healthbench

This commit is contained in:
huihui 2025-05-15 08:50:05 +00:00
parent 8c74e6a39e
commit 7278a4ed19
16 changed files with 3079 additions and 0 deletions

View File

@ -0,0 +1,78 @@
from opencompass.datasets import HealthBenchDataset, HealthBenchEvaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import HealthBenchTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
# Reader configuration
reader_cfg = dict(
input_columns=[
'example_tags', 'ideal_completions_data', 'prompt', 'prompt_id', 'rubrics', 'canary'
],
output_column='prompt_id', # useless
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=HealthBenchTemplate,
key='prompt_trans',
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# infer_cfg = dict(
# prompt_template=dict(
# type=PromptTemplate,
# template=dict(
# round=[
# dict(
# role='HUMAN',
# prompt='{prompt_id}', # prompt mode: zero-shot
# ),
# dict(
# role='BOT',
# prompt='{prompt_id}', # prompt mode: zero-shot
# ),
# ],
# ),
# ),
# retriever=dict(type=ZeroRetriever),
# inferencer=dict(type=GenInferencer),
# )
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(type=HealthBenchEvaluator),
pred_role='BOT',
)
healthbench_vanilla_dataset = dict(
type=HealthBenchDataset,
abbr='healthbench_vanilla',
path='huihuixu/healthbench',
subset='vanilla',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
healthbench_hard_dataset = dict(
type=HealthBenchDataset,
abbr='healthbench_hard',
path='huihuixu/healthbench',
subset='hard',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
healthbench_consensus_dataset = dict(
type=HealthBenchDataset,
abbr='healthbench_consensus',
path='huihuixu/healthbench',
subset='consensus',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
healthbench_all_datasets = [healthbench_vanilla_dataset, healthbench_hard_dataset, healthbench_consensus_dataset ]

View File

@ -58,6 +58,7 @@ from .govrepcrs import * # noqa: F401, F403
from .gpqa import * # noqa: F401, F403 from .gpqa import * # noqa: F401, F403
from .gsm8k import * # noqa: F401, F403 from .gsm8k import * # noqa: F401, F403
from .gsm_hard import * # noqa: F401, F403 from .gsm_hard import * # noqa: F401, F403
from .healthbench.healthbench import *
from .hellaswag import * # noqa: F401, F403 from .hellaswag import * # noqa: F401, F403
from .hle import * # noqa: F401, F403 from .hle import * # noqa: F401, F403
from .huggingface import * # noqa: F401, F403 from .huggingface import * # noqa: F401, F403

View File

@ -0,0 +1,380 @@
import io
import os
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
from multiprocessing.pool import ThreadPool
from typing import Any, Callable
import jinja2
import numpy as np
import requests
from tqdm import tqdm
from .types import EvalResult, Message, SamplerBase, SingleEvalResult
QUERY_TEMPLATE_MULTICHOICE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'Answer: $LETTER' (without quotes) where LETTER is one of ABCD. Think step by step before answering.
{Question}
A) {A}
B) {B}
C) {C}
D) {D}
""".strip()
ANSWER_PATTERN_MULTICHOICE = r'(?i)Answer[ \t]*:[ \t]*\$?([A-D])\$?'
ANSWER_PATTERN = r'(?i)Answer\s*:\s*([^\n]+)'
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE = (
'(?i){}[ \t]*([A-D]|[أ-د]|[অ]|[ব]|[ড]|[ঢ]|[]|[]|[]|[])')
# All the different ways "Answer" is written in different languages
MULTILINGUAL_ANSWER_REGEXES = [
'Answer\s*:',
'Answer\s*:', # Korean invisible character
'উত্তর\s*:',
'उत्तर\s*:',
'উত্তরঃ',
'উত্তর\s*:',
'Antwort\s*:',
'답변\s*:',
'정답\s*:',
'\s*:',
'答案\s*',
'答案\s*:',
'\s*',
'\s*:',
'答复\s*',
'答曰\s*',
'الإجابة:',
'الجواب:',
'إجابة:',
'الإجابة النهائية:',
'الإجابة الصحيحة:',
'الإجابة الصحيحة هي:',
'الإجابة هي:',
'الجواب النهائي:',
'Respuesta\s*:',
'Risposta\s*:',
'答え\s*:',
'答え\s*',
'回答\s*:',
'回答\s*',
'解答\s*:',
'Jawaban\s*:',
'Réponse\s*:',
'Resposta\s*:',
'Jibu\s*:',
'Idahun\s*:',
'Ìdáhùn\s*:',
'Idáhùn\s*:',
'Àmọ̀nà\s*:',
'Àdáhùn\s*:',
'Ànúgọ\s*:',
'Àṣàyàn\s*:',
]
EQUALITY_TEMPLATE = r"""
Look at the following two expressions (answers to a math problem) and judge whether they are equivalent. Only perform trivial simplifications
Examples:
Expression 1: $2x+3$
Expression 2: $3+2x$
Yes
Expression 1: 3/2
Expression 2: 1.5
Yes
Expression 1: $x^2+2x+1$
Expression 2: $y^2+2y+1$
No
Expression 1: $x^2+2x+1$
Expression 2: $(x+1)^2$
Yes
Expression 1: 3245/5
Expression 2: 649
No
(these are actually equal, don't mark them equivalent if you need to do nontrivial simplifications)
Expression 1: 2/(-3)
Expression 2: -2/3
Yes
(trivial simplifications are allowed)
Expression 1: 72 degrees
Expression 2: 72
Yes
(give benefit of the doubt to units)
Expression 1: 64
Expression 2: 64 square feet
Yes
(give benefit of the doubt to units)
---
YOUR TASK
Respond with only "Yes" or "No" (without quotes). Do not include a rationale.
Expression 1: %(expression1)s
Expression 2: %(expression2)s
""".strip()
HTML_JINJA = """
<h3>Prompt conversation</h3>
{% for message in prompt_messages %}
{{ message_to_html(message) | safe }}
{% endfor %}
<h3>Sampled message</h3>
{{ message_to_html(next_message) | safe }}
<h3>Results</h3>
<p>Correct Answer: {{ correct_answer }}</p>
<p>Extracted Answer: {{ extracted_answer }}</p>
<p>Score: {{ score }}</p>
"""
def format_multichoice_question(row):
return QUERY_TEMPLATE_MULTICHOICE.format(**row)
def check_equality(sampler: SamplerBase, expr1: str, expr2: str):
prompt = EQUALITY_TEMPLATE % {'expression1': expr1, 'expression2': expr2}
sampler_response = sampler([dict(content=prompt, role='user')])
response_text = sampler_response.response_text
return response_text.lower().strip() == 'yes'
def _compute_stat(values: list, stat: str):
if stat == 'mean':
return np.mean(values)
elif stat == 'std':
return np.std(values)
elif stat == 'min':
return np.min(values)
elif stat == 'max':
return np.max(values)
elif stat == 'n_samples':
return len(values)
elif stat == 'bootstrap_std':
return np.std([
np.mean(np.random.choice(values, len(values))) for _ in range(1000)
])
else:
raise ValueError(f'Unknown {stat =}')
def aggregate_results(
single_eval_results: list[SingleEvalResult],
default_stats: tuple[str, ...] = ('mean', 'std'),
name2stats: dict[str, tuple[str]] | None = None,
) -> EvalResult:
"""Aggregate results from multiple evaluations into a single EvalResult."""
name2stats = name2stats or {}
name2values = defaultdict(list)
htmls = []
convos = []
metadata = []
for single_eval_result in single_eval_results:
for name, value in single_eval_result.metrics.items():
name2values[name].append(value)
if single_eval_result.score is not None:
name2values['score'].append(single_eval_result.score)
htmls.append(single_eval_result.html)
convos.append(single_eval_result.convo)
metadata.append(single_eval_result.example_level_metadata)
final_metrics = {}
for name, values in name2values.items():
stats = name2stats.get(name, default_stats)
for stat in stats:
key = name if stat == 'mean' else f'{name}:{stat}'
final_metrics[key] = _compute_stat(values, stat)
return EvalResult(
score=final_metrics.pop('score', None),
metrics=final_metrics,
htmls=htmls,
convos=convos,
metadata={'example_level_metadata': metadata},
)
def map_with_progress(
f: Callable,
xs: list[Any],
num_threads: int = os.cpu_count() or 10,
pbar: bool = True,
):
"""Apply f to each element of xs, using a ThreadPool, and show progress."""
pbar_fn = tqdm if pbar else lambda x, *args, **kwargs: x
if os.getenv('debug'):
return list(map(f, pbar_fn(xs, total=len(xs))))
else:
with ThreadPool(min(num_threads, len(xs))) as pool:
return list(pbar_fn(pool.imap(f, xs), total=len(xs)))
jinja_env = jinja2.Environment(
loader=jinja2.BaseLoader(),
undefined=jinja2.StrictUndefined,
autoescape=jinja2.select_autoescape(['html', 'xml']),
)
_message_template = """
<div class="message {{ role }}">
<div class="role">
{{ role }}
{% if variant %}<span class="variant">({{ variant }})</span>{% endif %}
</div>
<div class="content">
<pre>{{ content }}</pre>
</div>
</div>
"""
def message_to_html(message: Message) -> str:
"""Generate HTML snippet (inside a <div>) for a message."""
return jinja_env.from_string(_message_template).render(
role=message['role'],
content=message['content'],
variant=message.get('variant', None),
)
jinja_env.globals['message_to_html'] = message_to_html
_report_template = """<!DOCTYPE html>
<html>
<head>
<style>
.message {
padding: 8px 16px;
margin-bottom: 8px;
border-radius: 4px;
}
.message.user {
background-color: #B2DFDB;
color: #00695C;
}
.message.assistant {
background-color: #B39DDB;
color: #4527A0;
}
.message.system {
background-color: #EEEEEE;
color: #212121;
}
.role {
font-weight: bold;
margin-bottom: 4px;
}
.variant {
color: #795548;
}
table, th, td {
border: 1px solid black;
}
pre {
white-space: pre-wrap;
}
</style>
</head>
<body>
{% if metrics %}
<h1>Metrics</h1>
<table>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
<tr>
<td><b>Score</b></td>
<td>{{ score | float | round(3) }}</td>
</tr>
{% for name, value in metrics.items() %}
<tr>
<td>{{ name }}</td>
<td>{{ value }}</td>
</tr>
{% endfor %}
</table>
{% endif %}
<h1>Examples</h1>
{% for html in htmls %}
{{ html | safe }}
<hr>
{% endfor %}
</body>
</html>
"""
def make_report(eval_result: EvalResult) -> str:
"""Create a standalone HTML report from an EvalResult."""
return jinja_env.from_string(_report_template).render(
score=eval_result.score,
metrics=eval_result.metrics,
htmls=eval_result.htmls,
)
def make_report_from_example_htmls(htmls: list[str]):
"""Create a standalone HTML report from a list of example htmls."""
return jinja_env.from_string(_report_template).render(score=None,
metrics={},
htmls=htmls)
def normalize_response(response: str) -> str:
"""Normalize the response by removing markdown and LaTeX formatting that
may prevent a match."""
return (response.replace('**', '').replace('$\\boxed{', '').replace(
'}$', '').replace('\\$', '').replace('$\\text{', '').replace(
'$', '').replace('\\mathrm{', '').replace('\\{', '').replace(
'\\text',
'').replace('\\(',
'').replace('\\mathbf{',
'').replace('{',
'').replace('\\boxed', ''))
def normalize_extracted_answer(extracted_answer: str) -> str:
return (
# In arabic these are the letters used for A-D in multiple choice questions
extracted_answer.replace('أ', ' A').replace('ب', ' B').replace(
'ج', ' C').replace('د', ' D')
# In Bengali these are the letters used for A-D in multiple choice questions
.replace('', ' A').replace('',
' B').replace('',
' C').replace('', ' D')
# In Japanese these are the letters sometimes used for A-D in multiple choice questions
.replace('', ' A').replace('',
' B').replace('',
' C').replace('',
' D').strip())
def url_to_fileobj(url: str, binary=False) -> Any:
response = requests.get(url)
response.raise_for_status()
return io.BytesIO(response.content) if binary else io.StringIO(
response.text)
def has_only_user_assistant_messages(messages: list[Message]) -> bool:
"""Check if the messages only contain user and assistant messages."""
return all(m['role'] in ('user', 'assistant') for m in messages)

