mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
Update DeepSeek-R1 example
This commit is contained in:
parent
ba7163ce2e
commit
8103c0d245
210
examples/eval_deepseek_r1.py
Normal file
210
examples/eval_deepseek_r1.py
Normal file
@ -0,0 +1,210 @@
|
||||
# Support AIME-2024 with Repeat8
|
||||
# Support MATH-500
|
||||
# Support OlympiadBench
|
||||
# Support OmniMath
|
||||
# Support LiveMathBench-202412-Hard
|
||||
|
||||
import os.path as osp
|
||||
from itertools import product
|
||||
from opencompass.models import OpenAISDK
|
||||
from mmengine.config import read_base
|
||||
from opencompass.utils.text_postprocessors import extract_non_reasoning_content
|
||||
from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner
|
||||
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask
|
||||
from opencompass.runners import LocalRunner
|
||||
from opencompass.models import (
|
||||
TurboMindModelwithChatTemplate,
|
||||
)
|
||||
|
||||
#######################################################################
|
||||
# PART 1 Datasets List #
|
||||
#######################################################################
|
||||
with read_base():
|
||||
# You can comment out the datasets you don't want to evaluate
|
||||
|
||||
# from opencompass.configs.datasets.math.math_prm800k_500_llmverify_gen_6ff468 import math_datasets # 1 Run
|
||||
from opencompass.configs.datasets.aime2024.aime2024_llmverify_repeat8_gen_e8fcee import aime2024_datasets # 8 Run
|
||||
# from opencompass.configs.datasets.OlympiadBench.OlympiadBench_0shot_llmverify_gen_be8b13 import olympiadbench_datasets
|
||||
# from opencompass.configs.datasets.omni_math.omni_math_llmverify_gen_ccf9c0 import omnimath_datasets # 1 Run
|
||||
# from opencompass.configs.datasets.livemathbench.livemathbench_hard_custom_llmverify_gen_85d0ef import livemathbench_datasets
|
||||
|
||||
# Summarizer
|
||||
from opencompass.configs.summarizers.groups.OlympiadBench import OlympiadBenchMath_summary_groups
|
||||
|
||||
datasets = sum(
|
||||
(v for k, v in locals().items() if k.endswith('_datasets')),
|
||||
[],
|
||||
)
|
||||
|
||||
# Set LLM Verifier used for each dataset
|
||||
|
||||
verifier_cfg = dict(
|
||||
abbr='qwen2-5-32B-Instruct',
|
||||
type=OpenAISDK,
|
||||
path='Qwen/Qwen2.5-32B-Instruct', # You need to set your own judge model path
|
||||
key='sk-1234', # You need to set your own API key
|
||||
openai_api_base=[
|
||||
'http://172.30.56.1:4000/v1', # You need to set your own API base
|
||||
],
|
||||
meta_template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', api_role='HUMAN'),
|
||||
dict(role='BOT', api_role='BOT', generate=True),
|
||||
],
|
||||
),
|
||||
query_per_second=16,
|
||||
batch_size=1024,
|
||||
temperature=0.001,
|
||||
tokenizer_path='gpt-4o-2024-05-13',
|
||||
verbose=True,
|
||||
max_out_len=16384,
|
||||
# max_seq_len=32768,
|
||||
max_seq_len=49152,
|
||||
)
|
||||
|
||||
for item in datasets:
|
||||
# item['infer_cfg']['inferencer']['max_out_len'] = 32768 # You can unset this line if you want to avoid length cutoff
|
||||
if 'judge_cfg' in item['eval_cfg']['evaluator']:
|
||||
item['eval_cfg']['evaluator']['judge_cfg'] = verifier_cfg
|
||||
|
||||
|
||||
#######################################################################
|
||||
# PART 2 Model List #
|
||||
#######################################################################
|
||||
|
||||
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
|
||||
|
||||
models += [
|
||||
# You can comment out the models you don't want to evaluate
|
||||
# All models use sampling mode
|
||||
dict(
|
||||
type=TurboMindModelwithChatTemplate,
|
||||
abbr='deepseek-r1-distill-qwen-7b-turbomind',
|
||||
path='deepseek-ai/DeepSeek-R1-Distill-Qwen-7B',
|
||||
engine_config=dict(session_len=32768, max_batch_size=128, tp=1),
|
||||
gen_config=dict(
|
||||
do_sample=True,
|
||||
temperature=0.6,
|
||||
top_p=0.95,
|
||||
max_new_tokens=32768),
|
||||
max_seq_len=32768,
|
||||
max_out_len=32768,
|
