[Fix] minor update wildbench (#1335)

* update crb

* update crbbench

* update crbbench

* update crbbench

* minor update wildbench

* [Fix] Update doc of wildbench, and merge wildbench into subjective

* [Fix] Update doc of wildbench, and merge wildbench into subjective, fix crbbench

* Update crb.md

* Update crb_pair_judge.py

* Update crb_single_judge.py

* Update subjective_evaluation.md

* Update openai_api.py

* [Update] update wildbench readme

* [Update] update wildbench readme

* [Update] update wildbench readme, remove crb

* Delete configs/eval_subjective_wildbench_pair.py

* Delete configs/eval_subjective_wildbench_single.py

* Update __init__.py

---------

Co-authored-by: bittersweet1999 <148421775+bittersweet1999@users.noreply.github.com>
This commit is contained in:
klein 2024-07-26 11:19:04 +08:00 committed by GitHub
parent 51a94aee01
commit 65fad8e2ac
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 43 additions and 330 deletions

View File

@ -19,12 +19,16 @@ wildbench
The wildbench.jsonl is the preprocessed dataset, and the other three are the reference, used for score.
Once you download the dataset, you have to modify the path defined in `configs/datasets/subjective/wildbench/wildbench_pair_judge.py` and `configs/datasets/subjective/wildbench/wildbench_single_judge.py`
Once you download the dataset, you have to modify the path defined in `configs/datasets/subjective/wildbench/wildbench_pair_judge.py` and `configs/datasets/subjective/wildbench/wildbench_single_judge.py`.
Note that you have to modify the given_preds in line 57-61 of `configs/datasets/subjective/wildbench/wildbench_pair_judge.py` too,
## Run
We have provide the script for wildbench in `configs/eval_subjective_wildbench_pair.py` and `configs/eval_subjective_wildbench_single.py`.
Please modify the path for `give_pred` (line 171) in `configs/eval_subjective_wildbench_pair.py` to your path.
Note that if you test the wildbench with other models, please set the max_out_lens to 4096.
## Acknowledgement
We greatly appreciate the authors of [wildbench dataset](https://github.com/allenai/WildBench). If you find it is useful in your research, please consider cite them.

View File

@ -13,7 +13,7 @@ subjective_reader_cfg = dict(
data_path ='./data/WildBench/wildbench.jsonl'
subjective_datasets = []
wildbench_datasets = []
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
@ -33,14 +33,33 @@ subjective_eval_cfg = dict(
),
pred_role='BOT',
)
gpt4 = dict(
abbr='gpt4-turbo',
)
subjective_datasets.append(
claude = dict(
abbr='HaiKu',
)
llama_2_70b = dict(
abbr='llama-2-70b-chat-hf',
)
wildbench_datasets.append(
dict(
abbr='wildbench',
type=WildBenchDataset,
path=data_path,
mode='pair',
eval_mode='pair',
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg
eval_cfg=subjective_eval_cfg,
given_pred = [{'abbr': 'gpt4-turbo', 'path':'./data/WildBench/gpt4'},
{'abbr': 'llama-2-70b-chat-hf', 'path':'./data/WildBench/llama2-70b'},
{'abbr': 'HaiKu', 'path':'./data/WildBench/claude'},
{'abbr': 'llama-2-70b-chat-turbomind', 'path':'./data/WildBench/llama2-70b'},
{'abbr': 'llama-2-70b-chat-vllm', 'path':'./data/WildBench/llama2-70b'}],
mode='m2n', # m个模型 与 n个模型进行对战
infer_order='random',
base_models = [llama_2_70b, gpt4, claude]
))

View File

@ -12,7 +12,7 @@ subjective_reader_cfg = dict(
data_path ='./data/WildBench/wildbench.jsonl'
subjective_datasets = []
wildbench_single_datasets = []
# the question is a list, how to process it
subjective_infer_cfg = dict(
@ -35,12 +35,12 @@ subjective_eval_cfg = dict(
pred_role='BOT',
)
subjective_datasets.append(
wildbench_single_datasets.append(
dict(
abbr='wildbench',
type=WildBenchDataset,
path=data_path,
mode='single',
eval_mode='single',
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg

View File

@ -7,6 +7,7 @@ with read_base():
from .datasets.subjective.arena_hard.arena_hard_compare import arenahard_datasets
from .datasets.subjective.compassbench.compassbench_compare import compassbench_datasets
from .datasets.subjective.fofo.fofo_judge import fofo_datasets
from .datasets.subjective.wildbench.wildbench_pair_judge import wildbench_datasets
from .datasets.subjective.multiround.mtbench_single_judge_diff_temp import mtbench_datasets
from .datasets.subjective.multiround.mtbench101_judge import mtbench101_datasets
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
@ -55,7 +56,9 @@ models = [
)
]
datasets = [*alignbench_datasets, *alpacav2_datasets, *arenahard_datasets, *compassarena_datasets, *compassbench_datasets, *fofo_datasets, *mtbench_datasets, *mtbench101_datasets] # add datasets you want
datasets = [*alignbench_datasets, *alpacav2_datasets, *arenahard_datasets, *compassarena_datasets, *compassbench_datasets, *fofo_datasets, *mtbench_datasets, *mtbench101_datasets, *wildbench_datasets] # add datasets you want
infer = dict(
partitioner=dict(type=NaivePartitioner),

View File

@ -1,180 +0,0 @@
from mmengine.config import read_base
with read_base():
# from .datasets.subjective.multiround.mtbench_single_judge_diff_temp import subjective_datasets
from .datasets.subjective.wildbench.wildbench_pair_judge import subjective_datasets
from .models.openai.gpt_4 import models as gpt4_models
from .models.hf_llama.hf_llama2_70b_chat import models as llama2_models
# from .models.gemma.hf_gemma_2b_it import models
# from .models.hf_llama.hf_llama3_70b_instruct import models as llama3_model
# # from .models.hf_internlm.hf_internlm2_chat_7b import models
# from .models.yi.hf_yi_1_5_34b_chat import models as yi_model
# from .models.qwen.hf_qwen1_5_72b_chat import models as qwen_model
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import WildBenchPairSummarizer
from opencompass.models.claude_api.claude_api import Claude
from opencompass.models import HuggingFacewithChatTemplate
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
api_meta_template = dict(
round=[
dict(role='SYSTEM', api_role='SYSTEM'),
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
# _meta_template = dict(
# round=[
# dict(role='HUMAN', begin='\n<|im_start|>user\n', end='<|im_end|>'),
# dict(role='BOT', begin='\n<|im_start|>assistant\n', end='<|im_end|>', generate=True),
# ],
# )
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='llama-3-8b-instruct-hf',
path='meta-llama/Meta-Llama-3-8B-Instruct',
max_out_len=4096,
batch_size=8,
run_cfg=dict(num_gpus=1),
stop_words=['<|end_of_text|>', '<|eot_id|>'],
),
dict(
type=HuggingFacewithChatTemplate,
abbr='yi-1.5-6b-chat-hf',
path='01-ai/Yi-1.5-6B-Chat',
max_out_len=4096,
batch_size=8,
run_cfg=dict(num_gpus=1),
),
dict(
type=HuggingFacewithChatTemplate,
abbr='qwen1.5-7b-chat-hf',