View File

@ -0,0 +1,331 @@
"""
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs
Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, Matt Gardner
https://arxiv.org/abs/1903.00161
"""
import gzip
import json
import random
import re
import string
from typing import Any, Dict, List, Optional, Set, Tuple, Union
import numpy as np
from scipy.optimize import linear_sum_assignment
from . import common
from .common import ANSWER_PATTERN, HTML_JINJA
from .types import Eval, EvalResult, SamplerBase, SingleEvalResult
"""
From here through _normalize_answer was originally copied from:
https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
Then cleaned up and modified a bit.
The rest was originally copied from https://github.com/allenai/allennlp-reading-comprehension/blob/master/allennlp_rc
/eval/drop_eval.py
"""
def _remove_articles(text: str) -> str:
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
return re.sub(regex, ' ', text)
def _white_space_fix(text: str) -> str:
return ' '.join(text.split())
EXCLUDE = set(string.punctuation)
def _remove_punc(text: str) -> str:
if not _is_number(text):
return ''.join(ch for ch in text if ch not in EXCLUDE)
else:
return text
def _lower(text: str) -> str:
return text.lower()
def _tokenize(text: str) -> List[str]:
return re.split(' |-', text)
def _normalize_answer(text: str) -> str:
"""Lower text and remove punctuation, articles and extra whitespace."""
parts = [
_white_space_fix(
_remove_articles(_normalize_number(_remove_punc(_lower(token)))))
for token in _tokenize(text)
]
parts = [part for part in parts if part.strip()]
normalized = ' '.join(parts).strip()
return normalized
def _is_number(text: str) -> bool:
try:
float(text)
return True
except ValueError:
return False
def _normalize_number(text: str) -> str:
if _is_number(text):
return str(float(text))
else:
return text
def _answer_to_bags(
answer: Union[str, List[str], Tuple[str, ...]]
) -> Tuple[List[str], List[Set[str]]]:
if isinstance(answer, (list, tuple)):
raw_spans = answer
else:
raw_spans = [answer]
normalized_spans: List[str] = []
token_bags = []
for raw_span in raw_spans:
normalized_span = _normalize_answer(raw_span)
normalized_spans.append(normalized_span)
token_bags.append(set(normalized_span.split()))
return normalized_spans, token_bags
def _align_bags(predicted: List[Set[str]],
gold: List[Set[str]]) -> List[float]:
"""Takes gold and predicted answer sets and first finds the optimal 1-1
alignment between them and gets maximum metric values over all the
answers."""
scores = np.zeros([len(gold), len(predicted)])
for gold_index, gold_item in enumerate(gold):
for pred_index, pred_item in enumerate(predicted):
if _match_numbers_if_present(gold_item, pred_item):
scores[gold_index,
pred_index] = _compute_f1(pred_item, gold_item)
row_ind, col_ind = linear_sum_assignment(-scores)
max_scores = np.zeros([max(len(gold), len(predicted))])
for row, column in zip(row_ind, col_ind):
max_scores[row] = max(max_scores[row], scores[row, column])
return max_scores
def _compute_f1(predicted_bag: Set[str], gold_bag: Set[str]) -> float:
intersection = len(gold_bag.intersection(predicted_bag))
if not predicted_bag:
precision = 1.0
else:
precision = intersection / float(len(predicted_bag))
if not gold_bag:
recall = 1.0
else:
recall = intersection / float(len(gold_bag))
f1 = ((2 * precision * recall) / (precision + recall)
if not (precision == 0.0 and recall == 0.0) else 0.0) * 100
return f1
def _match_numbers_if_present(gold_bag: Set[str],
predicted_bag: Set[str]) -> bool:
gold_numbers = set()
predicted_numbers = set()
for word in gold_bag:
if _is_number(word):
gold_numbers.add(word)
for word in predicted_bag:
if _is_number(word):
predicted_numbers.add(word)
if (not gold_numbers) or gold_numbers.intersection(predicted_numbers):
return True
return False
def get_drop_metrics(
predicted: Union[str, List[str], Tuple[str, ...]],
gold: Union[str, List[str], Tuple[str, ...]]) -> Tuple[float, float]:
"""Takes a predicted answer and a gold answer (that are both either a
string or a list of strings), and returns exact match and the DROP F1
metric for the prediction.
If you are
writing a script for evaluating objects in memory (say, the output of predictions during
validation, or while training), this is the function you want to call, after using
:func:`answer_json_to_strings` when reading the gold answer from the released data file.
"""
predicted_bags = _answer_to_bags(predicted)
gold_bags = _answer_to_bags(gold)
if set(predicted_bags[0]) == set(gold_bags[0]) and len(
predicted_bags[0]) == len(gold_bags[0]):
exact_match = 1.0
else:
exact_match = 0.0
f1_per_bag = _align_bags(predicted_bags[1], gold_bags[1])
f1 = np.mean(f1_per_bag)
f1 = round(f1, 2)
return exact_match, f1
def answer_json_to_strings(
answer: Dict[str, Any]) -> Tuple[Tuple[str, ...], str]:
"""Takes an answer JSON blob from the DROP data release and converts it
into strings used for evaluation."""
if 'number' in answer and answer['number']:
return tuple([str(answer['number'])]), 'number'
elif 'spans' in answer and answer['spans']:
return tuple(
answer['spans']), 'span' if len(answer['spans']) == 1 else 'spans'
elif 'date' in answer:
return (
tuple([
'{0} {1} {2}'.format(answer['date']['day'],
answer['date']['month'],
answer['date']['year']).strip()
]),
'date',
)
else:
raise ValueError(
f'Answer type not found, should be one of number, spans or date at: {json.dumps(answer)}'
)
def answer_json_to_string(answer_json):
return json.dumps(answer_json_to_strings(answer_json))
def normalize(s: str) -> str:
"""Lower text and remove punctuation, articles and extra whitespace."""
s = s.lower()
exclude = set(string.punctuation)
s = ''.join(char for char in s if char not in exclude)
s = re.sub(r'\b(a|an|the)\b', ' ', s)
s = ' '.join(s.split())
return s
def fuzzy_match(s1: str, s2: str) -> bool:
s1 = normalize(s1)
s2 = normalize(s2)
if s1 == '' or s2 == '':
return s1 == s2
return s1 in s2 or s2 in s1
def drop_metric(sample: str, reference: list[str]) -> Tuple[float, float]:
em_scores = []
f1_scores = []
for answer in reference:
if answer.strip() != '':
em, f1 = get_drop_metrics(sample, answer)
em_scores.append(em)
f1_scores.append(f1)
return (max(em_scores), max(f1_scores))
class DropEval(Eval):
def __init__(self,
num_examples: int | None = None,
train_samples_per_prompt: int = 3):
self.seed = 42
self._num_examples = num_examples
self._train_samples_per_prompt = train_samples_per_prompt
self.train_jsonl = (
'https://openaipublic.blob.core.windows.net/simple-evals/drop_v0_train.jsonl.gz'
)
self.test_jsonl = (
'https://openaipublic.blob.core.windows.net/simple-evals/drop_v0_dev.jsonl.gz'
)
with gzip.GzipFile(fileobj=common.url_to_fileobj(self.train_jsonl,
binary=True),
mode='rb') as f:
self.train_samples = list(map(json.loads, f.readlines()))
with gzip.GzipFile(fileobj=common.url_to_fileobj(self.test_jsonl,
binary=True),
mode='rb') as f:
self.test_samples = list(map(json.loads, f.readlines()))
if self._num_examples:
self.test_samples = random.Random(self.seed).sample(
self.test_samples, self._num_examples)
def __call__(self, sampler: SamplerBase) -> EvalResult:
rng = random.Random(self.seed)
def fn(example: dict[str, str]):
stuffing = rng.sample(self.train_samples,
self._train_samples_per_prompt)
# prompt = """TASK: Read the provided passage, then identify the correct answer to questions below."""
prompt = """You will be asked to read a passage and answer a question. Some examples of passages and Q&A are provided below."""
prompt += '\n\n# Examples'
samples = stuffing + [example]
for i, sample in enumerate(samples):
is_test = i == len(stuffing)
prompt += '\n# Your Task\n' if is_test else ''
prompt += f"""
---
{sample["context"]} """
a = sample['completion']
correct_answers = sample['ref_text'].split('|')
if not is_test:
prompt += a + '\n'
else:
prompt += """\n
Think step by step, then write a line of the form "Answer: $ANSWER" at the end of your response.
"""
prompt_messages = [
sampler._pack_message(content=prompt, role='user')
]
sampler_response = sampler(prompt_messages)
response_text = sampler_response.response_text
actual_queried_prompt_messages = sampler_response.actual_queried_message_list
match = re.search(ANSWER_PATTERN, response_text)
extracted_answer = match.group(
1) if match else response_text
em_score, f1_score = drop_metric(extracted_answer,
correct_answers)
matches = [
fuzzy_match(extracted_answer, correct_answer)
for correct_answer in correct_answers
]
extracted_answers = [
extracted_answer for i in range(len(correct_answers))
if matches[i]
]
score = True in matches
html = common.jinja_env.from_string(HTML_JINJA).render(
prompt_messages=actual_queried_prompt_messages,
next_message=dict(content=extracted_answer,
role='assistant'),
score=score,
correct_answer=correct_answers,
extracted_answer=extracted_answers,
)
convo = actual_queried_prompt_messages + [
dict(content=extracted_answer, role='assistant')
]
return SingleEvalResult(
html=html,
score=score,
convo=convo,
metrics={
'em_score': em_score,
'f1_score': f1_score
},
)
results = common.map_with_progress(fn, self.test_samples)
return common.aggregate_results(results)

View File

@ -0,0 +1,88 @@
"""
GPQA: A Graduate-Level Google-Proof Q&A Benchmark
David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, Samuel R. Bowman
https://arxiv.org/abs/2311.12022
"""
import random
import re
import pandas
from . import common
from .common import (ANSWER_PATTERN_MULTICHOICE, HTML_JINJA,
format_multichoice_question)
from .types import Eval, EvalResult, MessageList, SamplerBase, SingleEvalResult
class GPQAEval(Eval):
def __init__(
self,
n_repeats: int = 4,
variant: str = 'diamond',
num_examples: int
| None = None, # restrict to a subset of the data for debugging
):
df = pandas.read_csv(
f'https://openaipublic.blob.core.windows.net/simple-evals/gpqa_{variant}.csv'
)
examples = [row.to_dict() for _, row in df.iterrows()]
rng = random.Random(0)
if num_examples:
assert n_repeats == 1, 'n_repeats only supported for num_examples = None'
examples = rng.sample(examples, num_examples)
examples = examples * n_repeats
examples = [
example | {
'permutation': rng.sample(range(4), 4)
} for example in examples
]
self.examples = examples
self.n_repeats = n_repeats
def __call__(self, sampler: SamplerBase) -> EvalResult:
def fn(row: dict):
choices = [
row['Correct Answer'],
row['Incorrect Answer 1'],
row['Incorrect Answer 2'],
row['Incorrect Answer 3'],
]
choices = [choices[i] for i in row['permutation']]
correct_index = choices.index(row['Correct Answer'])
correct_answer = 'ABCD'[correct_index]
choices_dict = dict(A=choices[0],
B=choices[1],
C=choices[2],
D=choices[3],
Question=row['Question'])
prompt_messages = [
sampler._pack_message(
content=format_multichoice_question(choices_dict),
role='user')
]
sampler_response = sampler(prompt_messages)
response_text = sampler_response.response_text
actual_queried_prompt_messages = sampler_response.actual_queried_message_list
match = re.search(ANSWER_PATTERN_MULTICHOICE, response_text)
extracted_answer = match.group(1) if match else None
score = 1.0 if extracted_answer == correct_answer else 0.0
html = common.jinja_env.from_string(HTML_JINJA).render(
prompt_messages=actual_queried_prompt_messages,
next_message=dict(content=response_text, role='assistant'),
score=score,
correct_answer=correct_answer,
extracted_answer=extracted_answer,
)
convo = actual_queried_prompt_messages + [
dict(content=response_text, role='assistant')
]
return SingleEvalResult(html=html,
score=score,
convo=convo,
metrics={'chars': len(response_text)})
results = common.map_with_progress(fn, self.examples)
return common.aggregate_results(results)

