mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
CompassBench subjective summarizer added (#1349)
* subjective summarizer added * fix lint
This commit is contained in:
parent
a244453d9e
commit
8127fc3518
@ -4,14 +4,16 @@ with read_base():
|
|||||||
from .datasets.subjective.compassbench.compassbench_checklist import (
|
from .datasets.subjective.compassbench.compassbench_checklist import (
|
||||||
checklist_datasets,
|
checklist_datasets,
|
||||||
)
|
)
|
||||||
from opencompass.partitioners import NaivePartitioner, SizePartitioner
|
from opencompass.partitioners import NaivePartitioner
|
||||||
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
|
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
|
||||||
from opencompass.runners import LocalRunner
|
from opencompass.runners import LocalRunner
|
||||||
from opencompass.tasks import OpenICLInferTask
|
from opencompass.tasks import OpenICLInferTask
|
||||||
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
|
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
|
||||||
# from opencompass.summarizers import SubjectiveSummarizer
|
|
||||||
|
from opencompass.summarizers.subjective.compassbench_v13 import CompassBenchSummarizer
|
||||||
from opencompass.models import HuggingFacewithChatTemplate
|
from opencompass.models import HuggingFacewithChatTemplate
|
||||||
from opencompass.models import TurboMindModelwithChatTemplate
|
from opencompass.models import TurboMindModelwithChatTemplate
|
||||||
|
|
||||||
api_meta_template = dict(
|
api_meta_template = dict(
|
||||||
round=[
|
round=[
|
||||||
dict(role='HUMAN', api_role='HUMAN'),
|
dict(role='HUMAN', api_role='HUMAN'),
|
||||||
@ -19,6 +21,7 @@ api_meta_template = dict(
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
models = [
|
models = [
|
||||||
|
# Choose different engines to start the job
|
||||||
# dict(
|
# dict(
|
||||||
# type=HuggingFacewithChatTemplate,
|
# type=HuggingFacewithChatTemplate,
|
||||||
# abbr="internlm2-chat-1.8b",
|
# abbr="internlm2-chat-1.8b",
|
||||||
@ -46,9 +49,10 @@ models = [
|
|||||||
batch_size=16,
|
batch_size=16,
|
||||||
run_cfg=dict(num_gpus=1),
|
run_cfg=dict(num_gpus=1),
|
||||||
),
|
),
|
||||||
|
# Mock as gpt4o
|
||||||
dict(
|
dict(
|
||||||
type=TurboMindModelwithChatTemplate,
|
type=TurboMindModelwithChatTemplate,
|
||||||
abbr='judgellm',
|
abbr='gpt4o',
|
||||||
path='internlm/internlm2-chat-1_8b',
|
path='internlm/internlm2-chat-1_8b',
|
||||||
engine_config=dict(session_len=7168, max_batch_size=16, tp=1),
|
engine_config=dict(session_len=7168, max_batch_size=16, tp=1),
|
||||||
gen_config=dict(top_k=1000, temperature=1, top_p=0.9, max_new_tokens=2048),
|
gen_config=dict(top_k=1000, temperature=1, top_p=0.9, max_new_tokens=2048),
|
||||||
@ -56,7 +60,7 @@ models = [
|
|||||||
max_out_len=2048,
|
max_out_len=2048,
|
||||||
batch_size=16,
|
batch_size=16,
|
||||||
run_cfg=dict(num_gpus=1),
|
run_cfg=dict(num_gpus=1),
|
||||||
)
|
),
|
||||||
]
|
]
|
||||||
# -------------Inference Stage ----------------------------------------
|
# -------------Inference Stage ----------------------------------------
|
||||||
# For subjective evaluation, we often set do sample for models
|
# For subjective evaluation, we often set do sample for models
|
||||||
@ -79,6 +83,5 @@ eval = dict(
|
|||||||
type=LocalRunner, max_num_workers=16, task=dict(type=SubjectiveEvalTask)
|
type=LocalRunner, max_num_workers=16, task=dict(type=SubjectiveEvalTask)
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
# TODO summarizer to be implemented
|
summarizer = dict(type=CompassBenchSummarizer)
|
||||||
# summarizer = dict(type=SubjectiveSummarizer, function='subjective')
|
|
||||||
work_dir = 'outputs/debug_checklist/'
|
work_dir = 'outputs/debug_checklist/'
|
||||||
|
169
opencompass/summarizers/subjective/compassbench_v13.py
Normal file
169
opencompass/summarizers/subjective/compassbench_v13.py
Normal file
@ -0,0 +1,169 @@
|
|||||||
|
# flake8: noqa
|
||||||
|
# yapf: disable
|
||||||
|
import csv
|
||||||
|
import os
|
||||||
|
import os.path as osp
|
||||||
|
import re
|
||||||
|
from collections import defaultdict
|
||||||
|
from datetime import datetime
|
||||||
|
from itertools import product
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from mmengine import ConfigDict
|
||||||
|
from tabulate import tabulate
|
||||||
|
|
||||||
|
from opencompass.partitioners.sub_naive import remove_duplicate_pairs
|
||||||
|
from opencompass.utils import dataset_abbr_from_cfg, model_abbr_from_cfg
|
||||||
|
|
||||||
|
from .compass_arena import (check_position_bias,
|
||||||
|
model_abbr_from_cfg_used_in_summarizer)
|
||||||
|
from .utils import get_judgeanswer_and_reference, get_outdir
|
||||||
|
|
||||||
|
|
||||||
|
def post_process_wildbench_pair(judgement: str):
|
||||||
|
pattern = r'\"choice\": \"(.*?)\"'
|
||||||
|
matched_result = re.findall(pattern, judgement)
|
||||||
|
if matched_result:
|
||||||
|
return matched_result[0]
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
class CompassBenchSummarizer:
|
||||||
|
"""Do the subjectivity analyze based on evaluation results.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
config (ConfigDict): The configuration object of the evaluation task.
