongBench_musique',
path='THUDM/LongBench', path='opencompass/Longbench',
name='musique', name='musique',
reader_cfg=LongBench_musique_reader_cfg, reader_cfg=LongBench_musique_reader_cfg,
infer_cfg=LongBench_musique_infer_cfg, infer_cfg=LongBench_musique_infer_cfg,
eval_cfg=LongBench_musique_eval_cfg) eval_cfg=LongBench_musique_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_narrativeqa_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_narrativeqa_infer_cfg = dict( LongBench_narrativeqa_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_narrativeqa_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='You are given a story, which can be either a novel or a movie script, and a question. Answer the question as concisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nStory: {context}\n\nNow, answer the question based on the story as concisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nQuestion: {input}\n\nAnswer:'), dict(
], )), role='HUMAN',
prompt='You are given a story, which can be either a novel or a movie script, and a question. Answer the question as concisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nStory: {context}\n\nNow, answer the question based on the story as concisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nQuestion: {input}\n\nAnswer:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=128) inferencer=dict(type=GenInferencer, max_out_len=128),
) )
LongBench_narrativeqa_eval_cfg = dict( LongBench_narrativeqa_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator), evaluator=dict(type=LongBenchF1Evaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_narrativeqa_datasets = [ LongBench_narrativeqa_datasets = [
dict( dict(
type=LongBenchnarrativeqaDataset, type=LongBenchnarrativeqaDataset,
abbr='LongBench_narrativeqa', abbr='LongBench_narrativeqa',
path='THUDM/LongBench', path='opencompass/Longbench',
name='narrativeqa', name='narrativeqa',
reader_cfg=LongBench_narrativeqa_reader_cfg, reader_cfg=LongBench_narrativeqa_reader_cfg,
infer_cfg=LongBench_narrativeqa_infer_cfg, infer_cfg=LongBench_narrativeqa_infer_cfg,
eval_cfg=LongBench_narrativeqa_eval_cfg) eval_cfg=LongBench_narrativeqa_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_passage_count_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_passage_count_infer_cfg = dict( LongBench_passage_count_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_passage_count_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='There are some paragraphs below sourced from Wikipedia. Some of them may be duplicates. Please carefully read these paragraphs and determine how many unique paragraphs there are after removing duplicates. In other words, how many non-repeating paragraphs are there in total?\n\n{context}\n\nPlease enter the final count of unique paragraphs after removing duplicates. The output format should only contain the number, such as 1, 2, 3, and so on.\n\nThe final answer is: '), dict(
], )), role='HUMAN',
prompt='There are some paragraphs below sourced from Wikipedia. Some of them may be duplicates. Please carefully read these paragraphs and determine how many unique paragraphs there are after removing duplicates. In other words, how many non-repeating paragraphs are there in total?\n\n{context}\n\nPlease enter the final count of unique paragraphs after removing duplicates. The output format should only contain the number, such as 1, 2, 3, and so on.\n\nThe final answer is: ',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_passage_count_eval_cfg = dict( LongBench_passage_count_eval_cfg = dict(
evaluator=dict(type=LongBenchCountEvaluator), evaluator=dict(type=LongBenchCountEvaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_passage_count_datasets = [ LongBench_passage_count_datasets = [
dict( dict(
type=LongBenchpassage_countDataset, type=LongBenchpassage_countDataset,
abbr='LongBench_passage_count', abbr='LongBench_passage_count',
path='THUDM/LongBench', path='opencompass/Longbench',
name='passage_count', name='passage_count',
reader_cfg=LongBench_passage_count_reader_cfg, reader_cfg=LongBench_passage_count_reader_cfg,
infer_cfg=LongBench_passage_count_infer_cfg, infer_cfg=LongBench_passage_count_infer_cfg,
eval_cfg=LongBench_passage_count_eval_cfg) eval_cfg=LongBench_passage_count_eval_cfg,
)
] ]

