mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
[Feature] Add lmdeploy tis python backend model (#1014)
* add lmdeploy tis python backend model * fix pr check * update
This commit is contained in:
parent
8fe7b271cc
commit
81d0e4d793
41
configs/eval_internlm_chat_lmdeploy_tis.py
Normal file
41
configs/eval_internlm_chat_lmdeploy_tis.py
Normal file
@ -0,0 +1,41 @@
|
||||
from mmengine.config import read_base
|
||||
from opencompass.models.lmdeploy_tis import LmdeployTisModel
|
||||
|
||||
with read_base():
|
||||
# choose a list of datasets
|
||||
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
|
||||
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
|
||||
from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets
|
||||
from .datasets.SuperGLUE_WSC.SuperGLUE_WSC_gen_7902a7 import WSC_datasets
|
||||
from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
|
||||
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets
|
||||
from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
|
||||
from .datasets.race.race_gen_69ee4f import race_datasets
|
||||
from .datasets.crowspairs.crowspairs_gen_381af0 import crowspairs_datasets
|
||||
# and output the results in a choosen format
|
||||
from .summarizers.medium import summarizer
|
||||
|
||||
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
|
||||
|
||||
meta_template = dict(
|
||||
round=[
|
||||
dict(role='HUMAN', begin='<|im_start|>user\n', end='<|im_end|>\n'),
|
||||
dict(role='BOT', begin='<|im_start|>assistant\n', end='<|im_end|>\n', generate=True),
|
||||
],
|
||||
eos_token_id=92542
|
||||
)
|
||||
|
||||
models = [
|
||||
dict(
|
||||
type=LmdeployTisModel,
|
||||
abbr='internlm-chat-20b-lmdeploy-tis',
|
||||
path="internlm/internlm-chat-20b",
|
||||
tis_addr='0.0.0.0:33337',
|
||||
max_out_len=100,
|
||||
max_seq_len=2048,
|
||||
batch_size=8,
|
||||
meta_template=meta_template,
|
||||
run_cfg=dict(num_gpus=1, num_procs=1),
|
||||
end_str='<|im_end|>',
|
||||
)
|
||||
]
|
@ -18,6 +18,7 @@ from .krgpt_api import KrGPT # noqa: F401
|
||||
from .lightllm_api import LightllmAPI # noqa: F401
|
||||
from .llama2 import Llama2, Llama2Chat # noqa: F401, F403
|
||||
from .lmdeploy_pytorch import LmdeployPytorchModel # noqa: F401
|
||||
from .lmdeploy_tis import LmdeployTisModel # noqa: F401
|
||||
from .minimax_api import MiniMax # noqa: F401
|
||||
from .mistral_api import Mistral # noqa: F401
|
||||
from .mixtral import Mixtral # noqa: F401
|
||||
|
200
opencompass/models/lmdeploy_tis.py
Normal file
200
opencompass/models/lmdeploy_tis.py
Normal file
@ -0,0 +1,200 @@
|
||||
import threading
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from functools import partial
|
||||
from queue import Queue
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from opencompass.models.base import BaseModel, LMTemplateParser
|
||||
from opencompass.utils.logging import get_logger
|
||||
from opencompass.utils.prompt import PromptList
|
||||
|
||||
PromptType = Union[PromptList, str]
|
||||
|
||||
|
||||
def valid_str(string, coding='utf-8'):
|
||||
"""decode text according to its encoding type."""
|
||||
invalid_chars = [b'\xef\xbf\xbd']
|
||||
bstr = bytes(string, coding)
|
||||
for invalid_char in invalid_chars:
|
||||
bstr = bstr.replace(invalid_char, b'')
|
||||
ret = bstr.decode(encoding=coding, errors='ignore')
|
||||
return ret
|
||||
|
||||
|
||||
def prepare_tensor(name, input_tensor):
|
||||
"""Create grpcclient's InferInput instance according to a given tensor."""
|
||||
import tritonclient.grpc as grpcclient
|
||||
from tritonclient.utils import np_to_triton_dtype
|
||||
t = grpcclient.InferInput(name, list(input_tensor.shape),
|
||||
np_to_triton_dtype(input_tensor.dtype))
|
||||
t.set_data_from_numpy(input_tensor)
|
||||
return t
|
||||
|
||||
|
||||
def stream_callback(que, result, error):
|
||||
"""callback function invoked by triton client."""
|
||||
que.put((result, error))
|
||||
|
||||
|
||||
class LmdeployTisModel(BaseModel):
|
||||
"""Model wrapper for LMDeploy Python Backend Triton Inference Server gRPC
|
||||
API.
|
||||
|
||||
Args:
|
||||
path (str): The name of OpenAI's model.
|
||||
tis_addr (str): The address (ip:port format) of turbomind's
|
||||
triton inference server
|
||||
max_seq_len (int): The maximum allowed sequence length of a model.
|
||||
Note that the length of prompt + generated tokens shall not exceed
|
||||
this value. Defaults to 2048.
|
||||
meta_template (Dict, optional): The model's meta prompt
|
||||
template if needed, in case the requirement of injecting or
|
||||
wrapping of any meta instructions.