||||
batch_size=64,
|
||||
run_cfg=dict(num_gpus=1),
|
||||
pred_postprocessor=dict(type=extract_non_reasoning_content)
|
||||
),
|
||||
# dict(
|
||||
# type=TurboMindModelwithChatTemplate,
|
||||
# abbr='deepseek-r1-distill-qwen-14b-turbomind',
|
||||
# path='deepseek-ai/DeepSeek-R1-Distill-Qwen-14B',
|
||||
# engine_config=dict(session_len=32768, max_batch_size=128, tp=2),
|
||||
# gen_config=dict(
|
||||
# do_sample=True,
|
||||
# temperature=0.6,
|
||||
# top_p=0.95,
|
||||
# max_new_tokens=32768),
|
||||
# max_seq_len=32768,
|
||||
# max_out_len=32768,
|
||||
# batch_size=128,
|
||||
# run_cfg=dict(num_gpus=2),
|
||||
# pred_postprocessor=dict(type=extract_non_reasoning_content)
|
||||
# ),
|
||||
# dict(
|
||||
# type=TurboMindModelwithChatTemplate,
|
||||
# abbr='deepseek-r1-distill-qwen-32b-turbomind',
|
||||
# path='deepseek-ai/DeepSeek-R1-Distill-Qwen-32B',
|
||||
# engine_config=dict(session_len=32768, max_batch_size=128, tp=4),
|
||||
# gen_config=dict(
|
||||
# do_sample=True,
|
||||
# temperature=0.6,
|
||||
# top_p=0.95,
|
||||
# max_new_tokens=16384),
|
||||
# max_seq_len=32768,
|
||||
# max_out_len=16384,
|
||||
# batch_size=128,
|
||||
# run_cfg=dict(num_gpus=4),
|
||||
# pred_postprocessor=dict(type=extract_non_reasoning_content)
|
||||
# ),
|
||||
]
|
||||
|
||||
#######################################################################
|
||||
# PART 3 Inference/Evaluation #
|
||||
#######################################################################
|
||||
|
||||
# Inference configuration
|
||||
infer = dict(
|
||||
partitioner=dict(
|
||||
type=NumWorkerPartitioner,
|
||||
num_worker=1
|
||||
# Similar with data-parallelism, how many workers for evaluation,
|
||||
# each worker will evaluate a part of the dataset. Total GPUs = num_worker * num_gpus_per_worker
|
||||
# For example, If you have 8 GPUs, for 7B model using 1 GPU for one instance, you can set num_worker=8
|
||||
# to max-utilize the GPUs.
|
||||
# If you have 8 GPUs, for 14B model using 2 GPUs for one instance, you can set num_worker=4
|
||||
),
|
||||
runner=dict(
|
||||
type=LocalRunner,
|
||||
task=dict(type=OpenICLInferTask)
|
||||
),
|
||||
)
|
||||
|
||||
# Evaluation configuration
|
||||
eval = dict(
|
||||
partitioner=dict(
|
||||
type=NaivePartitioner, n=8
|
||||
),
|
||||
runner=dict(
|
||||
type=LocalRunner,
|
||||
task=dict(
|
||||
type=OpenICLEvalTask)
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
#######################################################################
|
||||
# PART 4 Summarizer #
|
||||
#######################################################################
|
||||
|
||||
|
||||
summary_groups = sum(
|
||||
[v for k, v in locals().items() if k.endswith('_summary_groups')], []
|
||||
)
|
||||
|
||||
summary_groups.extend([
|
||||
{
|
||||
'name': 'AIME2024-Aveage8',
|
||||
'subsets':[[f'aime2024-run{idx}', 'accuracy'] for idx in range(8)]
|
||||
},
|
||||
{
|
||||
'name': 'LiveMathBench-v202412-Hard-Aveage8',
|
||||
'subsets':[[
|
||||
f'livemathbench_hard_custom_{split}_run{run_idx}', 'accuracy']
|
||||
for split, run_idx in product(['hard_cn', 'hard_en'], range(8))
|
||||
]
|
||||
}
|
||||
])
|
||||
|
||||
# Summarizer
|
||||
summarizer = dict(
|
||||
dataset_abbrs=[
|
||||
'MATH',
|
||||
# ['LiveMathBench-k1-n1', 'pass@1'],
|
||||
# ['LiveMathBench-v202412-greedy', 'G-Pass@1_0.0'],
|
||||
# ['aime2024', 'accuracy'],
|
||||
['math_prm800k_500-llmjudge', 'accuracy'],
|
||||
['AIME2024-Aveage8', 'naive_average'],
|
||||
['LiveMathBench-v202412-Hard-Aveage8', 'naive_average'],
|
||||
['OlympiadBenchMath', 'accuracy'],
|
||||
['OmniMath', 'accuracy'],
|
||||
],
|
||||
summary_groups=summary_groups,
|
||||
)
|
||||
|
||||
|
||||
#######################################################################
|
||||
# PART 5 Utils #
|
||||
#######################################################################
|
||||
|
||||
work_dir = "outputs/deepseek_r1_reasoning"
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user