View File

@ -1,13 +1,16 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import LongBenchRetrievalEvaluator, LongBenchpassage_retrieval_enDataset from opencompass.datasets import (
LongBenchRetrievalEvaluator,
LongBenchpassage_retrieval_enDataset,
)
LongBench_passage_retrieval_en_reader_cfg = dict( LongBench_passage_retrieval_en_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_passage_retrieval_en_infer_cfg = dict( LongBench_passage_retrieval_en_infer_cfg = dict(
@ -15,24 +18,29 @@ LongBench_passage_retrieval_en_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph the abstract is from.\n\n{context}\n\nThe following is an abstract.\n\n{input}\n\nPlease enter the number of the paragraph that the abstract is from. The answer format must be like \"Paragraph 1\", \"Paragraph 2\", etc.\n\nThe answer is: '), dict(
], )), role='HUMAN',
prompt='Here are 30 paragraphs from Wikipedia, along with an abstract. Please determine which paragraph the abstract is from.\n\n{context}\n\nThe following is an abstract.\n\n{input}\n\nPlease enter the number of the paragraph that the abstract is from. The answer format must be like "Paragraph 1", "Paragraph 2", etc.\n\nThe answer is: ',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_passage_retrieval_en_eval_cfg = dict( LongBench_passage_retrieval_en_eval_cfg = dict(
evaluator=dict(type=LongBenchRetrievalEvaluator), evaluator=dict(type=LongBenchRetrievalEvaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_passage_retrieval_en_datasets = [ LongBench_passage_retrieval_en_datasets = [
dict( dict(
type=LongBenchpassage_retrieval_enDataset, type=LongBenchpassage_retrieval_enDataset,
abbr='LongBench_passage_retrieval_en', abbr='LongBench_passage_retrieval_en',
path='THUDM/LongBench', path='opencompass/Longbench',
name='passage_retrieval_en', name='passage_retrieval_en',
reader_cfg=LongBench_passage_retrieval_en_reader_cfg, reader_cfg=LongBench_passage_retrieval_en_reader_cfg,
infer_cfg=LongBench_passage_retrieval_en_infer_cfg, infer_cfg=LongBench_passage_retrieval_en_infer_cfg,
eval_cfg=LongBench_passage_retrieval_en_eval_cfg) eval_cfg=LongBench_passage_retrieval_en_eval_cfg,
)
] ]

