mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
add chinese version of humaneval, mbpp (#743)
* add chinese_version of humaneval,mbpp * add humaneval&mbpp gen.py * minor fix * minor add --------- Co-authored-by: yingfhu <yingfhu@gmail.com>
This commit is contained in:
parent
db919f0191
commit
81098722d2
4
configs/datasets/humaneval_cn/humaneval_cn_gen.py
Normal file
4
configs/datasets/humaneval_cn/humaneval_cn_gen.py
Normal file
@ -0,0 +1,4 @@
|
||||
from mmengine.config import read_base
|
||||
|
||||
with read_base():
|
||||
from .humaneval_cn_gen_6313aa import humaneval_cn_datasets # noqa: F401, F403
|
37
configs/datasets/humaneval_cn/humaneval_cn_gen_6313aa.py
Normal file
37
configs/datasets/humaneval_cn/humaneval_cn_gen_6313aa.py
Normal file
@ -0,0 +1,37 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import HumanevalDataset, HumanEvaluator, humaneval_postprocess_v2
|
||||
|
||||
humaneval_reader_cfg = dict(
|
||||
input_columns=['prompt'], output_column='task_id', train_split='test')
|
||||
|
||||
# TODO: allow empty output-column
|
||||
humaneval_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt='完成以下Python代码任务:\n{prompt}'),
|
||||
])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer, max_out_len=512))
|
||||
|
||||
humaneval_eval_cfg = dict(
|
||||
evaluator=dict(type=HumanEvaluator),
|
||||
pred_role='BOT',
|
||||
k=[1, 10, 100], # the parameter only for humaneval
|
||||
pred_postprocessor=dict(type=humaneval_postprocess_v2),
|
||||
)
|
||||
|
||||
humaneval_cn_datasets = [
|
||||
dict(
|
||||
abbr='openai_humaneval_cn',
|
||||
type=HumanevalDataset,
|
||||
path='./data/humaneval_cn/human-eval-cn-v2-20210705.jsonl',
|
||||
reader_cfg=humaneval_reader_cfg,
|
||||
infer_cfg=humaneval_infer_cfg,
|
||||
eval_cfg=humaneval_eval_cfg)
|
||||
|
||||
]
|
1
configs/datasets/humaneval_cn/humaneval_cn_passk_gen_6313aa.py
Symbolic link
1
configs/datasets/humaneval_cn/humaneval_cn_passk_gen_6313aa.py
Symbolic link
@ -0,0 +1 @@
|
||||
./humaneval_cn_gen_6313aa.py
|
@ -0,0 +1,38 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import HumanevalDataset, HumanEvaluator, humaneval_postprocess_v2
|
||||
|
||||
humaneval_reader_cfg = dict(
|
||||
input_columns=['prompt'], output_column='task_id', train_split='test')
|
||||
|
||||
# TODO: allow empty output-column
|
||||
humaneval_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt='完成以下Python代码任务:\n{prompt}'),
|
||||
])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer, max_out_len=512))
|
||||
|
||||
humaneval_eval_cfg = dict(
|
||||
evaluator=dict(type=HumanEvaluator),
|
||||
pred_role='BOT',
|
||||
k=[1, 10, 100], # the parameter only for humaneval
|
||||
pred_postprocessor=dict(type=humaneval_postprocess_v2),
|
||||
)
|
||||
|
||||
humaneval_cn_datasets = [
|
||||
dict(
|
||||
abbr='openai_humaneval_cn_pass10',
|
||||
type=HumanevalDataset,
|
||||
path='./data/humaneval_cn/human-eval-cn-v2-20210705.jsonl',
|
||||
num_repeats=10,
|
||||
reader_cfg=humaneval_reader_cfg,
|
||||
infer_cfg=humaneval_infer_cfg,
|
||||