path='Qwen/Qwen1.5-7B-Chat',
max_out_len=4096,
batch_size=8,
run_cfg=dict(num_gpus=1),
),
# dict(
# type=HuggingFacewithChatTemplate,
# abbr='llama-3-70b-instruct-hf',
# path='meta-llama/Meta-Llama-3-70B-Instruct',
# max_out_len=4096,
# batch_size=8,
# run_cfg=dict(num_gpus=4),
# stop_words=['<|end_of_text|>', '<|eot_id|>'],
# ),
# dict(
# type=HuggingFacewithChatTemplate,
# abbr='yi-1.5-34b-chat-hf',
# path='01-ai/Yi-1.5-34B-Chat',
# max_out_len=4096,
# batch_size=8,
# run_cfg=dict(num_gpus=2),
# ),
# dict(
# type=HuggingFacewithChatTemplate,
# abbr='qwen1.5-72b-chat-hf',
# path='Qwen/Qwen1.5-72B-Chat',
# max_out_len=4096,
# batch_size=8,
# run_cfg=dict(num_gpus=8),
# )
]
datasets = [*subjective_datasets]
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
judge_models = [dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-0613', # To compare with the official leaderboard, please use gpt4-0613
key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=16,
max_out_len=2048,
max_seq_len=2048,
batch_size=8,
temperature=0,
)]
gpt4 = dict(
abbr='gpt4-turbo',
type=OpenAI,
path='gpt-4-0409-preview',
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048,
max_seq_len=4096,
batch_size=4,
retry=20,
temperature=1,
) # Re-inference gpt4's predictions or you can choose to use the pre-commited gpt4's predictions
claude = dict(abbr='HaiKu',
type=Claude,
path='claude-2',
key='YOUR_CLAUDE_KEY',
query_per_second=1,
max_out_len=2048, max_seq_len=2048, batch_size=2,
)
## single evaluation
# eval = dict(
# partitioner=dict(type=SubjectiveSizePartitioner, strategy='split', max_task_size=10000, mode='singlescore', models=models, judge_models=judge_models),
# runner=dict(type=LocalRunner, max_num_workers=32, task=dict(type=SubjectiveEvalTask)),
# )
infer = dict(
partitioner=dict(type=SizePartitioner, max_task_size=1000, strategy='split'),
runner=dict(
type=SlurmSequentialRunner,
max_num_workers=64,
quotatype='reserved',
partition='llmeval',
task=dict(type=OpenICLInferTask)),
)
eval = dict(
partitioner=dict(
type=SubjectiveNaivePartitioner,
mode='m2n', # m个模型 与 n个模型进行对战
infer_order='random',
# 在m2n模式下需要指定base_models和compare_models将会对base_models和compare_models生成对应的两两pair去重且不会与自身进行比较
base_models = [*llama2_models, gpt4, claude], # 用于对比的基线模型
compare_models = models, # 待评测模型
judge_models=judge_models
),
runner=dict(
type=LocalRunner,
# partition='llmeval',
# quotatype='auto',
max_num_workers=3,
task=dict(
type=SubjectiveEvalTask
)),
given_pred = [{'abbr':'gpt4-turbo', 'path':'./data/WildBench/gpt4'},
{'abbr': 'llama-2-70b-chat-hf', 'path':'./data/WildBench/llama2-70b'},
{'abbr': 'HaiKu', 'path':'./data/WildBench/claude'},
{'abbr': 'llama-2-70b-chat-turbomind', 'path':'./data/WildBench/llama2-70b'},
{'abbr': 'llama-2-70b-chat-vllm', 'path':'./data/WildBench/llama2-70b'}]
)
summarizer = dict(type=WildBenchPairSummarizer)
work_dir = 'outputs/wildbench/'