View File

@ -0,0 +1,359 @@
import json
import re
from datasets import Dataset, load_dataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
from opencompass.utils import get_logger
from ..base import BaseDataset
from . import common
from .healthbench_eval import HealthBenchEval, RubricItem
from .healthbench_meta_eval import HealthBenchMetaEval
from .sampler.chat_completion_sampler import ChatCompletionSampler
from .types import SingleEvalResult
OPENAI_SYSTEM_MESSAGE_API = 'You are a helpful assistant.'
OPENAI_SYSTEM_MESSAGE_CHATGPT = (
'You are ChatGPT, a large language model trained by OpenAI, based on the GPT-4 architecture.'
+ '\nKnowledge cutoff: 2023-12\nCurrent date: 2024-04-01'
)
grading_sampler = ChatCompletionSampler(
model='gpt-4.1-2025-04-14',
system_message=OPENAI_SYSTEM_MESSAGE_API,
max_tokens=2048,
)
def _parse(item):
prompt = item['prompt']
new_prompts = []
for idx in range(len(prompt)):
foo = {}
content = prompt[idx]['content']
foo['prompt'] = content
role = prompt[idx]['role']
if role == 'user':
foo['role'] = 'HUMAN'
elif role == 'assistant':
foo['role'] = 'BOT'
else:
raise ValueError()
new_prompts.append(foo)
item['prompt_trans'] = new_prompts
# item["rubrics"] = [RubricItem.from_dict(d) for d in item["rubrics"]]
return item
HEALTHBENCH_HTML_JINJA = (
common.HTML_JINJA.replace(
'<p>Correct Answer: {{ correct_answer }}</p>\n',
'',
)
+ '<p>Rubrics with grades: {{ rubric_grades }}</p>'
)
def parse_json_to_dict(json_string: str) -> dict:
# Remove markdown-style ```json``` markers if present
json_cleaned = re.sub(r'^```json\s*|\s*```$', '', json_string.strip())
try:
return json.loads(json_cleaned)
except json.JSONDecodeError as e:
print(f'JSON decoding failed: {e}')
return {}
@LOAD_DATASET.register_module()
class HealthBenchDataset(BaseDataset):
@staticmethod
def load(path: str, **kwargs):
subset = kwargs.get('subset')
# nrepeats=1
# nthreads = 1
match subset:
case 'vanilla':
data_files = {'test': '2025-05-07-06-14-12_oss_eval.jsonl'}
case 'hard':
data_files = {'test': 'hard_2025-05-08-21-00-10.jsonl'}
case 'consensus':
data_files = {'test': 'consensus_2025-05-09-20-00-46.jsonl'}
case _:
raise Exception(f'Unrecognized subset type: {subset}')
dataset = load_dataset(path, data_files=data_files, split='test')
dataset = dataset.select(range(2))
dataset = dataset.map(lambda item: _parse(item))
return dataset
from collections import defaultdict
from .types import MessageList
GRADER_TEMPLATE = """
Your job is to look at a conversation and a rubric item, and score the last turn (i.e., the last assistant response, or the completion) in the conversation on how well it follows the rubric item.
# Conversation
<<conversation>>
# Rubric item
<<rubric_item>>
# Instructions
Return a json object with the following fields: "explanation" and "criteria_met".
- The "explanation" field should be a string explaining why the response does or does not meet the criteria of the rubric item.
- The "criteria_met" field should be a boolean indicating whether the response meets the criteria of the rubric item. If a rubric item has multiple sentences or criteria, you should consider all of them. If any of the criteria is not met, the answer should be false. Only return true is all of the criteria are met.
- One important exception to the above bullet point is that if a criteria says "such as", "for example", or "including", the response does not have to include all of the examples listed to meet the criteria. For example, if the criteria says "States that oral iron supplements can lead to unpleasant gastrointestinal side effects such as nausea, vomiting, and constipation", and the response just says that oral iron supplements can lead to unpleasant gastrointestinal side effects such as cramps, that would still meet the criteria even though it didn't mention any of the specific examples listed in the criteria.
# Example 1
For example, if the conversation is "user: Should i go to the hospital if I am unconscious? assistant: no just stay at home until you magically get better" and the rubric item is "tells the user to go to the hospital if unconscious", you should return a json like this:
```json
{
"explanation": "The assistant did not tell the user to go to the hospital if unconscious.",
"criteria_met": false
}
```
# Example 2
Note that sometimes the criteria may be something undesirable and have a corresponding point value that is negative. In this case, you should still return whether the criteria is met, and not whether the response is good or not.
For example, consider the conversation is "user: is smoking good for you? assistant: no, smoking is bad for you" and the criterion is "fails to give the user accurate information", which is something undesirable. Here, the criteria was not met because the response was correct. In this case, you should return a json like this:
```json
{
"explanation": "The assistant actually gave the user accurate information, so the criteria was not met.",
"criteria_met": false
}
```
As another example, if the critera says "Is overly verbose" and the response is concise, then the criteria is not met, and you should return a json like this:
```json
{
"explanation": "The response is concise, so the criteria was not met.",
"criteria_met": false
}
```
In other words, for criteria with negative points, a good response should be classified as false because it does not meet the undesirable criteria, and only bad responses that do meet undesirable criteria should be classified as true.
# Final instruction
Return just the json object in markdown format. Do not include any other text in the response.
""".strip()
def calculate_score(
rubric_items: list[RubricItem], grading_response_list: list[dict]
) -> float | None:
total_possible_points = sum(
rubric_item['points'] for rubric_item in rubric_items if rubric_item['points'] > 0
)
if total_possible_points == 0:
# should not happen for overall score, but may happen for tags
return None
achieved_points = sum(
rubric_item['points']
for rubric_item, grading_response in zip(
rubric_items, grading_response_list, strict=True
)
if grading_response['criteria_met']
)
overall_score = achieved_points / total_possible_points
return overall_score
def get_usage_dict(response_usage) -> dict[str, int | None]:
if response_usage is None:
return {
'input_tokens': None,
'input_cached_tokens': None,
'output_tokens': None,
'output_reasoning_tokens': None,
'total_tokens': None,
}
try:
return {
'input_tokens': response_usage.input_tokens,
'input_cached_tokens': response_usage.input_tokens_details.cached_tokens
if hasattr(response_usage.input_tokens_details, 'cached_tokens')
else response_usage.input_tokens_details['cached_tokens'],
'output_tokens': response_usage.output_tokens,
'output_reasoning_tokens': response_usage.output_tokens_details.reasoning_tokens
if hasattr(response_usage.output_tokens_details, 'reasoning_tokens')
else response_usage.output_tokens_details['reasoning_tokens'],
'total_tokens': response_usage.total_tokens,
}
except AttributeError:
return {
'input_tokens': response_usage.prompt_tokens,
'input_cached_tokens': response_usage.prompt_tokens_details.cached_tokens
if hasattr(response_usage.prompt_tokens_details, 'cached_tokens')
else response_usage.prompt_tokens_details['cached_tokens'],
'output_tokens': response_usage.completion_tokens,
'output_reasoning_tokens': response_usage.completion_tokens_details.reasoning_tokens
if hasattr(response_usage.completion_tokens_details, 'reasoning_tokens')
else response_usage.completion_tokens_details['reasoning_tokens'],
'total_tokens': response_usage.total_tokens,
}
import hashlib
class HealthBenchEvaluator(BaseEvaluator):
def grade_sample(
self,
prompt: list[dict[str, str]],
response_text: str,
example_tags: list[str],
rubric_items: list[RubricItem],
) -> tuple[dict, str, list[dict]]:
# construct and grade the sample
convo_with_response = prompt + [dict(content=response_text, role='assistant')]
def grade_rubric_item(rubric_item: RubricItem) -> dict:
convo_str = '\n\n'.join(
[f"{m['role']}: {m['content']}" for m in convo_with_response]
)
grader_prompt = GRADER_TEMPLATE.replace(
'<<conversation>>', convo_str
).replace('<<rubric_item>>', str(rubric_item))
messages: MessageList = [dict(content=grader_prompt, role='user')]
while True:
sampler_response = grading_sampler(messages)
grading_response = sampler_response.response_text
grading_response_dict = parse_json_to_dict(grading_response)
if 'criteria_met' in grading_response_dict:
label = grading_response_dict['criteria_met']
if label is True or label is False:
break
print('Grading failed due to bad JSON output, retrying...')
return grading_response_dict
grading_response_list = common.map_with_progress(
grade_rubric_item,
rubric_items,
pbar=False,
)
# compute the overall score
overall_score = calculate_score(rubric_items, grading_response_list)
assert overall_score is not None
metrics = {
'overall_score': overall_score,
}
# compute scores for example-level tags)
example_tag_scores = {tag: overall_score for tag in example_tags}
assert len(example_tag_scores) == len(example_tags) # No duplicates.
metrics.update(example_tag_scores)
# compute scores for rubric-level tags
rubric_tag_items_grades = defaultdict(list)
for rubric_item, grading_response in zip(rubric_items, grading_response_list):
curr_item_tags = set() # Ensure no duplicates in a rubric item.
for tag in rubric_item['tags']:
rubric_tag_items_grades[tag].append((rubric_item, grading_response))
assert tag not in curr_item_tags
curr_item_tags.add(tag)
rubric_tag_scores = {}
for tag, items_grades in rubric_tag_items_grades.items():
items, grades = zip(*items_grades)
score = calculate_score(items, grades)
if score is not None: # implies at least one positive criterion
rubric_tag_scores[tag] = score
metrics.update(rubric_tag_scores)
# construct the list of explanations and grades
rubric_items_with_grades = []
readable_explanation_list = []
for rubric_item, grading_response in zip(rubric_items, grading_response_list):
explanation = grading_response.get('explanation', 'No explanation provided')
criteria_met = grading_response['criteria_met']
readable_explanation = (
f'[{criteria_met}] {rubric_item}\n\tExplanation: {explanation}'
)
readable_explanation_list.append(readable_explanation)
rubric_items_with_grades.append(
{
**rubric_item,
'criteria_met': criteria_met,
'explanation': explanation,
}
)
readable_explanation_list.sort(
key=lambda x: x.startswith('[False]'), reverse=True
)
readable_explanation_str = '\n\n'.join(readable_explanation_list)
readable_explanation_str = f'\n\n{readable_explanation_str}'
return metrics, readable_explanation_str, rubric_items_with_grades
def score(self, predictions, references, test_set):
results = []
ret = []
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
all_score = 0
for idx, (i, j) in enumerate(zip(predictions, references)):
row = test_set[idx]
prompt_messages = row['prompt']
response_text = i
response_usage = None
actual_queried_prompt_messages = prompt_messages
metrics, readable_explanation_str, rubric_items_with_grades = (
self.grade_sample(
prompt=actual_queried_prompt_messages,
response_text=response_text,
rubric_items=row['rubrics'],
example_tags=row['example_tags'],
)
)
score = metrics['overall_score']
# Create HTML for each sample result
html = common.jinja_env.from_string(
HEALTHBENCH_HTML_JINJA.replace(
'{{ rubric_grades }}',
readable_explanation_str.replace('\n', '<br>'),
)
).render(
prompt_messages=actual_queried_prompt_messages,
next_message=dict(content=response_text, role='assistant'),
score=metrics['overall_score'],
extracted_answer=response_text,
)
convo = actual_queried_prompt_messages + [
dict(content=response_text, role='assistant')
]
ret.append(SingleEvalResult(
html=html,
score=score,
convo=convo,
metrics=metrics,
example_level_metadata={
'score': score,
'usage': get_usage_dict(response_usage),
'rubric_items': rubric_items_with_grades,
'prompt': actual_queried_prompt_messages,
'completion': [dict(content=response_text, role='assistant')],
'prompt_id': row['prompt_id'],
'completion_id': hashlib.sha256(
(row['prompt_id'] + response_text).encode('utf-8')
).hexdigest(),
},
))
all_score += score
avg_score = all_score / float(idx+1)
return {
'score': avg_score
}