View File

@ -1,13 +1,16 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import LongBenchRetrievalEvaluator, LongBenchpassage_retrieval_zhDataset from opencompass.datasets import (
LongBenchRetrievalEvaluator,
LongBenchpassage_retrieval_zhDataset,
)
LongBench_passage_retrieval_zh_reader_cfg = dict( LongBench_passage_retrieval_zh_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_passage_retrieval_zh_infer_cfg = dict( LongBench_passage_retrieval_zh_infer_cfg = dict(
@ -15,24 +18,29 @@ LongBench_passage_retrieval_zh_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='以下是若干段落文字,以及其中一个段落的摘要。请确定给定的摘要出自哪一段。\n\n{context}\n\n下面是一个摘要\n\n{input}\n\n请输入摘要所属段落的编号。答案格式必须是\"段落1\"\"段落2\"等格式\n\n答案是:'), dict(
], )), role='HUMAN',
prompt='以下是若干段落文字,以及其中一个段落的摘要。请确定给定的摘要出自哪一段。\n\n{context}\n\n下面是一个摘要\n\n{input}\n\n请输入摘要所属段落的编号。答案格式必须是"段落1""段落2"等格式\n\n答案是:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_passage_retrieval_zh_eval_cfg = dict( LongBench_passage_retrieval_zh_eval_cfg = dict(
evaluator=dict(type=LongBenchRetrievalEvaluator, language='zh'), evaluator=dict(type=LongBenchRetrievalEvaluator, language='zh'), pred_role='BOT'
pred_role='BOT'
) )
LongBench_passage_retrieval_zh_datasets = [ LongBench_passage_retrieval_zh_datasets = [
dict( dict(
type=LongBenchpassage_retrieval_zhDataset, type=LongBenchpassage_retrieval_zhDataset,
abbr='LongBench_passage_retrieval_zh', abbr='LongBench_passage_retrieval_zh',
path='THUDM/LongBench', path='opencompass/Longbench',
name='passage_retrieval_zh', name='passage_retrieval_zh',
reader_cfg=LongBench_passage_retrieval_zh_reader_cfg, reader_cfg=LongBench_passage_retrieval_zh_reader_cfg,
infer_cfg=LongBench_passage_retrieval_zh_infer_cfg, infer_cfg=LongBench_passage_retrieval_zh_infer_cfg,
eval_cfg=LongBench_passage_retrieval_zh_eval_cfg) eval_cfg=LongBench_passage_retrieval_zh_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_qasper_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_qasper_infer_cfg = dict( LongBench_qasper_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_qasper_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:'), dict(
], )), role='HUMAN',
prompt='Answer the question based on the given passages. Only give me the answer and do not output any other words.\n\nThe following are given passages.\n{context}\n\nAnswer the question based on the given passages. Only give me the answer and do not output any other words.\n\nQuestion: {input}\nAnswer:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_qasper_eval_cfg = dict( LongBench_qasper_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator), evaluator=dict(type=LongBenchF1Evaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_qasper_datasets = [ LongBench_qasper_datasets = [
dict( dict(
type=LongBenchqasperDataset, type=LongBenchqasperDataset,
abbr='LongBench_qasper', abbr='LongBench_qasper',
path='THUDM/LongBench', path='opencompass/Longbench',
name='qasper', name='qasper',
reader_cfg=LongBench_qasper_reader_cfg, reader_cfg=LongBench_qasper_reader_cfg,
infer_cfg=LongBench_qasper_infer_cfg, infer_cfg=LongBench_qasper_infer_cfg,
eval_cfg=LongBench_qasper_eval_cfg) eval_cfg=LongBench_qasper_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_qmsum_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_qmsum_infer_cfg = dict( LongBench_qmsum_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_qmsum_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='You are given a meeting transcript and a query containing a question or instruction. Answer the query in one or more sentences.\n\nTranscript:\n{context}\n\nNow, answer the query based on the above meeting transcript in one or more sentences.\n\nQuery: {input}\nAnswer:'), dict(
], )), role='HUMAN',
prompt='You are given a meeting transcript and a query containing a question or instruction. Answer the query in one or more sentences.\n\nTranscript:\n{context}\n\nNow, answer the query based on the above meeting transcript in one or more sentences.\n\nQuery: {input}\nAnswer:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512) inferencer=dict(type=GenInferencer, max_out_len=512),
) )
LongBench_qmsum_eval_cfg = dict( LongBench_qmsum_eval_cfg = dict(
evaluator=dict(type=LongBenchRougeEvaluator), evaluator=dict(type=LongBenchRougeEvaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_qmsum_datasets = [ LongBench_qmsum_datasets = [
dict( dict(
type=LongBenchqmsumDataset, type=LongBenchqmsumDataset,
abbr='LongBench_qmsum', abbr='LongBench_qmsum',
path='THUDM/LongBench', path='opencompass/Longbench',
name='qmsum', name='qmsum',
reader_cfg=LongBench_qmsum_reader_cfg, reader_cfg=LongBench_qmsum_reader_cfg,
infer_cfg=LongBench_qmsum_infer_cfg, infer_cfg=LongBench_qmsum_infer_cfg,
eval_cfg=LongBench_qmsum_eval_cfg) eval_cfg=LongBench_qmsum_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_repobench_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_repobench_infer_cfg = dict( LongBench_repobench_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_repobench_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Please complete the code given below. \n{context}{input}Next line of code:\n'), dict(
], )), role='HUMAN',
prompt='Please complete the code given below. \n{context}{input}Next line of code:\n',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=64) inferencer=dict(type=GenInferencer, max_out_len=64),
) )
LongBench_repobench_eval_cfg = dict( LongBench_repobench_eval_cfg = dict(
evaluator=dict(type=LongBenchCodeSimEvaluator), evaluator=dict(type=LongBenchCodeSimEvaluator), pred_role='BOT'
pred_role='BOT'
) )
LongBench_repobench_datasets = [ LongBench_repobench_datasets = [
dict( dict(
type=LongBenchrepobenchDataset, type=LongBenchrepobenchDataset,
abbr='LongBench_repobench-p', abbr='LongBench_repobench-p',
path='THUDM/LongBench', path='opencompass/Longbench',
name='repobench-p', name='repobench-p',
reader_cfg=LongBench_repobench_reader_cfg, reader_cfg=LongBench_repobench_reader_cfg,
infer_cfg=LongBench_repobench_infer_cfg, infer_cfg=LongBench_repobench_infer_cfg,
eval_cfg=LongBench_repobench_eval_cfg) eval_cfg=LongBench_repobench_eval_cfg,
)
] ]