|
||||
"""
|
||||
|
||||
is_api: bool = True
|
||||
|
||||
def __init__(self,
|
||||
path: str,
|
||||
tis_addr: str = '0.0.0.0:33337',
|
||||
max_seq_len: int = 2048,
|
||||
meta_template: Optional[Dict] = None,
|
||||
end_str: Optional[str] = None):
|
||||
super().__init__(path=path,
|
||||
max_seq_len=max_seq_len,
|
||||
meta_template=meta_template)
|
||||
from lmdeploy.tokenizer import Tokenizer
|
||||
|
||||
self.logger = get_logger()
|
||||
self.template_parser = LMTemplateParser(meta_template)
|
||||
self.eos_token_id = None
|
||||
if meta_template and 'eos_token_id' in meta_template:
|
||||
self.eos_token_id = meta_template['eos_token_id']
|
||||
self.tis_addr = tis_addr
|
||||
self.tokenizer = Tokenizer(path)
|
||||
self.end_str = end_str
|
||||
|
||||
def generate(
|
||||
self,
|
||||
inputs: List[str or PromptList],
|
||||
max_out_len: int = 512,
|
||||
temperature: float = 1.0,
|
||||
) -> List[str]:
|
||||
"""Generate results given a list of inputs.
|
||||
|
||||
Args:
|
||||
inputs (List[str or PromptList]): A list of strings or PromptDicts.
|
||||
The PromptDict should be organized in OpenCompass'
|
||||
API format.
|
||||
max_out_len (int): The maximum length of the output.
|
||||
temperature (float): What sampling temperature to use,
|
||||
between 0 and 2. Higher values like 0.8 will make the output
|
||||
more random, while lower values like 0.2 will make it more
|
||||
focused and deterministic. Defaults to 0.7.
|
||||
|
||||
Returns:
|
||||
List[str]: A list of generated strings.
|
||||
"""
|
||||
|
||||
with ThreadPoolExecutor() as executor:
|
||||
results = list(
|
||||
executor.map(self._generate, inputs,
|
||||
[max_out_len] * len(inputs),
|
||||
[temperature] * len(inputs),
|
||||
[self.end_str] * len(inputs)))
|
||||
return results
|
||||
|
||||
def wait(self):
|
||||
"""Wait till the next query can be sent.
|
||||
|
||||
Applicable in both single-thread and multi-thread environments.
|
||||
"""
|
||||
return self.token_bucket.get_token()
|
||||
|
||||
def get_token_len(self, prompt: str) -> int:
|
||||
input_ids = self.tokenizer.encode(prompt)
|
||||
return len(input_ids)
|
||||
|
||||
def _call_triton_server(self, prompt, tis_addr, session_id,
|
||||
request_output_len, temperature, res_que):
|
||||
import tritonclient.grpc as grpcclient
|
||||
|
||||
with grpcclient.InferenceServerClient(tis_addr) as client:
|
||||
inputs = [
|
||||
prepare_tensor('prompt',
|
||||
np.array([prompt.encode()], dtype=np.object_)),
|
||||
prepare_tensor('max_tokens',
|
||||
np.array([request_output_len], dtype=np.int32)),
|
||||
prepare_tensor('temperature',
|
||||
np.array([temperature], dtype=np.float_)),
|
||||
prepare_tensor('top_p', np.array([1.0], dtype=np.float_)),
|
||||
prepare_tensor('top_k', np.array([1], dtype=np.int32)),
|
||||
prepare_tensor('ignore_eos', np.array([False],
|
||||
dtype=np.bool_)),
|
||||
prepare_tensor('stream', np.array([True], dtype=np.bool_)),
|
||||
]
|
||||
|
||||
# async_stream
|
||||
client.start_stream(partial(stream_callback, res_que))
|
||||
client.async_stream_infer('lmdeploy_model',
|
||||
inputs,
|
||||
sequence_id=session_id,
|
||||
sequence_start=True,
|
||||
sequence_end=True)
|
||||
|
||||
res_que.put(None)
|
||||
return
|
||||
|
||||
def _process_result(self, que):
|
||||
text = ''
|
||||
while True:
|
||||
res = que.get()
|
||||
if res is not None:
|
||||
result, err = res
|
||||
if err is not None:
|
||||
print(err)
|
||||
else:
|
||||
res = result.as_numpy('response').item().decode()
|
||||
text += res
|
||||
else:
|
||||
return text
|
||||
|
||||
def _generate(self,
|
||||
prompt: str or PromptList,
|
||||
max_out_len: int,
|
||||
temperature: float,
|
||||
end_str: Optional[str] = None) -> str:
|
||||
"""Generate results given a list of inputs.
|
||||
|
||||
Args:
|
||||
prompt (str or PromptList): A string or PromptDict.
|
||||
The PromptDict should be organized in OpenCompass'
|
||||
API format.
|
||||
max_out_len (int): The maximum length of the output.
|
||||
temperature (float): What sampling temperature to use,
|
||||
between 0 and 2. Higher values like 0.8 will make the output
|
||||
more random, while lower values like 0.2 will make it more
|
||||
focused and deterministic.
|
||||
|
||||
Returns:
|
||||
str: The generated string.
|
||||
"""
|
||||
assert type(
|
||||
prompt
|
||||
) is str, 'We only support string for LMDeploy Python Backend TIS API'
|
||||
|
||||
res_que = Queue()
|
||||
|
||||
self._call_triton_server(prompt=prompt,
|
||||
tis_addr=self.tis_addr,
|
||||
session_id=threading.currentThread().ident,
|
||||
request_output_len=max_out_len,
|
||||
temperature=temperature,
|
||||
res_que=res_que)
|
||||
text = self._process_result(res_que)
|
||||
response = valid_str(text)
|
||||
if end_str:
|
||||
response = response.split(end_str)[0]
|
||||
return response
|
Loading…
Reference in New Issue
Block a user