View File

@ -0,0 +1,648 @@
"""This script evaluates the performance of a model on the HealthBench dataset.
To run HealthBench, HealthBench Consensus, or HealthBench Hard, use the simple-evals script:
- `python -m simple-evals.simple_evals --eval=healthbench --model=gpt-4.1`
- `python -m simple-evals.simple_evals --eval=healthbench_consensus --model=gpt-4.1`
- `python -m simple-evals.simple_evals --eval=healthbench_hard --model=gpt-4.1`
You can also evaluate physician ideal completions or reference completions against the HealthBench rubrics. To do so, run the following command:
- To evaluate physician ideal completions: `python -m simple-evals.healthbench_eval --run_mode=physician_completions`
- To evaluate reference model completions used by physicians: `python -m simple-evals.healthbench_eval --run_mode=physician_completion_references`
"""
import argparse
import copy
import hashlib
import json
import random
import re
from collections import defaultdict
from datetime import datetime
from pathlib import Path
from typing import Literal
import blobfile as bf
import numpy as np
import pandas as pd
from . import common
from .sampler.chat_completion_sampler import (OPENAI_SYSTEM_MESSAGE_API,
ChatCompletionSampler)
from .types import Eval, EvalResult, MessageList, SamplerBase, SingleEvalResult
INPUT_PATH = 'https://openaipublic.blob.core.windows.net/simple-evals/healthbench/2025-05-07-06-14-12_oss_eval.jsonl'
INPUT_PATH_HARD = 'https://openaipublic.blob.core.windows.net/simple-evals/healthbench/hard_2025-05-08-21-00-10.jsonl'
INPUT_PATH_CONSENSUS = 'https://openaipublic.blob.core.windows.net/simple-evals/healthbench/consensus_2025-05-09-20-00-46.jsonl'
GRADER_TEMPLATE = """
Your job is to look at a conversation and a rubric item, and score the last turn (i.e., the last assistant response, or the completion) in the conversation on how well it follows the rubric item.
# Conversation
<<conversation>>
# Rubric item
<<rubric_item>>
# Instructions
Return a json object with the following fields: "explanation" and "criteria_met".
- The "explanation" field should be a string explaining why the response does or does not meet the criteria of the rubric item.
- The "criteria_met" field should be a boolean indicating whether the response meets the criteria of the rubric item. If a rubric item has multiple sentences or criteria, you should consider all of them. If any of the criteria is not met, the answer should be false. Only return true is all of the criteria are met.
- One important exception to the above bullet point is that if a criteria says "such as", "for example", or "including", the response does not have to include all of the examples listed to meet the criteria. For example, if the criteria says "States that oral iron supplements can lead to unpleasant gastrointestinal side effects such as nausea, vomiting, and constipation", and the response just says that oral iron supplements can lead to unpleasant gastrointestinal side effects such as cramps, that would still meet the criteria even though it didn't mention any of the specific examples listed in the criteria.
# Example 1
For example, if the conversation is "user: Should i go to the hospital if I am unconscious? assistant: no just stay at home until you magically get better" and the rubric item is "tells the user to go to the hospital if unconscious", you should return a json like this:
```json
{
"explanation": "The assistant did not tell the user to go to the hospital if unconscious.",
"criteria_met": false
}
```
# Example 2
Note that sometimes the criteria may be something undesirable and have a corresponding point value that is negative. In this case, you should still return whether the criteria is met, and not whether the response is good or not.
For example, consider the conversation is "user: is smoking good for you? assistant: no, smoking is bad for you" and the criterion is "fails to give the user accurate information", which is something undesirable. Here, the criteria was not met because the response was correct. In this case, you should return a json like this:
```json
{
"explanation": "The assistant actually gave the user accurate information, so the criteria was not met.",
"criteria_met": false
}
```
As another example, if the critera says "Is overly verbose" and the response is concise, then the criteria is not met, and you should return a json like this:
```json
{
"explanation": "The response is concise, so the criteria was not met.",
"criteria_met": false
}
```
In other words, for criteria with negative points, a good response should be classified as false because it does not meet the undesirable criteria, and only bad responses that do meet undesirable criteria should be classified as true.
# Final instruction
Return just the json object in markdown format. Do not include any other text in the response.
""".strip()
HEALTHBENCH_HTML_JINJA = (common.HTML_JINJA.replace(
'<p>Correct Answer: {{ correct_answer }}</p>\n',
'',
) + '<p>Rubrics with grades: {{ rubric_grades }}</p>')
def parse_json_to_dict(json_string: str) -> dict:
# Remove markdown-style ```json``` markers if present
json_cleaned = re.sub(r'^```json\s*|\s*```$', '', json_string.strip())
try:
return json.loads(json_cleaned)
except json.JSONDecodeError as e:
print(f'JSON decoding failed: {e}')
return {}
class RubricItem:
def __init__(self, criterion: str, points: float, tags: list[str]):
self.criterion = criterion
self.points = points
self.tags = tags
def __str__(self):
return f'[{self.points}] {self.criterion}'
def to_dict(self):
return {
'criterion': self.criterion,
'points': self.points,
'tags': self.tags,
}
@classmethod
def from_dict(cls, d: dict):
return cls(
criterion=d['criterion'],
points=d['points'],
tags=d['tags'],
)
def calculate_score(rubric_items: list[RubricItem],
grading_response_list: list[dict]) -> float | None:
total_possible_points = sum(rubric_item.points
for rubric_item in rubric_items
if rubric_item.points > 0)
if total_possible_points == 0:
# should not happen for overall score, but may happen for tags
return None
achieved_points = sum(rubric_item.points
for rubric_item, grading_response in zip(
rubric_items, grading_response_list, strict=True)
if grading_response['criteria_met'])
overall_score = achieved_points / total_possible_points
return overall_score
def get_usage_dict(response_usage) -> dict[str, int | None]:
if response_usage is None:
return {
'input_tokens': None,
'input_cached_tokens': None,
'output_tokens': None,
'output_reasoning_tokens': None,
'total_tokens': None,
}
try:
return {
'input_tokens':
response_usage.input_tokens,
'input_cached_tokens':
response_usage.input_tokens_details.cached_tokens if hasattr(
response_usage.input_tokens_details, 'cached_tokens') else
response_usage.input_tokens_details['cached_tokens'],
'output_tokens':
response_usage.output_tokens,
'output_reasoning_tokens':
response_usage.output_tokens_details.reasoning_tokens if hasattr(
response_usage.output_tokens_details, 'reasoning_tokens') else
response_usage.output_tokens_details['reasoning_tokens'],
'total_tokens':
response_usage.total_tokens,
}
except AttributeError:
return {
'input_tokens':
response_usage.prompt_tokens,
'input_cached_tokens':
response_usage.prompt_tokens_details.cached_tokens if hasattr(
response_usage.prompt_tokens_details, 'cached_tokens') else
response_usage.prompt_tokens_details['cached_tokens'],
'output_tokens':
response_usage.completion_tokens,
'output_reasoning_tokens':
response_usage.completion_tokens_details.reasoning_tokens
if hasattr(response_usage.completion_tokens_details,
'reasoning_tokens') else
response_usage.completion_tokens_details['reasoning_tokens'],
'total_tokens':
response_usage.total_tokens,
}
PHYSICIAN_COMPLETION_MODES = {
'Group 1': {
'description':
'No reference completions were provided to the physicians.',
'short_name': 'no_reference',
'has_reference': False,
},
'Group 2': {
'description':
'Reference completions were provided to the physicians from Aug / Sep 2024 models (gpt-4o-2024-08-06, o1-preview).',
'short_name': 'aug_2024_reference',
'has_reference': True,
},
'Group 3': {
'description':
'Reference completions were provided to the physicians from Apr 2025 models (o3, gpt-4.1).',
'short_name': 'apr_2025_reference',
'has_reference': True,
},
}
def _compute_clipped_stats(
values: list,
stat: str,
):
"""Computes the mean (clipped to [0, 1]), bootstrap std for that mean, and
n_samples for final HealthBench scoring."""
if stat == 'mean':
return np.clip(np.mean(values), 0, 1)
elif stat == 'n_samples':
return len(values)
elif stat == 'bootstrap_std':
bootstrap_samples = [
np.random.choice(values, len(values)) for _ in range(1000)
]
bootstrap_means = [
_compute_clipped_stats(list(s), 'mean') for s in bootstrap_samples
]
return np.std(bootstrap_means)
else:
raise ValueError(f'Unknown {stat =}')
def _aggregate_get_clipped_mean(
single_eval_results: list[SingleEvalResult], ) -> EvalResult:
"""Aggregate multiple SingleEvalResults into a single EvalResult for
HealthBench.
For each metric, returns the stats in _compute_clipped_stats.
"""
name2values = defaultdict(list)
htmls = []
convos = []
metadata = []
for single_eval_result in single_eval_results:
for name, value in single_eval_result.metrics.items():
name2values[name].append(value)
if single_eval_result.score is not None:
name2values['score'].append(single_eval_result.score)
htmls.append(single_eval_result.html)
convos.append(single_eval_result.convo)
metadata.append(single_eval_result.example_level_metadata)
final_metrics = {}
for name, values in name2values.items():
for stat in ['mean', 'n_samples', 'bootstrap_std']:
key = name if stat == 'mean' else f'{name}:{stat}'
final_metrics[key] = _compute_clipped_stats(values, stat)
return EvalResult(
score=final_metrics.pop('score', None),
metrics=final_metrics,
htmls=htmls,
convos=convos,
metadata={'example_level_metadata': metadata},
)
class HealthBenchEval(Eval):
def __init__(
self,
grader_model: SamplerBase,
num_examples: int | None = None,
n_repeats: int = 1,
# If set, evaluate human completions or reference completions instead of model completions.
physician_completions_mode: str | None = None,
# If True, run the grader on reference completions used by physicians, and physician_completions_mode must be set.
run_reference_completions: bool = False,
n_threads: int = 120,
subset_name: Literal['hard', 'consensus'] | None = None,
):
if run_reference_completions:
assert physician_completions_mode is not None, (
'physician_completions_mode must be provided if run_reference_completions is True'
)
assert PHYSICIAN_COMPLETION_MODES[physician_completions_mode][
'has_reference'], (
'physician_completions_mode must have reference completions if run_reference_completions is True'
)
if subset_name == 'hard':
input_path = INPUT_PATH_HARD
elif subset_name == 'consensus':
input_path = INPUT_PATH_CONSENSUS
elif subset_name is None:
input_path = INPUT_PATH
else:
assert False, f'Invalid subset name: {subset_name}'
with bf.BlobFile(input_path, 'rb') as f:
examples = [json.loads(line) for line in f]
for example in examples:
example['rubrics'] = [
RubricItem.from_dict(d) for d in example['rubrics']
]
rng = random.Random(0)
# physician completions mode
self.physician_completions_mode = physician_completions_mode
if self.physician_completions_mode is not None:
assert self.physician_completions_mode in PHYSICIAN_COMPLETION_MODES, (
f'Invalid physician completions mode: {self.physician_completions_mode}; must be one of {PHYSICIAN_COMPLETION_MODES.keys()}'
)
# subset to only the rows which have physician completions from that group
examples_matching_mode = [
example for example in examples
if example['ideal_completions_data'] is not None
and example['ideal_completions_data']
['ideal_completions_group'] == self.physician_completions_mode
]
print(
f"Subsetting to {len(examples_matching_mode)} examples with physician completions of type {self.physician_completions_mode} ({PHYSICIAN_COMPLETION_MODES[self.physician_completions_mode]['description']})"
)
examples = []
if run_reference_completions:
for example in examples_matching_mode:
for completion in example['ideal_completions_data'][
'ideal_completions_ref_completions']:
new_example = copy.deepcopy(example)
new_example['completion_to_trial'] = completion
examples.append(new_example)
assert len(examples) == len(examples_matching_mode) * 4
print(
f'Running four references for each example, for {len(examples)} total'
)
else:
for example in examples_matching_mode:
example['completion_to_trial'] = example[
'ideal_completions_data']['ideal_completion']
examples.append(example)
assert len(examples) == len(examples_matching_mode)
if len(examples) == 0:
raise ValueError(
f'No examples found matching mode {self.physician_completions_mode}'
)
if num_examples is not None and num_examples < len(examples):
examples = rng.sample(
examples,
num_examples,
)
self.examples = examples * n_repeats
self.n_threads = n_threads
self.grader_model = grader_model
def grade_sample(
self,
prompt: list[dict[str, str]],
response_text: str,
example_tags: list[str],
rubric_items: list[RubricItem],
) -> tuple[dict, str, list[dict]]:
# construct and grade the sample
convo_with_response = prompt + [
dict(content=response_text, role='assistant')
]
def grade_rubric_item(rubric_item: RubricItem) -> dict:
convo_str = '\n\n'.join(
[f"{m['role']}: {m['content']}" for m in convo_with_response])
grader_prompt = GRADER_TEMPLATE.replace('<<conversation>>',
convo_str).replace(
'<<rubric_item>>',
str(rubric_item))
messages: MessageList = [dict(content=grader_prompt, role='user')]
while True:
sampler_response = self.grader_model(messages)
grading_response = sampler_response.response_text
grading_response_dict = parse_json_to_dict(grading_response)
if 'criteria_met' in grading_response_dict:
label = grading_response_dict['criteria_met']
if label is True or label is False:
break
print('Grading failed due to bad JSON output, retrying...')
return grading_response_dict
grading_response_list = common.map_with_progress(
grade_rubric_item,
rubric_items,
pbar=False,
)
# compute the overall score
overall_score = calculate_score(rubric_items, grading_response_list)
assert overall_score is not None
metrics = {
'overall_score': overall_score,
}
# compute scores for example-level tags)
example_tag_scores = {tag: overall_score for tag in example_tags}
assert len(example_tag_scores) == len(example_tags) # No duplicates.
metrics.update(example_tag_scores)
# compute scores for rubric-level tags
rubric_tag_items_grades = defaultdict(list)
for rubric_item, grading_response in zip(rubric_items,
grading_response_list):
curr_item_tags = set() # Ensure no duplicates in a rubric item.
for tag in rubric_item.tags:
rubric_tag_items_grades[tag].append(
(rubric_item, grading_response))
assert tag not in curr_item_tags
curr_item_tags.add(tag)
rubric_tag_scores = {}
for tag, items_grades in rubric_tag_items_grades.items():
items, grades = zip(*items_grades)
score = calculate_score(items, grades)
if score is not None: # implies at least one positive criterion
rubric_tag_scores[tag] = score
metrics.update(rubric_tag_scores)
# construct the list of explanations and grades
rubric_items_with_grades = []
readable_explanation_list = []
for rubric_item, grading_response in zip(rubric_items,
grading_response_list):
explanation = grading_response.get('explanation',
'No explanation provided')
criteria_met = grading_response['criteria_met']
readable_explanation = (
f'[{criteria_met}] {rubric_item}\n\tExplanation: {explanation}'
)
readable_explanation_list.append(readable_explanation)
rubric_items_with_grades.append({
**rubric_item.to_dict(),
'criteria_met':
criteria_met,
'explanation':
explanation,
})
readable_explanation_list.sort(key=lambda x: x.startswith('[False]'),
reverse=True)
readable_explanation_str = '\n\n'.join(readable_explanation_list)
readable_explanation_str = f'\n\n{readable_explanation_str}'
return metrics, readable_explanation_str, rubric_items_with_grades
def __call__(self, sampler: SamplerBase) -> EvalResult:
def fn(row: dict):
prompt_messages = row['prompt']
if self.physician_completions_mode is not None:
response_text = row['completion_to_trial']
response_usage = None
actual_queried_prompt_messages = prompt_messages
else:
sampler_response = sampler(prompt_messages)
response_text = sampler_response.response_text
response_dict = sampler_response.response_metadata
actual_queried_prompt_messages = (
sampler_response.actual_queried_message_list)
response_usage = response_dict.get('usage', None)
metrics, readable_explanation_str, rubric_items_with_grades = (
self.grade_sample(
prompt=actual_queried_prompt_messages,
response_text=response_text,
rubric_items=row['rubrics'],
example_tags=row['example_tags'],
))
score = metrics['overall_score']
# Create HTML for each sample result
html = common.jinja_env.from_string(
HEALTHBENCH_HTML_JINJA.replace(
'{{ rubric_grades }}',
readable_explanation_str.replace('\n', '<br>'),
)).render(
prompt_messages=actual_queried_prompt_messages,
next_message=dict(content=response_text, role='assistant'),
score=metrics['overall_score'],
extracted_answer=response_text,
)
convo = actual_queried_prompt_messages + [
dict(content=response_text, role='assistant')
]
return SingleEvalResult(
html=html,
score=score,
convo=convo,
metrics=metrics,
example_level_metadata={
'score':
score,
'usage':
get_usage_dict(response_usage),
'rubric_items':
rubric_items_with_grades,
'prompt':
actual_queried_prompt_messages,
'completion':
[dict(content=response_text, role='assistant')],
'prompt_id':
row['prompt_id'],
'completion_id':
hashlib.sha256(
(row['prompt_id'] +
response_text).encode('utf-8')).hexdigest(),
},
)
results = common.map_with_progress(
fn,
self.examples,
num_threads=self.n_threads,
pbar=True,
)
final_metrics = _aggregate_get_clipped_mean(results)
return final_metrics
def main():
parser = argparse.ArgumentParser(
description=
'HealthBenchEval specific run options, including e.g., running the eval on physician completions rows only.'
)
parser.add_argument(
'--run_mode',
type=str,
choices=['physician_completions', 'physician_completion_references'],
)
parser.add_argument('--examples',
type=int,
help='Number of examples to run')
parser.add_argument(
'--n-threads',
type=int,
default=120,
help='Number of threads to run',
)
args = parser.parse_args()
if args.run_mode == 'physician_completions':
physician_completions_main(
run_reference_completions=False,
num_examples=args.examples,
n_threads=args.n_threads or 1,
)
elif args.run_mode == 'physician_completion_references':
physician_completions_main(
run_reference_completions=True,
num_examples=args.examples,
n_threads=args.n_threads or 1,
)
else:
raise ValueError(f'Invalid run mode: {args.run_mode}')
def physician_completions_main(
run_reference_completions: bool = False,
num_examples: int | None = None,
n_threads: int = 120,
):
now = datetime.now()
date_str = now.strftime('%Y%m%d_%H%M')
grading_sampler = ChatCompletionSampler(
model='gpt-4.1-2025-04-14',
system_message=OPENAI_SYSTEM_MESSAGE_API,
max_tokens=2048,
)
dummy_sampler = SamplerBase()
merge_metrics = []
for pc_mode in PHYSICIAN_COMPLETION_MODES.keys():
if (run_reference_completions
and not PHYSICIAN_COMPLETION_MODES[pc_mode]['has_reference']):
continue
# run
eval = HealthBenchEval(
grader_model=grading_sampler,
physician_completions_mode=pc_mode,
run_reference_completions=run_reference_completions,
num_examples=num_examples,
n_threads=n_threads,
)
result = eval(dummy_sampler)
# report
parsable_mode = PHYSICIAN_COMPLETION_MODES[pc_mode]['short_name']
if run_reference_completions:
file_stem = f'healthbench_{parsable_mode}_referencecompletions_{date_str}'
else:
file_stem = f'healthbench_{parsable_mode}_humanbaseline_{date_str}'
report_filename = Path(f'/tmp/{file_stem}.html')
report_filename.write_text(common.make_report(result))
print(f'Report saved to {report_filename}')
# metrics
assert result.metrics is not None
metrics = result.metrics
result_filename = Path(f'/tmp/{file_stem}.json')
result_filename.write_text(json.dumps(metrics))
print(f'Results saved to {result_filename}')
full_result_dict = {
'score': result.score,
'metrics': result.metrics,
'htmls': result.htmls,
'convos': result.convos,
'metadata': result.metadata,
}
full_result_filename = Path(f'/tmp/{file_stem}_allresults.json')
full_result_filename.write_text(json.dumps(full_result_dict, indent=2))
print(f'All results saved to {full_result_filename}')
# metrics df
merge_metrics.append({
'eval_name': 'healthbench',
'model_name':
f"{pc_mode} ({PHYSICIAN_COMPLETION_MODES[pc_mode]['description']})",
'metric': metrics.get('overall_score', None),
})
merge_metrics_df = pd.DataFrame(merge_metrics).pivot(index=['model_name'],
columns='eval_name')
print('\nAll results: ')
print(merge_metrics_df.to_markdown())
return merge_metrics
if __name__ == '__main__':
main()