View File

@ -1,13 +1,17 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import LongBenchRougeEvaluator, LongBenchsamsumDataset, samsum_postprocess from opencompass.datasets import (
LongBenchRougeEvaluator,
LongBenchsamsumDataset,
samsum_postprocess,
)
LongBench_samsum_reader_cfg = dict( LongBench_samsum_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_samsum_infer_cfg = dict( LongBench_samsum_infer_cfg = dict(
@ -15,10 +19,15 @@ LongBench_samsum_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Summarize the dialogue into a few short sentences. The following are some examples.\n\n{context}\n\n{input}'), dict(
], )), role='HUMAN',
prompt='Summarize the dialogue into a few short sentences. The following are some examples.\n\n{context}\n\n{input}',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=128) inferencer=dict(type=GenInferencer, max_out_len=128),
) )
LongBench_samsum_eval_cfg = dict( LongBench_samsum_eval_cfg = dict(
@ -31,9 +40,10 @@ LongBench_samsum_datasets = [
dict( dict(
type=LongBenchsamsumDataset, type=LongBenchsamsumDataset,
abbr='LongBench_samsum', abbr='LongBench_samsum',
path='THUDM/LongBench', path='opencompass/Longbench',
name='samsum', name='samsum',
reader_cfg=LongBench_samsum_reader_cfg, reader_cfg=LongBench_samsum_reader_cfg,
infer_cfg=LongBench_samsum_infer_cfg, infer_cfg=LongBench_samsum_infer_cfg,
eval_cfg=LongBench_samsum_eval_cfg) eval_cfg=LongBench_samsum_eval_cfg,
)
] ]

View File

@ -1,13 +1,17 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import LongBenchClassificationEvaluator, LongBenchtrecDataset, trec_postprocess from opencompass.datasets import (
LongBenchClassificationEvaluator,
LongBenchtrecDataset,
trec_postprocess,
)
LongBench_trec_reader_cfg = dict( LongBench_trec_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='all_labels', output_column='all_labels',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_trec_infer_cfg = dict( LongBench_trec_infer_cfg = dict(
@ -15,10 +19,15 @@ LongBench_trec_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Please determine the type of the question below. Here are some examples of questions.\n\n{context}\n{input}'), dict(
], )), role='HUMAN',
prompt='Please determine the type of the question below. Here are some examples of questions.\n\n{context}\n{input}',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=64) inferencer=dict(type=GenInferencer, max_out_len=64),
) )
LongBench_trec_eval_cfg = dict( LongBench_trec_eval_cfg = dict(
@ -31,9 +40,10 @@ LongBench_trec_datasets = [
dict( dict(
type=LongBenchtrecDataset, type=LongBenchtrecDataset,
abbr='LongBench_trec', abbr='LongBench_trec',
path='THUDM/LongBench', path='opencompass/Longbench',
name='trec', name='trec',
reader_cfg=LongBench_trec_reader_cfg, reader_cfg=LongBench_trec_reader_cfg,
infer_cfg=LongBench_trec_infer_cfg, infer_cfg=LongBench_trec_infer_cfg,
eval_cfg=LongBench_trec_eval_cfg) eval_cfg=LongBench_trec_eval_cfg,
)
] ]