eval_cfg=humaneval_eval_cfg)
|
||||
|
||||
]
|
@ -4,7 +4,7 @@ from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import SanitizedMBPPDataset, MBPPEvaluator
|
||||
|
||||
sanitized_mbpp_reader_cfg = dict(
|
||||
input_columns=['text', 'test_list'], output_column='test_list')
|
||||
input_columns=['text', 'test_list'], output_column='test_list_2')
|
||||
|
||||
sanitized_mbpp_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
|
4
configs/datasets/mbpp_cn/mbpp_cn_gen.py
Normal file
4
configs/datasets/mbpp_cn/mbpp_cn_gen.py
Normal file
@ -0,0 +1,4 @@
|
||||
from mmengine.config import read_base
|
||||
|
||||
with read_base():
|
||||
from .mbpp_cn_gen_1d1481 import mbpp_cn_datasets # noqa: F401, F403
|
64
configs/datasets/mbpp_cn/mbpp_cn_gen_1d1481.py
Normal file
64
configs/datasets/mbpp_cn/mbpp_cn_gen_1d1481.py
Normal file
@ -0,0 +1,64 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import MBPPDataset, MBPPEvaluator
|
||||
|
||||
mbpp_reader_cfg = dict(
|
||||
input_columns=['text', 'test_list'], output_column='test_list_2')
|
||||
|
||||
mbpp_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(
|
||||
role="HUMAN",
|
||||
prompt=
|
||||
"你是一名专业的 Python 程序员,你的任务是:编写一个函数,从给定的两个元组列表中查找相似的元素。 你的代码应该通过这些测试:\n\n assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)\n assert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4) \n assert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14) \n"
|
||||
),
|
||||
dict(
|
||||
role="BOT",
|
||||
prompt=
|
||||
"[BEGIN]\n 'def similar_elements(test_tup1, test_tup2):\r\n res = tuple(set(test_tup1) & set(test_tup2))\r\n return (res)' \n[DONE] \n\n "
|
||||
),
|
||||
dict(
|
||||
role="HUMAN",
|
||||
prompt=
|
||||
"你是一名专业的 Python 程序员,你的任务是:编写一个 Python 函数来识别一个整数是否不是素数。 你的代码应该通过这些测试:\n\n assert is_not_prime(2) == False \n assert is_not_prime(10) == True \n assert is_not_prime(35) == True \n"
|
||||
),
|
||||
dict(
|
||||
role="BOT",
|
||||
prompt=
|
||||
"[BEGIN]\n 'import math\r\ndef is_not_prime(n):\r\n result = False\r\n for i in range(2,int(math.sqrt(n)) + 1):\r\n if n % i == 0:\r\n result = True\r\n return result' \n[DONE] \n\n "
|
||||
),
|
||||
dict(
|
||||
role="HUMAN",
|
||||
prompt=
|
||||
"你是一名专业的 Python 程序员,你的任务是:编写一个函数,使用堆队列算法从给定的数字列表中查找最大整数。 你的代码应该通过这些测试:\n\n assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],3)==[85, 75, 65] \n assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],2)==[85, 75] \n assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],5)==[85, 75, 65, 58, 35] \n"
|
||||
),
|
||||
dict(
|
||||
role="BOT",
|
||||
prompt=
|
||||
"[BEGIN]\n 'import heapq as hq\r\ndef heap_queue_largest(nums,n):\r\n largest_nums = hq.nlargest(n, nums)\r\n return largest_nums' \n[DONE] \n\n "
|
||||
),
|
||||
dict(
|
||||
role="HUMAN",
|
||||
prompt=
|
||||
"你是一名专业的 Python 程序员,你的任务是: {text} 你的代码应该通过这些测试:\n\n {test_list} \n"
|
||||
),
|
||||
dict(role="BOT", prompt="[BEGIN]\n"),
|
||||
], )),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer, max_out_len=512))
|
||||
|
||||
mbpp_eval_cfg = dict(evaluator=dict(type=MBPPEvaluator), pred_role="BOT")