|
||||||
|
It's expected to be filled out at runtime.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, config: ConfigDict, check_pos_bias=False) -> None:
|
||||||
|
self.tasks = []
|
||||||
|
self.cfg = config
|
||||||
|
self.base_models = self.cfg['datasets'][0]['base_models']
|
||||||
|
self.compare_models = self.cfg['eval']['partitioner']['models']
|
||||||
|
self.judge_models = self.cfg.get('judge_models', None)
|
||||||
|
self.meta_judge_model = self.cfg.eval.partitioner.get('meta_judge_model', None)
|
||||||
|
self.judge_abbr = model_abbr_from_cfg(self.cfg['judge_models'][0])
|
||||||
|
self.judge_function = post_process_wildbench_pair
|
||||||
|
self.check_pos_bias = check_pos_bias
|
||||||
|
|
||||||
|
def get_score(self, time_str):
|
||||||
|
output_dir, results_folder = get_outdir(self.cfg, time_str)
|
||||||
|
model_combinations = list(product(self.base_models, self.compare_models))
|
||||||
|
unique_combinations = remove_duplicate_pairs([combo for combo in model_combinations if combo[0] != combo[1]])
|
||||||
|
|
||||||
|
if self.meta_judge_model is not None:
|
||||||
|
self.judge_models.append(self.meta_judge_model)
|
||||||
|
|
||||||
|
scores = {}
|
||||||
|
for idx, judge_model_cfg in enumerate(self.judge_models):
|
||||||
|
judge_model = model_abbr_from_cfg(judge_model_cfg)
|
||||||
|
for dataset in self.cfg['datasets']:
|
||||||
|
dataset_abbr = dataset_abbr_from_cfg(dataset)
|
||||||
|
for model_pair in unique_combinations:
|
||||||
|
base_model = model_pair[0]['abbr']
|
||||||
|
compare_model = model_pair[1]['abbr']
|
||||||
|
if idx == len(self.judge_models):
|
||||||
|
subdir = base_model + '_' + compare_model + '_summarized-by--' + judge_model
|
||||||
|
else:
|
||||||
|
subdir = base_model + '_' + compare_model + '_judged-by--' + judge_model
|
||||||
|
subdir_path = os.path.join(results_folder, subdir)
|
||||||
|
if not os.path.isdir(subdir_path):
|
||||||
|
print(subdir_path + ' is not exist! please check!')