View File

@ -1,13 +1,17 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import LongBenchF1Evaluator, LongBenchtriviaqaDataset, triviaqa_postprocess from opencompass.datasets import (
LongBenchF1Evaluator,
LongBenchtriviaqaDataset,
triviaqa_postprocess,
)
LongBench_triviaqa_reader_cfg = dict( LongBench_triviaqa_reader_cfg = dict(
input_columns=['context', 'input'], input_columns=['context', 'input'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_triviaqa_infer_cfg = dict( LongBench_triviaqa_infer_cfg = dict(
@ -15,10 +19,15 @@ LongBench_triviaqa_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='Answer the question based on the given passage. Only give me the answer and do not output any other words. The following are some examples.\n\n{context}\n\n{input}'), dict(
], )), role='HUMAN',
prompt='Answer the question based on the given passage. Only give me the answer and do not output any other words. The following are some examples.\n\n{context}\n\n{input}',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=32) inferencer=dict(type=GenInferencer, max_out_len=32),
) )
LongBench_triviaqa_eval_cfg = dict( LongBench_triviaqa_eval_cfg = dict(
@ -31,9 +40,10 @@ LongBench_triviaqa_datasets = [
dict( dict(
type=LongBenchtriviaqaDataset, type=LongBenchtriviaqaDataset,
abbr='LongBench_triviaqa', abbr='LongBench_triviaqa',
path='THUDM/LongBench', path='opencompass/Longbench',
name='triviaqa', name='triviaqa',
reader_cfg=LongBench_triviaqa_reader_cfg, reader_cfg=LongBench_triviaqa_reader_cfg,
infer_cfg=LongBench_triviaqa_infer_cfg, infer_cfg=LongBench_triviaqa_infer_cfg,
eval_cfg=LongBench_triviaqa_eval_cfg) eval_cfg=LongBench_triviaqa_eval_cfg,
)
] ]

View File

@ -7,7 +7,7 @@ LongBench_vcsum_reader_cfg = dict(
input_columns=['context'], input_columns=['context'],
output_column='answers', output_column='answers',
train_split='test', train_split='test',
test_split='test' test_split='test',
) )
LongBench_vcsum_infer_cfg = dict( LongBench_vcsum_infer_cfg = dict(
@ -15,24 +15,29 @@ LongBench_vcsum_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role='HUMAN', prompt='下面有一段会议记录,请你阅读后,写一段总结,总结会议的内容。\n会议记录:\n{context}\n\n会议总结:'), dict(
], )), role='HUMAN',
prompt='下面有一段会议记录,请你阅读后,写一段总结,总结会议的内容。\n会议记录:\n{context}\n\n会议总结:',
),
],
),
),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512) inferencer=dict(type=GenInferencer, max_out_len=512),
) )
LongBench_vcsum_eval_cfg = dict( LongBench_vcsum_eval_cfg = dict(
evaluator=dict(type=LongBenchRougeEvaluator, language='zh'), evaluator=dict(type=LongBenchRougeEvaluator, language='zh'), pred_role='BOT'
pred_role='BOT'
) )
LongBench_vcsum_datasets = [ LongBench_vcsum_datasets = [
dict( dict(
type=LongBenchvcsumDataset, type=LongBenchvcsumDataset,
abbr='LongBench_vcsum', abbr='LongBench_vcsum',
path='THUDM/LongBench', path='opencompass/Longbench',
name='vcsum', name='vcsum',
reader_cfg=LongBench_vcsum_reader_cfg, reader_cfg=LongBench_vcsum_reader_cfg,
infer_cfg=LongBench_vcsum_infer_cfg, infer_cfg=LongBench_vcsum_infer_cfg,
eval_cfg=LongBench_vcsum_eval_cfg) eval_cfg=LongBench_vcsum_eval_cfg,
)
] ]