|
||||
|
||||
mbpp_cn_datasets = [
|
||||
dict(
|
||||
type=MBPPDataset,
|
||||
abbr='mbpp_cn',
|
||||
path='./data/mbpp_cn/mbpp_cn.jsonl',
|
||||
reader_cfg=mbpp_reader_cfg,
|
||||
infer_cfg=mbpp_infer_cfg,
|
||||
eval_cfg=mbpp_eval_cfg)
|
||||
]
|
64
configs/datasets/mbpp_cn/mbpp_cn_passk_gen_1d1481.py
Normal file
64
configs/datasets/mbpp_cn/mbpp_cn_passk_gen_1d1481.py
Normal file
@ -0,0 +1,64 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import MBPPDataset_V2, MBPPPassKEvaluator
|
||||
|
||||
mbpp_reader_cfg = dict(
|
||||
input_columns=['text', 'test_list'], output_column='test_column')
|
||||
|
||||
mbpp_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(
|
||||
role="HUMAN",
|
||||
prompt=
|
||||
"你是一名专业的 Python 程序员,你的任务是:编写一个函数,从给定的两个元组列表中查找相似的元素。 你的代码应该通过这些测试:\n\n assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)\n assert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4) \n assert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14) \n"
|
||||
),
|
||||
dict(
|
||||
role="BOT",
|
||||
prompt=
|
||||
"[BEGIN]\n 'def similar_elements(test_tup1, test_tup2):\r\n res = tuple(set(test_tup1) & set(test_tup2))\r\n return (res)' \n[DONE] \n\n "
|
||||
),
|
||||
dict(
|
||||
role="HUMAN",
|
||||
prompt=
|
||||
"你是一名专业的 Python 程序员,你的任务是:编写一个 Python 函数来识别一个整数是否不是素数。 你的代码应该通过这些测试:\n\n assert is_not_prime(2) == False \n assert is_not_prime(10) == True \n assert is_not_prime(35) == True \n"
|
||||
),
|
||||
dict(
|
||||
role="BOT",
|
||||
prompt=
|
||||
"[BEGIN]\n 'import math\r\ndef is_not_prime(n):\r\n result = False\r\n for i in range(2,int(math.sqrt(n)) + 1):\r\n if n % i == 0:\r\n result = True\r\n return result' \n[DONE] \n\n "
|
||||
),
|
||||
dict(
|
||||
role="HUMAN",
|
||||
prompt=
|
||||
"你是一名专业的 Python 程序员,你的任务是:编写一个函数,使用堆队列算法从给定的数字列表中查找最大整数。 你的代码应该通过这些测试:\n\n assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],3)==[85, 75, 65] \n assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],2)==[85, 75] \n assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],5)==[85, 75, 65, 58, 35] \n"
|
||||
),
|
||||
dict(
|
||||
role="BOT",
|
||||
prompt=
|
||||
"[BEGIN]\n 'import heapq as hq\r\ndef heap_queue_largest(nums,n):\r\n largest_nums = hq.nlargest(n, nums)\r\n return largest_nums' \n[DONE] \n\n "
|
||||
),
|
||||
dict(
|
||||
role="HUMAN",
|
||||
prompt=
|
||||
"你是一名专业的 Python 程序员,你的任务是: {text} 你的代码应该通过这些测试:\n\n {test_list} \n"
|
||||
),
|
||||
dict(role="BOT", prompt="[BEGIN]\n"),
|
||||
], )),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer, max_out_len=512))
|
||||
|
||||
mbpp_eval_cfg = dict(evaluator=dict(type=MBPPPassKEvaluator), pred_role="BOT")
|
||||
|
||||
mbpp_cn_datasets = [
|
||||
dict(
|
||||
type=MBPPDataset_V2,
|
||||
abbr='mbpp_cn',
|
||||
path='./data/mbpp_cn/mbpp_cn.jsonl',
|
||||
reader_cfg=mbpp_reader_cfg,
|
||||
infer_cfg=mbpp_infer_cfg,
|
||||
eval_cfg=mbpp_eval_cfg)
|
||||
]
|
65
configs/datasets/mbpp_cn/mbpp_cn_repeat10_gen_1d1481.py
Normal file
65
configs/datasets/mbpp_cn/mbpp_cn_repeat10_gen_1d1481.py