View File

@ -1,135 +0,0 @@
from mmengine.config import read_base
with read_base():
# from .datasets.subjective.multiround.mtbench_single_judge_diff_temp import subjective_datasets
from .datasets.subjective.wildbench.wildbench_single_judge import subjective_datasets
# from .models.gemma.hf_gemma_2b_it import models as gemma_2b_models
# from .models.hf_llama.hf_llama3_70b_instruct import models as llama3_model
# # from .models.hf_internlm.hf_internlm2_chat_7b import models
# from .models.yi.hf_yi_1_5_34b_chat import models as yi_model
# from .models.qwen.hf_qwen1_5_72b_chat import models as qwen_model
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import WildBenchSingleSummarizer
from opencompass.models import HuggingFacewithChatTemplate
# models = sum([v for k, v in locals().items() if k.endswith("_model")], [])
api_meta_template = dict(
round=[
dict(role='SYSTEM', api_role='SYSTEM'),
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
]
)
# _meta_template = dict(
# round=[
# dict(role='HUMAN', begin='\n<|im_start|>user\n', end='<|im_end|>'),
# dict(role='BOT', begin='\n<|im_start|>assistant\n', end='<|im_end|>', generate=True),
# ],
# )
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
# set max_out_len to 4096.
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='llama-3-8b-instruct-hf',
path='meta-llama/Meta-Llama-3-8B-Instruct',
max_out_len=4096,
batch_size=8,
run_cfg=dict(num_gpus=1),
stop_words=['<|end_of_text|>', '<|eot_id|>'],
),
dict(
type=HuggingFacewithChatTemplate,
abbr='yi-1.5-6b-chat-hf',
path='01-ai/Yi-1.5-6B-Chat',
max_out_len=4096,
batch_size=8,
run_cfg=dict(num_gpus=1),
),
dict(
type=HuggingFacewithChatTemplate,
abbr='qwen1.5-7b-chat-hf',
path='Qwen/Qwen1.5-7B-Chat',
max_out_len=4096,
batch_size=8,
run_cfg=dict(num_gpus=1),
),
# dict(
# type=HuggingFacewithChatTemplate,
# abbr='llama-3-70b-instruct-hf',
# path='meta-llama/Meta-Llama-3-70B-Instruct',
# max_out_len=4096,
# batch_size=8,
# run_cfg=dict(num_gpus=4),
# stop_words=['<|end_of_text|>', '<|eot_id|>'],
# ),
# dict(
# type=HuggingFacewithChatTemplate,
# abbr='yi-1.5-34b-chat-hf',
# path='01-ai/Yi-1.5-34B-Chat',
# max_out_len=4096,
# batch_size=8,
# run_cfg=dict(num_gpus=2),
# ),
# dict(
# type=HuggingFacewithChatTemplate,
# abbr='qwen1.5-72b-chat-hf',
# path='Qwen/Qwen1.5-72B-Chat',
# max_out_len=4096,
# batch_size=8,
# run_cfg=dict(num_gpus=4),
# )
]
datasets = [*subjective_datasets]
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
judge_models = [dict(
abbr='GPT4-Turbo',
type=OpenAI,
path='gpt-4-0613', # To compare with the official leaderboard, please use gpt4-0613
key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
meta_template=api_meta_template,
query_per_second=16,
max_out_len=2048,
max_seq_len=2048,
batch_size=8,
temperature=0,
)]
infer = dict(
partitioner=dict(type=SizePartitioner, max_task_size=1000, strategy='split'),
runner=dict(
type=SlurmSequentialRunner,
max_num_workers=64,
quotatype='reserved',
partition='llmeval',
task=dict(type=OpenICLInferTask)),
)
## single evaluation
eval = dict(
partitioner=dict(type=SubjectiveSizePartitioner, strategy='split', max_task_size=10000, mode='singlescore', models=models, judge_models=judge_models),
runner=dict(type=LocalRunner,
max_num_workers=2,
task=dict(type=SubjectiveEvalTask)),
)
summarizer = dict(type=WildBenchSingleSummarizer)
work_dir = 'outputs/wildbench/'

View File

@ -21,6 +21,7 @@ We support the use of GPT-4 (or other JudgeLLM) for the subjective evaluation of
4. AlpacaEvalv2 English Compare Dataset (https://github.com/tatsu-lab/alpaca_eval)
5. ArenaHard English Compare Dataset, mainly focused on coding (https://github.com/lm-sys/arena-hard/tree/main)
6. Fofo English Scoring Dataset (https://github.com/SalesforceAIResearch/FoFo/)
7. Wildbench English Score and Compare Datasethttps://github.com/allenai/WildBench
## Initiating Subjective Evaluation

View File

@ -21,6 +21,7 @@
4. AlpacaEvalv2 英文Compare数据集https://github.com/tatsu-lab/alpaca_eval
5. ArenaHard 英文Compare数据集主要面向coding(https://github.com/lm-sys/arena-hard/tree/main)
6. Fofo 英文Socring数据集https://github.com/SalesforceAIResearch/FoFo/
7. Wildbench 英文Score和Compare数据集https://github.com/allenai/WildBench
## 启动主观评测

View File

@ -209,7 +209,7 @@ def parse_conversation(conversation):
@LOAD_DATASET.register_module()
class WildBenchDataset(BaseDataset):
def load(self, path: str, K=-1, mode='pair'):
def load(self, path: str, K=-1, eval_mode='pair', *args, **kwargs):
dataset = DatasetDict()
raw_data = []
with open(path, 'r', encoding='utf-8') as file:
@ -222,13 +222,13 @@ class WildBenchDataset(BaseDataset):
for checklist_item in item['checklist']:
checklist_mardkdown += f'- {checklist_item}\n'
if mode == 'single':
if eval_mode == 'single':
prompt = score_prompt
elif mode == 'pair':
elif eval_mode == 'pair':
prompt = pair_prompt
else:
assert NotImplementedError(
f'Mode {mode} not in single or pair.')
f'Eval mode {eval_mode} not in single or pair.')
prompt = prompt.replace('{history}', history)
prompt = prompt.replace('{user_query}', last_query)