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBench2wikimqaDataset(BaseDataset): class LongBench2wikimqaDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchdureaderDataset(BaseDataset): class LongBenchdureaderDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchgov_reportDataset(BaseDataset): class LongBenchgov_reportDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchhotpotqaDataset(BaseDataset): class LongBenchhotpotqaDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchlccDataset(BaseDataset): class LongBenchlccDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchlshtDataset(BaseDataset): class LongBenchlshtDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchmulti_newsDataset(BaseDataset): class LongBenchmulti_newsDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchmultifieldqa_enDataset(BaseDataset): class LongBenchmultifieldqa_enDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchmultifieldqa_zhDataset(BaseDataset): class LongBenchmultifieldqa_zhDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchmusiqueDataset(BaseDataset): class LongBenchmusiqueDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchnarrativeqaDataset(BaseDataset): class LongBenchnarrativeqaDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchpassage_countDataset(BaseDataset): class LongBenchpassage_countDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchpassage_retrieval_enDataset(BaseDataset): class LongBenchpassage_retrieval_enDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchpassage_retrieval_zhDataset(BaseDataset): class LongBenchpassage_retrieval_zhDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchqasperDataset(BaseDataset): class LongBenchqasperDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchqmsumDataset(BaseDataset): class LongBenchqmsumDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchrepobenchDataset(BaseDataset): class LongBenchrepobenchDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchsamsumDataset(BaseDataset): class LongBenchsamsumDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchtrecDataset(BaseDataset): class LongBenchtrecDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchtriviaqaDataset(BaseDataset): class LongBenchtriviaqaDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -10,11 +10,12 @@ from ..base import BaseDataset
class LongBenchvcsumDataset(BaseDataset): class LongBenchvcsumDataset(BaseDataset):
@staticmethod @staticmethod
def load(**kwargs): def load(path: str, name: str):
if 'data_files' in kwargs: path = get_data_path(path)
kwargs['data_files'] = get_data_path(kwargs['data_files'], dataset = load_dataset(path=path,
local_mode=True) name=name,
dataset = load_dataset(**kwargs) data_dir=path,
trust_remote_code=True)
split = 'test' split = 'test'
raw_data = [] raw_data = []
for i in range(len(dataset[split])): for i in range(len(dataset[split])):

View File

@ -265,6 +265,12 @@ DATASETS_MAPPING = {
"hf_id": "opencompass/xsum", "hf_id": "opencompass/xsum",
"local": "./data/Xsum/dev.jsonl", "local": "./data/Xsum/dev.jsonl",
}, },
# Longbench
"opencompass/Longbench": {
"ms_id": "",
"hf_id": "THUDM/LongBench",
"local": "./data/Longbench",
},
# Needlebench # Needlebench
"opencompass/needlebench": { "opencompass/needlebench": {
"ms_id": "", "ms_id": "",
@ -402,6 +408,10 @@ DATASETS_URL = {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/mmlu_pro.zip", "url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/mmlu_pro.zip",
"md5": "e3200c7380f4cea5f13c768f2815fabb", "md5": "e3200c7380f4cea5f13c768f2815fabb",
}, },
"/Longbench": {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/Longbench.zip",
"md5": "ab0cb9e520ae5cfb899bf38b564249bb",
},
"/needlebench": { "/needlebench": {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/needlebench.zip", "url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/needlebench.zip",
"md5": "b546da0397746eaff4d3ff0f20d6ede2", "md5": "b546da0397746eaff4d3ff0f20d6ede2",