use official llmjudge_postprocess

This commit is contained in:
huihui 2025-05-08 04:23:20 +00:00
parent 6ff36c1b1f
commit 85ecf3c932
2 changed files with 2 additions and 75 deletions

View File

@ -1,4 +1,4 @@
from opencompass.datasets import CARDBiomedBenchDataset, CARDBiomedBench_llmjudge_postprocess
from opencompass.datasets import CARDBiomedBenchDataset
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
@ -87,7 +87,7 @@ eval_cfg = dict(
reader_cfg=reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=CARDBiomedBench_llmjudge_postprocess),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
cardbiomedbench_dataset = dict(

View File

@ -32,76 +32,3 @@ class CARDBiomedBenchDataset(BaseDataset):
elif prompt_mode == 'few-shot':
pass # TODO: Implement few-shot prompt
return dataset
def _generic_llmjudge_postprocess(judgement: str):
match = re.search(r'(A|B)', judgement)
grade_letter = (match.group(0) if match else 'B'
) # Default to "INCORRECT" if no match
return grade_letter
def CARDBiomedBench_llmjudge_postprocess(
output: dict,
output_path: str,
dataset: Dataset,
) -> dict:
# Get the original dataset
original_dataset = dataset.reader.dataset['test']
judged_answers = []
original_responses = []
references = []
details = []
total_correct = 0
total_count = 0
for k, v in output.items():
idx = int(k) # Convert key to integer for indexing
original_responses.append(v['prediction'])
processed_judge = _generic_llmjudge_postprocess(v['prediction'])
sample = original_dataset[idx]
# Record the judgment
if processed_judge is not None:
judged_answers.append(processed_judge)
try:
gold = v['gold']
references.append(gold)
except KeyError:
get_logger().warning(
f'No gold answer for {k}, use empty string as reference!')
gold = ''
references.append('')
# Check if the answer is correct (A means correct)
is_correct = processed_judge == 'A'
total_count += 1
if is_correct:
total_correct += 1
# Add to details
details.append({
'id': k,
'question': sample['question'],
'prediction': sample['prediction'],
'origin_prompt': v['origin_prompt'],
'llm_judge': processed_judge,
'gold': gold,
'is_correct': is_correct,
})
# Calculate overall accuracy with two decimal places
overall_accuracy = (round(
(total_correct / total_count * 100), 2) if total_count > 0 else 0.00)
# Initialize results dictionary
results = {
'accuracy': overall_accuracy,
'total_correct': total_correct,
'total_count': total_count,
'details': details,
}
return results