|
||||||
|
continue
|
||||||
|
judged_answers, references = get_judgeanswer_and_reference(dataset, subdir_path, self.judge_function)
|
||||||
|
if self.check_pos_bias:
|
||||||
|
bias_num = check_position_bias(judged_answers, references)
|
||||||
|
else:
|
||||||
|
bias_num = 0
|
||||||
|
win_base_model = defaultdict(float)
|
||||||
|
win_compare_model = defaultdict(float)
|
||||||
|
categories = defaultdict(float)
|
||||||
|
score_mapping = {'A++': 1, 'A+': 0.5, 'A=B': 0, 'B+': -0.5, 'B++': -1}
|
||||||
|
for prediction, reference in zip(judged_answers, references):
|
||||||
|
if prediction not in score_mapping:
|
||||||
|
continue
|
||||||
|
|
||||||
|
categories[dataset_abbr] += 1
|
||||||
|
flag = 1 if reference['answer1'] == base_model else -1
|
||||||
|
score_1 = score_mapping[prediction]*flag
|
||||||
|
score_2 = -score_1
|
||||||
|
win_compare_model[dataset_abbr] += score_2
|
||||||
|
win_base_model[dataset_abbr] += score_1
|
||||||
|
|
||||||
|
for capability in categories:
|
||||||
|
win_base_model[capability] = win_base_model[capability] / categories[capability] * 100
|
||||||
|
win_base_model[capability] = round(win_base_model[capability], 2)
|
||||||
|
win_compare_model[capability] = win_compare_model[capability] / categories[capability] * 100
|
||||||
|
win_compare_model[capability] = round(win_compare_model[capability], 2)
|
||||||
|
|
||||||
|
win_base_model['position_bias'] = bias_num
|
||||||
|
win_compare_model['position_bias'] = bias_num
|
||||||
|
|
||||||
|
if judge_model not in scores:
|
||||||
|
scores[judge_model] = {}
|
||||||
|
if dataset_abbr not in scores[judge_model]:
|
||||||
|
scores[judge_model][dataset_abbr] = {}
|
||||||
|
scores[judge_model][dataset_abbr][base_model + '/' + compare_model] = win_compare_model
|
||||||
|
|
||||||
|
return scores
|
||||||
|
|
||||||
|
def summarize(
|
||||||
|
self,
|
||||||
|
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'),
|
||||||
|
):
|
||||||
|
"""Summarize the subjectivity analysis based on evaluation results.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
time_str (str): Timestamp for file naming.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
pd.DataFrame: The summary results.
|
||||||
|
"""
|
||||||
|
scores = self.get_score(time_str)
|
||||||
|
output_dir, results_folder = get_outdir(self.cfg, time_str)
|
||||||
|
for idx, judge_model in enumerate(self.judge_models):
|
||||||
|
judge_abbr = model_abbr_from_cfg(judge_model)
|
||||||
|
table = []
|
||||||
|
for dataset in self.cfg['datasets']:
|
||||||
|
dataset_abbr = dataset_abbr_from_cfg(dataset)
|
||||||
|
summarizer_model_abbrs = [model_abbr_from_cfg_used_in_summarizer(i) for i in self.compare_models]
|
||||||
|
one_column = list(scores[judge_abbr][dataset_abbr].values())[0]
|
||||||
|
row_headers = [i for i in one_column.keys() if i not in [dataset_abbr, 'position_bias']]
|
||||||
|
# row_headers = [dataset_abbr, 'position_bias'] + row_headers
|
||||||
|
row_headers = [dataset_abbr] + row_headers
|
||||||
|
for row_header in row_headers:
|
||||||
|
row = [row_header]
|
||||||
|
headers = ['']
|
||||||
|
for model_cfg in self.compare_models:
|
||||||
|
model_abbr = model_abbr_from_cfg(model_cfg)
|
||||||
|
avg = 0
|
||||||
|
for base_model_cfg in self.base_models:
|
||||||
|
base_model_abbr = model_abbr_from_cfg(base_model_cfg)
|
||||||
|
base_compare = base_model_abbr + '/' + model_abbr
|
||||||
|
headers.append(base_compare)
|
||||||
|
s = scores[judge_abbr][dataset_abbr][base_compare].get(row_header, '')
|
||||||
|
if isinstance(s, float):
|
||||||
|
avg += s
|
||||||
|
s = f'{s:.2f}'
|
||||||
|
if isinstance(s, int):
|
||||||
|
s = str(s)
|
||||||
|
row.append(s)
|
||||||
|
# avg = avg/len(self.base_models)
|
||||||
|
# row.append(f'{avg:.2f}')
|
||||||
|
# headers.append('Avg')
|
||||||
|
table.append(row)
|
||||||
|
txt = tabulate(table, headers=headers)
|
||||||
|
print(txt)
|
||||||
|
|
||||||
|
if idx == len(self.judge_models):
|
||||||
|
output_filename = osp.join(output_dir, 'summarized-by--' + judge_abbr + '-' + '-report.csv')
|
||||||
|
else:
|
||||||
|
output_filename = osp.join(output_dir, 'judged-by--' + judge_abbr + '-' + '-report.csv')
|
||||||
|
os.makedirs(osp.dirname(output_filename), exist_ok=True)
|
||||||
|
with open(output_filename, 'w') as f:
|
||||||
|
f.write(','.join(headers) + '\n')
|
||||||
|
for line in table:
|
||||||
|
f.write(','.join(line) + '\n')
|
||||||
|
print(output_filename)
|
Loading…
Reference in New Issue
Block a user