Normal file
@ -0,0 +1,65 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import MBPPDataset_V2, MBPPPassKEvaluator
|
||||
|
||||
mbpp_reader_cfg = dict(
|
||||
input_columns=['text', 'test_list'], output_column='test_column')
|
||||
|
||||
mbpp_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(
|
||||
role="HUMAN",
|
||||
prompt=
|
||||
"你是一名专业的 Python 程序员,你的任务是:编写一个函数,从给定的两个元组列表中查找相似的元素。 你的代码应该通过这些测试:\n\n assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)\n assert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4) \n assert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14) \n"
|
||||
),
|
||||
dict(
|
||||
role="BOT",
|
||||
prompt=
|
||||
"[BEGIN]\n 'def similar_elements(test_tup1, test_tup2):\r\n res = tuple(set(test_tup1) & set(test_tup2))\r\n return (res)' \n[DONE] \n\n "
|
||||
),
|
||||
dict(
|
||||
role="HUMAN",
|
||||
prompt=
|
||||
"你是一名专业的 Python 程序员,你的任务是:编写一个 Python 函数来识别一个整数是否不是素数。 你的代码应该通过这些测试:\n\n assert is_not_prime(2) == False \n assert is_not_prime(10) == True \n assert is_not_prime(35) == True \n"
|
||||
),
|
||||
dict(
|
||||
role="BOT",
|
||||
prompt=
|
||||
"[BEGIN]\n 'import math\r\ndef is_not_prime(n):\r\n result = False\r\n for i in range(2,int(math.sqrt(n)) + 1):\r\n if n % i == 0:\r\n result = True\r\n return result' \n[DONE] \n\n "
|
||||
),
|
||||
dict(
|
||||
role="HUMAN",
|
||||
prompt=
|
||||
"你是一名专业的 Python 程序员,你的任务是:编写一个函数,使用堆队列算法从给定的数字列表中查找最大整数。 你的代码应该通过这些测试:\n\n assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],3)==[85, 75, 65] \n assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],2)==[85, 75] \n assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],5)==[85, 75, 65, 58, 35] \n"
|
||||
),
|
||||
dict(
|
||||
role="BOT",
|
||||
prompt=
|
||||
"[BEGIN]\n 'import heapq as hq\r\ndef heap_queue_largest(nums,n):\r\n largest_nums = hq.nlargest(n, nums)\r\n return largest_nums' \n[DONE] \n\n "
|
||||
),
|
||||
dict(
|
||||
role="HUMAN",
|
||||
prompt=
|
||||
"你是一名专业的 Python 程序员,你的任务是: {text} 你的代码应该通过这些测试:\n\n {test_list} \n"
|
||||
),
|
||||
dict(role="BOT", prompt="[BEGIN]\n"),
|
||||
], )),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer, max_out_len=512))
|
||||
|
||||
mbpp_eval_cfg = dict(evaluator=dict(type=MBPPPassKEvaluator), pred_role="BOT")
|
||||
|
||||
mbpp_cn_datasets = [
|
||||
dict(
|
||||
type=MBPPDataset_V2,
|
||||
abbr='mbpp_cn_pass10',
|
||||
path='./data/mbpp_cn/mbpp_cn.jsonl',
|
||||
num_repeats=10,
|
||||
reader_cfg=mbpp_reader_cfg,
|
||||
infer_cfg=mbpp_infer_cfg,
|
||||
eval_cfg=mbpp_eval_cfg)
|
||||
]
|
@ -93,7 +93,10 @@ class SanitizedMBPPDataset(BaseDataset):
|
||||
|
||||
def processing_test(example):
|
||||
example['text'] = example.pop('prompt')
|
||||
# used for prompt
|
||||
example['test_list'] = '\n'.join(example['test_list'])
|
||||
# used for eval
|
||||
example['test_list_2'] = example['test_list']
|
||||
example['test_column'] = dict(test_list_2=example['test_list'],
|
||||
task_id=example['task_id'])
|
||||
return example
|
||||
|
Loading…
Reference in New Issue
Block a user