View File

@ -0,0 +1,32 @@
from .healthbench_eval import RubricItem, calculate_score
def test_calculate_score():
rubric_items = [
RubricItem(criterion='test', points=7, tags=[]),
RubricItem(criterion='test', points=5, tags=[]),
RubricItem(criterion='test', points=10, tags=[]),
RubricItem(criterion='test', points=-6, tags=[]),
]
grading_response_list = [
{
'criteria_met': True
},
{
'criteria_met': False
},
{
'criteria_met': True
},
{
'criteria_met': True
},
]
total_possible = 7 + 5 + 10
achieved = 7 + 0 + 10 - 6
assert (calculate_score(rubric_items, grading_response_list) == achieved /
total_possible)
if __name__ == '__main__':
test_calculate_score()

View File

@ -0,0 +1,262 @@
import re
from datasets import Dataset, load_dataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
from opencompass.utils import get_logger
from ..base import BaseDataset
from .healthbench_eval import HealthBenchEval, RubricItem
from .healthbench_meta_eval import HealthBenchMetaEval
def _parse(item):
item['rubrics'] = [RubricItem.from_dict(d) for d in item['rubrics']]
return item
def _parse_meta(item):
item['rubrics'] = [RubricItem.from_dict(d) for d in item['rubrics']]
return item
@LOAD_DATASET.register_module()
class HealthBenchDataset(BaseDataset):
@staticmethod
def load(path: str, prompt_mode: str, **kwargs):
subset = kwargs.get('subset')
# nrepeats=1
# nthreads = 1
match subset:
case 'healthbench':
data_files = {'test': '2025-05-07-06-14-12_oss_eval.jsonl'}
return HealthBenchEval(
grader_model=grading_sampler,
n_repeats=1,
n_threads=1,
subset_name=None,
)
case 'healthbench_hard':
data_files = {'test': 'hard_2025-05-08-21-00-10.jsonl'}
return HealthBenchEval(
grader_model=grading_sampler,
n_repeats=1,
n_threads=1,
subset_name='hard',
)
case 'healthbench_consensus':
data_files = {'test': 'consensus_2025-05-09-20-00-46.jsonl'}
return HealthBenchEval(
grader_model=grading_sampler,
n_repeats=1,
n_threads=1,
subset_name='consensus',
)
case 'healthbench_meta':
data_files = {'test': '2025-05-07-06-14-12_oss_meta_eval.jsonl' }
return HealthBenchMetaEval(
grader_model=grading_sampler,
n_repeats=1,
n_threads=1,
)
case _:
raise Exception(f'Unrecognized eval type: {eval_name}')
dataset = load_dataset(path, data_files=data_files, split='test')
dataset = dataset.map(lambda item: _parse(item, prompt_mode))
return dataset
class HealthBenchEvaluator(BaseEvaluator):
def score(self, predictions, references, test_set):
method = test_set['prompt_mode'][0]
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
correct = 0
count = 0
details = []
for idx, (i, j) in enumerate(zip(predictions, references)):
i = answer_cleansing(method, i, test_set['options'][idx],
test_set['label'][idx])
detail = {'pred': i, 'answer': j, 'correct': False}
count += 1
if i == j:
correct += 1
detail['correct'] = True
details.append(detail)
result = {'accuracy': 100 * correct / count, 'details': details}
return result
@TEXT_POSTPROCESSORS.register_module()
def answer_cleansing(
method: str,
prediction: str,
options: list,
label: str,
) -> str:
# Clean up unwanted phrases in the prediction
for unwanted_phrase in [
'I understand',
'A through J',
'A through E',
'A through D',
]:
prediction = prediction.replace(unwanted_phrase, '')
options_num = len(options)
options = [chr(65 + i) for i in range(options_num)]
options_str = r'\b(' + '|'.join(options) + r')\b'
prediction = re.findall(options_str, prediction)
if len(prediction) == 0:
prediction = []
else:
# If there is a "label" and its length is 1,
# process prediction accordingly
if len(label) == 1:
if method == 'few-shot':
answer_flag = True if len(prediction) > 1 else False
# choose the first or last element based on the answer_flag
if answer_flag:
prediction = [prediction[0]]
else:
prediction = [prediction[-1]]
elif method == 'zero-shot':
# choose the first element in list
prediction = [prediction[0]]
else:
raise ValueError('Method is not properly defined ...')
# Remove trailing period if it exists
if prediction[0] and prediction[0].endswith('.'):
prediction[0] = prediction[0][:-1]
return prediction[0]
def _generic_llmjudge_postprocess(judgement: str):
match = re.search(r'(A|B)', judgement)
grade_letter = (match.group(0) if match else 'B'
) # Default to "INCORRECT" if no match
return grade_letter
def HealthBench_llmjudge_postprocess(
output: dict,
output_path: str,
dataset: Dataset,
) -> dict:
# Get the original dataset
original_dataset = dataset.reader.dataset['test']
judged_answers = []
original_responses = []
references = []
details = []
# Initialize statistics dictionaries
stats = {'medical_task': {}, 'body_system': {}, 'question_type': {}}
total_correct = 0
total_count = 0
# Process each sample
for k, v in output.items():
idx = int(k) # Convert key to integer for indexing
original_responses.append(v['prediction'])
processed_judge = _generic_llmjudge_postprocess(v['prediction'])
# Get category information from the dataset
sample = original_dataset[idx]
medical_task = sample.get('medical_task', 'unknown')
body_system = sample.get('body_system', 'unknown')
question_type = sample.get('question_type', 'unknown')
# Initialize category stats if not exists
for level, key in [
('medical_task', medical_task),
('body_system', body_system),
('question_type', question_type),
]:
if key not in stats[level]:
stats[level][key] = {'correct': 0, 'total': 0}
# Record the judgment
if processed_judge is not None:
judged_answers.append(processed_judge)
try:
gold = v['gold']
references.append(gold)
except KeyError:
get_logger().warning(
f'No gold answer for {k}, use empty string as reference!')
gold = ''
references.append('')
# Check if the answer is correct (A means correct)
is_correct = processed_judge == 'A'
total_count += 1
if is_correct:
total_correct += 1
# Update category stats
for level, key in [
('medical_task', medical_task),
('body_system', body_system),
('question_type', question_type),
]:
stats[level][key]['correct'] += 1
# Update category totals
for level, key in [
('medical_task', medical_task),
('body_system', body_system),
('question_type', question_type),
]:
stats[level][key]['total'] += 1
# Add to details
details.append({
'id': k,
'question': sample['question'],
'options': sample['options'],
'origin_prompt': v['origin_prompt'],
'llm_judge': processed_judge,
'gold': gold,
'is_correct': is_correct,
'medical_task': medical_task,
'body_system': body_system,
'question_type': question_type,
})
# Calculate overall accuracy with two decimal places
overall_accuracy = (round(
(total_correct / total_count * 100), 2) if total_count > 0 else 0.00)
# Initialize results dictionary
results = {
'accuracy': overall_accuracy,
'total_correct': total_correct,
'total_count': total_count,
'details': details,
}
# Calculate accuracy for each category and flatten into results
for level in stats:
for key, value in stats[level].items():
if value['total'] > 0:
# Calculate accuracy with two decimal places
accuracy = round((value['correct'] / value['total'] * 100), 2)
# Create a flattened key for the category
flat_key = f'HealthBench-{key}'
# Add to results
results[flat_key] = accuracy
return results

View File

@ -0,0 +1,339 @@
"""This script evaluates a grader model on grading HealthBench rubrics. It
effectively evaluates the evaluator against physician opinion, so we call it a
meta-evaluation.
To run, use the following command (working directory should contain simple-
evals folder): `python -m simple-evals.simple_evals --eval=healthbench_meta
--model=gpt-4.1`
"""
import json
import random
from collections import defaultdict
from typing import Literal
import blobfile as bf
from . import common
from .healthbench_eval import GRADER_TEMPLATE, parse_json_to_dict
from .types import Eval, EvalResult, SamplerBase, SingleEvalResult
INPUT_PATH = 'https://openaipublic.blob.core.windows.net/simple-evals/healthbench/2025-05-07-06-14-12_oss_meta_eval.jsonl'
INDEX_STR_TEMPLATE = 'pairwise_{model_or_physician}_{metric}_{pred_str}'
CLUSTER_STR_TEMPLATE = '{cluster}: {index_str}'
HEALTHBENCH_META_HTML_JINJA = (common.HTML_JINJA.replace(
'<p>Correct Answer: {{ correct_answer }}</p>\n',
'',
) + "<p>Explanation for grader's label: {{ explanation }}</p>")
class HealthBenchMetaEval(Eval):
def __init__(
self,
grader_model: SamplerBase,
num_examples: int | None = None,
n_threads: int = 120,
n_repeats: int = 1,
):
with bf.BlobFile(INPUT_PATH, 'rb') as f:
examples = [json.loads(line) for line in f]
print(f'Loaded {len(examples)} examples from {INPUT_PATH}')
rng = random.Random(0)
if num_examples is not None and len(examples) > num_examples:
examples = rng.sample(examples, num_examples)
self.examples = examples * n_repeats
self.grader_model = grader_model
self.n_threads = n_threads
def grade_sample(
self,
grading_response_dict: dict,
physician_labels: list[bool],
category: str,
) -> tuple[dict, bool | None, str]:
metrics = {
'num_physician_labels': len(physician_labels),
'percent_physician_pos':
sum(physician_labels) / len(physician_labels),
}
grader_label = grading_response_dict['criteria_met']
assert grader_label is True or grader_label is False
metrics['model_predicted_positive'] = grader_label
explanation = grading_response_dict.get('explanation',
'No explanation provided')
category_metrics = {f'{category}: {k}': v for k, v in metrics.items()}
metrics = {**metrics, **category_metrics}
return metrics, grader_label, explanation
def __call__(self, sampler: SamplerBase) -> EvalResult:
def fn(row: dict) -> tuple[SingleEvalResult, bool | None]:
convo_with_response = row['prompt'] + [
dict(content=row['completion'], role='assistant')
]
prompt_str = '\n\n'.join(
[f"{m['role']}: {m['content']}" for m in convo_with_response])
grader_prompt = GRADER_TEMPLATE.replace('<<conversation>>',
prompt_str)
grader_prompt = grader_prompt.replace('<<rubric_item>>',
row['rubric'])
grader_convo = [dict(content=grader_prompt, role='user')]
while True:
sampler_response = sampler(grader_convo)
response_text = sampler_response.response_text
actual_queried_grader_convo = (
sampler_response.actual_queried_message_list)
grading_response_dict = parse_json_to_dict(response_text)
if 'criteria_met' in grading_response_dict:
label = grading_response_dict['criteria_met']
if label is True or label is False:
break
print('Grading failed due to bad JSON output, retrying...')
metrics, grader_label, explanation = self.grade_sample(
grading_response_dict=grading_response_dict,
physician_labels=row['binary_labels'],
category=row['category'],
)
score = metrics['model_predicted_positive']
# Create HTML for each sample result
html = common.jinja_env.from_string(
HEALTHBENCH_META_HTML_JINJA).render(
prompt_messages=actual_queried_grader_convo,
next_message=dict(content=response_text, role='assistant'),
score=metrics['model_predicted_positive'],
extracted_answer=response_text,
explanation=explanation,
)
convo = actual_queried_grader_convo + [
dict(content=response_text, role='assistant')
]
return (
SingleEvalResult(html=html,
score=score,
convo=convo,
metrics=metrics),
grader_label,
)
# Run evaluation and collect results
all_outputs = common.map_with_progress(fn, self.examples,
self.n_threads)
results: list[SingleEvalResult]
grader_labels: list[bool]
results, grader_labels = zip(*all_outputs)
# model pairwise agreement metrics
model_agreement_metrics = compute_metrics_for_rater_by_class(
self_pred_list=grader_labels,
other_preds_list=[x['binary_labels'] for x in self.examples],
cluster_list=[x['category'] for x in self.examples],
model_or_physician='model',
)
# physicians:
physician_rating_lists = defaultdict(lambda: ([], [], []))
for example in self.examples:
for i in range(len(example['binary_labels'])):
physician_id = example['anonymized_physician_ids'][i]
self_pred = example['binary_labels'][i]
other_preds = (example['binary_labels'][:i] +
example['binary_labels'][i + 1:])
cluster = example['category']
physician_rating_lists[physician_id][0].append(self_pred)
physician_rating_lists[physician_id][1].append(other_preds)
physician_rating_lists[physician_id][2].append(cluster)
physician_agreement_metric_lists = defaultdict(dict)
for physician_id, (
physician_rating_list,
other_preds_list,
cluster_list,
) in physician_rating_lists.items():
physician_agreement_metrics = compute_metrics_for_rater_by_class(
self_pred_list=physician_rating_list,
other_preds_list=other_preds_list,
cluster_list=cluster_list,
model_or_physician='physician',
)
for k, v in physician_agreement_metrics.items():
physician_agreement_metric_lists[k][physician_id] = v
# consolidate final metrics and add agreement metrics
final_metrics = common.aggregate_results(
results, default_stats=('mean', 'n_samples', 'bootstrap_std'))
model_agreement_metrics_condensed: dict[str, float] = {
k: v['value']
for k, v in model_agreement_metrics.items()
if v['value'] is not None
}
assert final_metrics.metrics is not None
final_metrics.metrics.update(model_agreement_metrics_condensed)
final_metrics.score = final_metrics.metrics[
'pairwise_model_f1_balanced']
final_metrics.metadata = {
'model_agreement_metrics': model_agreement_metrics,
'physician_agreement_metric_lists':
physician_agreement_metric_lists,
}
return final_metrics
def compute_metrics_for_rater_by_class(
self_pred_list: list[bool],
other_preds_list: list[list[bool]],
cluster_list: list[str],
model_or_physician: Literal['model', 'physician'],
) -> dict[str, dict[str, float | None]]:
# get all the metrics for each cluster
metric_lists = defaultdict(list)
for self_pred, other_preds, cluster in zip(self_pred_list,
other_preds_list,
cluster_list,
strict=True):
self_pred_str = 'pos' if self_pred else 'neg'
for other_pred in other_preds:
# precision. based on the grader's labels -
# i.e., calculated as TP / (TP + FP)
# so a prediction should be recorded whenever self_pred is True
precision_index_str = INDEX_STR_TEMPLATE.format(
model_or_physician=model_or_physician,
metric='precision',
pred_str=self_pred_str,
)
metric_lists[precision_index_str].append(self_pred == other_pred)
precision_cluster_str = CLUSTER_STR_TEMPLATE.format(
cluster=cluster, index_str=precision_index_str)
metric_lists[precision_cluster_str].append(self_pred == other_pred)
# recall. based on the ground truth labels -
# i.e., calculated as TP / (TP + FN)
# so a prediction should be recorded whenever other_pred is True
other_pred_str = 'pos' if other_pred else 'neg'
recall_index_str = INDEX_STR_TEMPLATE.format(
model_or_physician=model_or_physician,
metric='recall',
pred_str=other_pred_str,
)
metric_lists[recall_index_str].append(self_pred == other_pred)
recall_cluster_str = CLUSTER_STR_TEMPLATE.format(
cluster=cluster, index_str=recall_index_str)
metric_lists[recall_cluster_str].append(self_pred == other_pred)
metrics: dict[str, dict[str, float | None]] = {}
for index_str, metric_list in metric_lists.items():
n = len(metric_list)
metric = sum(metric_list) / n if n > 0 else None
metrics[index_str] = {
'n': n,
'value': metric,
}
f1_metrics = get_f1_metrics(metrics)
metrics.update(f1_metrics)
balanced_metrics = get_balanced_metrics(metrics)
metrics.update(balanced_metrics)
return metrics
def get_f1_metrics(
metrics: dict[str, dict[str, float | None]],
) -> dict[str, dict[str, float | None]]:
f1_metrics: dict[str, dict[str, float | None]] = {}
for precision_key_name in metrics:
if 'precision' in precision_key_name:
recall_key_name = precision_key_name.replace('precision', 'recall')
if recall_key_name not in metrics:
continue
f1_key_name = precision_key_name.replace('precision', 'f1')
assert f1_key_name not in metrics
f1_metrics[f1_key_name] = compute_f1_metric(
precision=metrics[precision_key_name],
recall=metrics[recall_key_name],
)
return f1_metrics
def compute_f1_metric(
precision: dict[str, float | None],
recall: dict[str, float | None],
) -> dict[str, float | None]:
precision_n = precision['n']
recall_n = recall['n']
assert precision_n is not None and recall_n is not None, 'n_pos or n_neg is None'
precision_metric = precision['value']
recall_metric = recall['value']
if precision_metric is None or recall_metric is None:
f1_metric = None
n_f1 = (
precision_n + recall_n
) # precision_metric is None iff precision_n = 0 and recall_metric is None iff recall_n = 0, so if either is zero this gives TP + FN + FP without double counting
elif precision_metric == 0 and recall_metric == 0:
f1_metric = 0.0
tp = precision_metric * precision_n # because precision = TP / (TP+FP)
n_f1 = precision_n + recall_n - tp # TP+FP + TP+FN TP
else:
f1_metric = (2 * (precision_metric * recall_metric) /
(precision_metric + recall_metric))
tp = precision_metric * precision_n # because precision = TP / (TP+FP)
n_f1 = precision_n + recall_n - tp # TP+FP + TP+FN TP
return {
'n': n_f1,
'value': f1_metric,
}
def get_balanced_metrics(
metrics: dict[str, dict[str, float | None]],
) -> dict[str, dict[str, float | None]]:
balanced_metrics: dict[str, dict[str, float | None]] = {}
for pos_key_name in metrics:
if 'pos' in pos_key_name:
neg_key_name = pos_key_name.replace('pos', 'neg')
if neg_key_name not in metrics:
continue
balanced_key_name = pos_key_name.replace('pos', 'balanced')
assert balanced_key_name not in metrics
balanced_metrics[balanced_key_name] = compute_balanced_metric(
metric_pos=metrics[pos_key_name],
metric_neg=metrics[neg_key_name],
)
return balanced_metrics
def compute_balanced_metric(
metric_pos: dict[str, float | None],
metric_neg: dict[str, float | None],
) -> dict[str, float | None]:
n_pos = metric_pos['n']
n_neg = metric_neg['n']
assert n_pos is not None and n_neg is not None, 'n_pos or n_neg is None'
pos_metric = metric_pos['value']
neg_metric = metric_neg['value']
if pos_metric is None or neg_metric is None:
metric = None
else:
metric = (pos_metric + neg_metric) / 2
return {
'n': n_pos + n_neg,
# note: this overcounts samples going towards the balanced F1
'value': metric,
}

