mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
use official llmjudge_postprocess
This commit is contained in:
parent
6ff36c1b1f
commit
85ecf3c932
@ -1,4 +1,4 @@
|
||||
from opencompass.datasets import CARDBiomedBenchDataset, CARDBiomedBench_llmjudge_postprocess
|
||||
from opencompass.datasets import CARDBiomedBenchDataset
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
@ -87,7 +87,7 @@ eval_cfg = dict(
|
||||
reader_cfg=reader_cfg,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=CARDBiomedBench_llmjudge_postprocess),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
)
|
||||
cardbiomedbench_dataset = dict(
|
||||
|
@ -32,76 +32,3 @@ class CARDBiomedBenchDataset(BaseDataset):
|
||||
elif prompt_mode == 'few-shot':
|
||||
pass # TODO: Implement few-shot prompt
|
||||
return dataset
|
||||
|
||||
|
||||
def _generic_llmjudge_postprocess(judgement: str):
|
||||
match = re.search(r'(A|B)', judgement)
|
||||
grade_letter = (match.group(0) if match else 'B'
|
||||
) # Default to "INCORRECT" if no match
|
||||
return grade_letter
|
||||
|
||||
|
||||
def CARDBiomedBench_llmjudge_postprocess(
|
||||
output: dict,
|
||||
output_path: str,
|
||||
dataset: Dataset,
|
||||
) -> dict:
|
||||
# Get the original dataset
|
||||
original_dataset = dataset.reader.dataset['test']
|
||||
|
||||
judged_answers = []
|
||||
original_responses = []
|
||||
references = []
|
||||
details = []
|
||||
|
||||
total_correct = 0
|
||||
total_count = 0
|
||||
|
||||
for k, v in output.items():
|
||||
idx = int(k) # Convert key to integer for indexing
|
||||
original_responses.append(v['prediction'])
|
||||
processed_judge = _generic_llmjudge_postprocess(v['prediction'])
|
||||
|
||||
sample = original_dataset[idx]
|
||||
# Record the judgment
|
||||
if processed_judge is not None:
|
||||
judged_answers.append(processed_judge)
|
||||
try:
|
||||
gold = v['gold']
|
||||
references.append(gold)
|
||||
except KeyError:
|
||||
get_logger().warning(
|
||||
f'No gold answer for {k}, use empty string as reference!')
|
||||
gold = ''
|
||||
references.append('')
|
||||
|
||||
# Check if the answer is correct (A means correct)
|
||||
is_correct = processed_judge == 'A'
|
||||
total_count += 1
|
||||
|
||||
if is_correct:
|
||||
total_correct += 1
|
||||
|
||||
# Add to details
|
||||
details.append({
|
||||
'id': k,
|
||||
'question': sample['question'],
|
||||
'prediction': sample['prediction'],
|
||||
'origin_prompt': v['origin_prompt'],
|
||||
'llm_judge': processed_judge,
|
||||
'gold': gold,
|
||||
'is_correct': is_correct,
|
||||
})
|
||||
|
||||
# Calculate overall accuracy with two decimal places
|
||||
overall_accuracy = (round(
|
||||
(total_correct / total_count * 100), 2) if total_count > 0 else 0.00)
|
||||
|
||||
# Initialize results dictionary
|
||||
results = {
|
||||
'accuracy': overall_accuracy,
|
||||
'total_correct': total_correct,
|
||||
'total_count': total_count,
|
||||
'details': details,
|
||||
}
|
||||
return results
|
||||
|
Loading…
Reference in New Issue
Block a user