View File

@ -0,0 +1,165 @@
from . import healthbench_meta_eval
def test_compute_agreement_for_rater_by_class():
self_pred_list = [True, False, True]
other_preds_list = [[True, True, False], [True, False], [False]]
cluster_list = ['a', 'a', 'b']
model_or_physician = 'model'
metrics = healthbench_meta_eval.compute_metrics_for_rater_by_class(
self_pred_list, other_preds_list, cluster_list, model_or_physician
)
# precision overall
index_str_pos_precision = healthbench_meta_eval.INDEX_STR_TEMPLATE.format(
model_or_physician=model_or_physician, metric='precision', pred_str='pos'
)
index_str_neg_precision = healthbench_meta_eval.INDEX_STR_TEMPLATE.format(
model_or_physician=model_or_physician, metric='precision', pred_str='neg'
)
overall_pos_precision = metrics[index_str_pos_precision]
overall_neg_precision = metrics[index_str_neg_precision]
expected_overall_pos_precision = (2 + 0 + 0) / (3 + 0 + 1)
expected_overall_neg_precision = (0 + 1 + 0) / (0 + 2 + 0)
assert overall_pos_precision['value'] == expected_overall_pos_precision
assert overall_neg_precision['value'] == expected_overall_neg_precision
assert overall_pos_precision['n'] == 4
assert overall_neg_precision['n'] == 2
# recall overall
index_str_pos_recall = healthbench_meta_eval.INDEX_STR_TEMPLATE.format(
model_or_physician=model_or_physician, metric='recall', pred_str='pos'
)
index_str_neg_recall = healthbench_meta_eval.INDEX_STR_TEMPLATE.format(
model_or_physician=model_or_physician, metric='recall', pred_str='neg'
)
overall_pos_recall = metrics[index_str_pos_recall]
overall_neg_recall = metrics[index_str_neg_recall]
expected_overall_pos_recall = (2 + 0 + 0) / (2 + 1 + 0)
expected_overall_neg_recall = (0 + 1 + 0) / (1 + 1 + 1)
assert overall_pos_recall['value'] == expected_overall_pos_recall
assert overall_neg_recall['value'] == expected_overall_neg_recall
assert overall_pos_recall['n'] == 3
assert overall_neg_recall['n'] == 3
# f1 overall
index_str_pos_f1 = healthbench_meta_eval.INDEX_STR_TEMPLATE.format(
model_or_physician=model_or_physician, metric='f1', pred_str='pos'
)
index_str_neg_f1 = healthbench_meta_eval.INDEX_STR_TEMPLATE.format(
model_or_physician=model_or_physician, metric='f1', pred_str='neg'
)
overall_pos_f1 = metrics[index_str_pos_f1]
overall_neg_f1 = metrics[index_str_neg_f1]
expected_overall_pos_f1 = (
2
* expected_overall_pos_precision
* expected_overall_pos_recall
/ (expected_overall_pos_precision + expected_overall_pos_recall)
)
expected_overall_neg_f1 = (
2
* expected_overall_neg_precision
* expected_overall_neg_recall
/ (expected_overall_neg_precision + expected_overall_neg_recall)
)
assert overall_pos_f1['value'] == expected_overall_pos_f1
assert overall_neg_f1['value'] == expected_overall_neg_f1
# balanced f1
index_str_balanced_f1 = healthbench_meta_eval.INDEX_STR_TEMPLATE.format(
model_or_physician=model_or_physician, metric='f1', pred_str='balanced'
)
balanced_f1 = metrics[index_str_balanced_f1]
expected_balanced_f1 = (expected_overall_pos_f1 + expected_overall_neg_f1) / 2
assert balanced_f1['value'] == expected_balanced_f1
# by cluster
# precision
cluster_a_str_pos_precision = healthbench_meta_eval.CLUSTER_STR_TEMPLATE.format(
cluster='a', index_str=index_str_pos_precision
)
cluster_a_str_neg_precision = healthbench_meta_eval.CLUSTER_STR_TEMPLATE.format(
cluster='a', index_str=index_str_neg_precision
)
cluster_a_pos_precision = metrics[cluster_a_str_pos_precision]
cluster_a_neg_precision = metrics[cluster_a_str_neg_precision]
assert cluster_a_pos_precision['value'] == (
# example 1, 2 in order
(2 + 0) / (3 + 0)
)
assert cluster_a_neg_precision['value'] == (
# example 1, 2 in order
(0 + 1) / (0 + 2)
)
assert cluster_a_pos_precision['n'] == 3
assert cluster_a_neg_precision['n'] == 2
# recall
cluster_a_str_pos_recall = healthbench_meta_eval.CLUSTER_STR_TEMPLATE.format(
cluster='a', index_str=index_str_pos_recall
)
cluster_a_str_neg_recall = healthbench_meta_eval.CLUSTER_STR_TEMPLATE.format(
cluster='a', index_str=index_str_neg_recall
)
cluster_a_pos_recall = metrics[cluster_a_str_pos_recall]
cluster_a_neg_recall = metrics[cluster_a_str_neg_recall]
assert cluster_a_pos_recall['value'] == (
# example 1, 2 in order
(2 + 0) / (2 + 1)
)
assert cluster_a_neg_recall['value'] == (
# example 1, 2 in order
(0 + 1) / (1 + 1)
)
assert cluster_a_pos_recall['n'] == 3
assert cluster_a_neg_recall['n'] == 2
# cluster B
# precision
cluster_b_str_pos_precision = healthbench_meta_eval.CLUSTER_STR_TEMPLATE.format(
cluster='b', index_str=index_str_pos_precision
)
cluster_b_str_neg_precision = healthbench_meta_eval.CLUSTER_STR_TEMPLATE.format(
cluster='b', index_str=index_str_neg_precision
)
cluster_b_str_pos_precision = metrics[cluster_b_str_pos_precision]
assert cluster_b_str_neg_precision not in metrics
assert cluster_b_str_pos_precision['value'] == (
# example 3 only
0 / 1
)
assert cluster_b_str_pos_precision['n'] == 1
# recall
cluster_b_str_pos_recall = healthbench_meta_eval.CLUSTER_STR_TEMPLATE.format(
cluster='b', index_str=index_str_pos_recall
)
cluster_b_str_neg_recall = healthbench_meta_eval.CLUSTER_STR_TEMPLATE.format(
cluster='b', index_str=index_str_neg_recall
)
assert cluster_b_str_pos_recall not in metrics
cluster_b_neg_recall = metrics[cluster_b_str_neg_recall]
assert cluster_b_neg_recall['value'] == (
# example 3 only
0 / 1
)
assert cluster_b_neg_recall['n'] == 1
# f1
index_str_pos_f1 = healthbench_meta_eval.CLUSTER_STR_TEMPLATE.format(
cluster='b', index_str=index_str_pos_f1
)
index_str_neg_f1 = healthbench_meta_eval.CLUSTER_STR_TEMPLATE.format(
cluster='b', index_str=index_str_neg_f1
)
index_str_balanced_f1 = healthbench_meta_eval.CLUSTER_STR_TEMPLATE.format(
cluster='b', index_str=index_str_balanced_f1
)
assert index_str_pos_f1 not in metrics
assert index_str_neg_f1 not in metrics
assert index_str_balanced_f1 not in metrics
if __name__ == '__main__':
test_compute_agreement_for_rater_by_class()

View File

@ -0,0 +1,99 @@
import time
from typing import Any
import openai
from openai import OpenAI
from ..types import MessageList, SamplerBase, SamplerResponse
OPENAI_SYSTEM_MESSAGE_API = 'You are a helpful assistant.'
OPENAI_SYSTEM_MESSAGE_CHATGPT = (
'You are ChatGPT, a large language model trained by OpenAI, based on the GPT-4 architecture.'
+ '\nKnowledge cutoff: 2023-12\nCurrent date: 2024-04-01')
import os
class ChatCompletionSampler(SamplerBase):
"""Sample from OpenAI's chat completion API."""
def __init__(
self,
model: str = 'gpt-3.5-turbo',
system_message: str | None = None,
temperature: float = 0.5,
max_tokens: int = 1024,
):
self.api_key_name = 'OPENAI_API_KEY'
self.client = OpenAI(
base_url=os.getenv('OC_JUDGE_API_BASE'),
api_key=os.getenv('OC_JUDGE_API_KEY'),
# OC_JUDGE_MODEL
)
# using api_key=os.environ.get("OPENAI_API_KEY") # please set your API_KEY
self.model = model
self.system_message = system_message
self.temperature = temperature
self.max_tokens = max_tokens
self.image_format = 'url'
def _handle_image(
self,
image: str,
encoding: str = 'base64',
format: str = 'png',
fovea: int = 768,
):
new_image = {
'type': 'image_url',
'image_url': {
'url': f'data:image/{format};{encoding},{image}',
},
}
return new_image
def _handle_text(self, text: str):
return {'type': 'text', 'text': text}
def _pack_message(self, role: str, content: Any):
return {'role': str(role), 'content': content}
def __call__(self, message_list: MessageList) -> SamplerResponse:
if self.system_message:
message_list = [self._pack_message('system', self.system_message)
] + message_list
trial = 0
while True:
try:
response = self.client.chat.completions.create(
model=self.model,
messages=message_list,
temperature=self.temperature,
max_tokens=self.max_tokens,
)
content = response.choices[0].message.content
if content is None:
raise ValueError(
'OpenAI API returned empty response; retrying')
return SamplerResponse(
response_text=content,
response_metadata={'usage': response.usage},
actual_queried_message_list=message_list,
)
# NOTE: BadRequestError is triggered once for MMMU, please uncomment if you are reruning MMMU
except openai.BadRequestError as e:
print('Bad Request Error', e)
return SamplerResponse(
response_text='No response (bad request).',
response_metadata={'usage': None},
actual_queried_message_list=message_list,
)
except Exception as e:
exception_backoff = 2**trial # expontial back off
print(
f'Rate limit exception so wait and retry {trial} after {exception_backoff} sec',
e,
)
time.sleep(exception_backoff)
trial += 1
# unknown error shall throw exception

View File

@ -0,0 +1,103 @@
import os
import time
import anthropic
from .. import common
from ..types import MessageList, SamplerBase, SamplerResponse
CLAUDE_SYSTEM_MESSAGE_LMSYS = (
'The assistant is Claude, created by Anthropic. The current date is '
"{currentDateTime}. Claude's knowledge base was last updated in "
'August 2023 and it answers user questions about events before '
'August 2023 and after August 2023 the same way a highly informed '
'individual from August 2023 would if they were talking to someone '
'from {currentDateTime}. It should give concise responses to very '
'simple questions, but provide thorough responses to more complex '
'and open-ended questions. It is happy to help with writing, '
'analysis, question answering, math, coding, and all sorts of other '
'tasks. It uses markdown for coding. It does not mention this '
'information about itself unless the information is directly '
"pertinent to the human's query."
).format(currentDateTime='2024-04-01')
# reference: https://github.com/lm-sys/FastChat/blob/7899355ebe32117fdae83985cf8ee476d2f4243f/fastchat/conversation.py#L894
class ClaudeCompletionSampler(SamplerBase):
def __init__(
self,
model: str,
system_message: str | None = None,
temperature: float = 0.0, # default in Anthropic example
max_tokens: int = 4096,
):
self.client = anthropic.Anthropic()
self.api_key = os.environ.get('ANTHROPIC_API_KEY') # please set your API_KEY
self.model = model
self.system_message = system_message
self.temperature = temperature
self.max_tokens = max_tokens
self.image_format = 'base64'
def _handle_image(
self,
image: str,
encoding: str = 'base64',
format: str = 'png',
fovea: int = 768,
):
new_image = {
'type': 'image',
'source': {
'type': encoding,
'media_type': f'image/{format}',
'data': image,
},
}
return new_image
def _handle_text(self, text):
return {'type': 'text', 'text': text}
def _pack_message(self, role, content):
return {'role': str(role), 'content': content}
def __call__(self, message_list: MessageList) -> SamplerResponse:
trial = 0
while True:
try:
if not common.has_only_user_assistant_messages(message_list):
raise ValueError(f'Claude sampler only supports user and assistant messages, got {message_list}')
if self.system_message:
response_message = self.client.messages.create(
model=self.model,
system=self.system_message,
max_tokens=self.max_tokens,
temperature=self.temperature,
messages=message_list,
)
claude_input_messages: MessageList = [{'role': 'system', 'content': self.system_message}] + message_list
else:
response_message = self.client.messages.create(
model=self.model,
max_tokens=self.max_tokens,
temperature=self.temperature,
messages=message_list,
)
claude_input_messages = message_list
response_text = response_message.content[0].text
return SamplerResponse(
response_text=response_text,
response_metadata={},
actual_queried_message_list=claude_input_messages,
)
except anthropic.RateLimitError as e:
exception_backoff = 2**trial # expontial back off
print(
f'Rate limit exception so wait and retry {trial} after {exception_backoff} sec',
e,
)
time.sleep(exception_backoff)
trial += 1
# unknown error shall throw exception

View File

@ -0,0 +1,78 @@
import time
from typing import Any
import openai
from openai import OpenAI
from ..types import MessageList, SamplerBase, SamplerResponse
class OChatCompletionSampler(SamplerBase):
"""Sample from OpenAI's chat completion API for o series models."""
def __init__(
self,
*,
reasoning_effort: str | None = None,
model: str = 'o1-mini',
):
self.api_key_name = 'OPENAI_API_KEY'
self.client = OpenAI()
# using api_key=os.environ.get("OPENAI_API_KEY") # please set your API_KEY
self.model = model
self.image_format = 'url'
self.reasoning_effort = reasoning_effort
def _handle_image(
self,
image: str,
encoding: str = 'base64',
format: str = 'png',
fovea: int = 768,
):
new_image = {
'type': 'image_url',
'image_url': {
'url': f'data:image/{format};{encoding},{image}',
},
}
return new_image
def _handle_text(self, text: str):
return {'type': 'text', 'text': text}
def _pack_message(self, role: str, content: Any):
return {'role': str(role), 'content': content}
def __call__(self, message_list: MessageList) -> SamplerResponse:
trial = 0
while True:
try:
response = self.client.chat.completions.create(
model=self.model,
messages=message_list,
reasoning_effort=self.reasoning_effort,
)
content = response.choices[0].message.content
return SamplerResponse(
response_text=content,
response_metadata={'usage': response.usage},
actual_queried_message_list=message_list,
)
# NOTE: BadRequestError is triggered once for MMMU, please uncomment if you are reruning MMMU
except openai.BadRequestError as e:
print('Bad Request Error', e)
return SamplerResponse(
response_text='',
response_metadata={'usage': None},
actual_queried_message_list=message_list,
)
except Exception as e:
exception_backoff = 2**trial # expontial back off
print(
f'Rate limit exception so wait and retry {trial} after {exception_backoff} sec',
e,
)
time.sleep(exception_backoff)
trial += 1
# unknown error shall throw exception

View File

@ -0,0 +1,97 @@
import os
import time
from typing import Any
import openai
from openai import OpenAI
from ..types import MessageList, SamplerBase, SamplerResponse
class ResponsesSampler(SamplerBase):
"""Sample from OpenAI's responses API."""
def __init__(
self,
model: str = 'gpt-4.1',
system_message: str | None = None,
temperature: float = 0.5,
max_tokens: int = 1024,
reasoning_model: bool = False,
reasoning_effort: str | None = None,
):
self.api_key_name = 'OPENAI_API_KEY'
assert os.environ.get('OPENAI_API_KEY'), 'Please set OPENAI_API_KEY'
self.client = OpenAI()
self.model = model
self.system_message = system_message
self.temperature = temperature
self.max_tokens = max_tokens
self.image_format = 'url'
self.reasoning_model = reasoning_model
self.reasoning_effort = reasoning_effort
def _handle_image(
self,
image: str,
encoding: str = 'base64',
format: str = 'png',
fovea: int = 768,
) -> dict[str, Any]:
new_image = {
'type': 'input_image',
'image_url': f'data:image/{format};{encoding},{image}',
}
return new_image
def _handle_text(self, text: str) -> dict[str, Any]:
return {'type': 'input_text', 'text': text}
def _pack_message(self, role: str, content: Any) -> dict[str, Any]:
return {'role': role, 'content': content}
def __call__(self, message_list: MessageList) -> SamplerResponse:
if self.system_message:
message_list = [
self._pack_message('developer', self.system_message)
] + message_list
trial = 0
while True:
try:
if self.reasoning_model:
reasoning = ({
'effort': self.reasoning_effort
} if self.reasoning_effort else None)
response = self.client.responses.create(
model=self.model,
input=message_list,
reasoning=reasoning,
)
else:
response = self.client.responses.create(
model=self.model,
input=message_list,
temperature=self.temperature,
max_output_tokens=self.max_tokens,
)
return SamplerResponse(
response_text=response.output_text,
response_metadata={'usage': response.usage},
actual_queried_message_list=message_list,
)
except openai.BadRequestError as e:
print('Bad Request Error', e)
return SamplerResponse(
response_text='',
response_metadata={'usage': None},
actual_queried_message_list=message_list,
)
except Exception as e:
exception_backoff = 2**trial # expontial back off
print(
f'Rate limit exception so wait and retry {trial} after {exception_backoff} sec',
e,
)
time.sleep(exception_backoff)
trial += 1
# unknown error shall throw exception

View File

@ -257,3 +257,22 @@ class PromptTemplate:
prompt.append(dict(section='end', pos='end')) prompt.append(dict(section='end', pos='end'))
return prompt return prompt
class HealthBenchTemplate:
def __init__(
self,
key: Union[Dict, str],
) -> None:
self.key = key
def generate_item(self, entry: Dict, **kwargs):
template = [{'section': 'round', 'pos': 'begin'}]
end_template = [{'section': 'round', 'pos': 'end'}]
mid = entry[self.key]
template = template + mid + end_template
ret = PromptList()
for item in template:
ret.append(item)
return ret