mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
[Fix] minor update wildbench (#1335)
* update crb * update crbbench * update crbbench * update crbbench * minor update wildbench * [Fix] Update doc of wildbench, and merge wildbench into subjective * [Fix] Update doc of wildbench, and merge wildbench into subjective, fix crbbench * Update crb.md * Update crb_pair_judge.py * Update crb_single_judge.py * Update subjective_evaluation.md * Update openai_api.py * [Update] update wildbench readme * [Update] update wildbench readme * [Update] update wildbench readme, remove crb * Delete configs/eval_subjective_wildbench_pair.py * Delete configs/eval_subjective_wildbench_single.py * Update __init__.py --------- Co-authored-by: bittersweet1999 <148421775+bittersweet1999@users.noreply.github.com>
This commit is contained in:
parent
51a94aee01
commit
65fad8e2ac
@ -19,12 +19,16 @@ wildbench
|
||||
|
||||
The wildbench.jsonl is the preprocessed dataset, and the other three are the reference, used for score.
|
||||
|
||||
Once you download the dataset, you have to modify the path defined in `configs/datasets/subjective/wildbench/wildbench_pair_judge.py` and `configs/datasets/subjective/wildbench/wildbench_single_judge.py`
|
||||
Once you download the dataset, you have to modify the path defined in `configs/datasets/subjective/wildbench/wildbench_pair_judge.py` and `configs/datasets/subjective/wildbench/wildbench_single_judge.py`.
|
||||
|
||||
Note that you have to modify the given_preds in line 57-61 of `configs/datasets/subjective/wildbench/wildbench_pair_judge.py` too,
|
||||
|
||||
## Run
|
||||
|
||||
We have provide the script for wildbench in `configs/eval_subjective_wildbench_pair.py` and `configs/eval_subjective_wildbench_single.py`.
|
||||
|
||||
Please modify the path for `give_pred` (line 171) in `configs/eval_subjective_wildbench_pair.py` to your path.
|
||||
|
||||
Note that if you test the wildbench with other models, please set the max_out_lens to 4096.
|
||||
|
||||
## Acknowledgement
|
||||
|
||||
We greatly appreciate the authors of [wildbench dataset](https://github.com/allenai/WildBench). If you find it is useful in your research, please consider cite them.
|
||||
|
@ -13,7 +13,7 @@ subjective_reader_cfg = dict(
|
||||
|
||||
data_path ='./data/WildBench/wildbench.jsonl'
|
||||
|
||||
subjective_datasets = []
|
||||
wildbench_datasets = []
|
||||
subjective_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
@ -33,14 +33,33 @@ subjective_eval_cfg = dict(
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
gpt4 = dict(
|
||||
abbr='gpt4-turbo',
|
||||
)
|
||||
|
||||
subjective_datasets.append(
|
||||
claude = dict(
|
||||
abbr='HaiKu',
|
||||
)
|
||||
|
||||
llama_2_70b = dict(
|
||||
abbr='llama-2-70b-chat-hf',
|
||||
)
|
||||
|
||||
wildbench_datasets.append(
|
||||
dict(
|
||||
abbr='wildbench',
|
||||
type=WildBenchDataset,
|
||||
path=data_path,
|
||||
mode='pair',
|
||||
eval_mode='pair',
|
||||
reader_cfg=subjective_reader_cfg,
|
||||
infer_cfg=subjective_infer_cfg,
|
||||
eval_cfg=subjective_eval_cfg
|
||||
eval_cfg=subjective_eval_cfg,
|
||||
given_pred = [{'abbr': 'gpt4-turbo', 'path':'./data/WildBench/gpt4'},
|
||||
{'abbr': 'llama-2-70b-chat-hf', 'path':'./data/WildBench/llama2-70b'},
|
||||
{'abbr': 'HaiKu', 'path':'./data/WildBench/claude'},
|
||||
{'abbr': 'llama-2-70b-chat-turbomind', 'path':'./data/WildBench/llama2-70b'},
|
||||
{'abbr': 'llama-2-70b-chat-vllm', 'path':'./data/WildBench/llama2-70b'}],
|
||||
mode='m2n', # m个模型 与 n个模型进行对战
|
||||
infer_order='random',
|
||||
base_models = [llama_2_70b, gpt4, claude]
|
||||
))
|
||||
|
@ -12,7 +12,7 @@ subjective_reader_cfg = dict(
|
||||
|
||||
data_path ='./data/WildBench/wildbench.jsonl'
|
||||
|
||||
subjective_datasets = []
|
||||
wildbench_single_datasets = []
|
||||
|
||||
# the question is a list, how to process it
|
||||
subjective_infer_cfg = dict(
|
||||
@ -35,12 +35,12 @@ subjective_eval_cfg = dict(
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
subjective_datasets.append(
|
||||
wildbench_single_datasets.append(
|
||||
dict(
|
||||
abbr='wildbench',
|
||||
type=WildBenchDataset,
|
||||
path=data_path,
|
||||
mode='single',
|
||||
eval_mode='single',
|
||||
reader_cfg=subjective_reader_cfg,
|
||||
infer_cfg=subjective_infer_cfg,
|
||||
eval_cfg=subjective_eval_cfg
|
||||
|
@ -7,6 +7,7 @@ with read_base():
|
||||
from .datasets.subjective.arena_hard.arena_hard_compare import arenahard_datasets
|
||||
from .datasets.subjective.compassbench.compassbench_compare import compassbench_datasets
|
||||
from .datasets.subjective.fofo.fofo_judge import fofo_datasets
|
||||
from .datasets.subjective.wildbench.wildbench_pair_judge import wildbench_datasets
|
||||
from .datasets.subjective.multiround.mtbench_single_judge_diff_temp import mtbench_datasets
|
||||
from .datasets.subjective.multiround.mtbench101_judge import mtbench101_datasets
|
||||
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
|
||||
@ -55,7 +56,9 @@ models = [
|
||||
)
|
||||
]
|
||||
|
||||
datasets = [*alignbench_datasets, *alpacav2_datasets, *arenahard_datasets, *compassarena_datasets, *compassbench_datasets, *fofo_datasets, *mtbench_datasets, *mtbench101_datasets] # add datasets you want
|
||||
|
||||
datasets = [*alignbench_datasets, *alpacav2_datasets, *arenahard_datasets, *compassarena_datasets, *compassbench_datasets, *fofo_datasets, *mtbench_datasets, *mtbench101_datasets, *wildbench_datasets] # add datasets you want
|
||||
|
||||
|
||||
infer = dict(
|
||||
partitioner=dict(type=NaivePartitioner),
|
||||
|
@ -1,180 +0,0 @@
|
||||
from mmengine.config import read_base
|
||||
|
||||
with read_base():
|
||||
# from .datasets.subjective.multiround.mtbench_single_judge_diff_temp import subjective_datasets
|
||||
from .datasets.subjective.wildbench.wildbench_pair_judge import subjective_datasets
|
||||
from .models.openai.gpt_4 import models as gpt4_models
|
||||
from .models.hf_llama.hf_llama2_70b_chat import models as llama2_models
|
||||
# from .models.gemma.hf_gemma_2b_it import models
|
||||
# from .models.hf_llama.hf_llama3_70b_instruct import models as llama3_model
|
||||
# # from .models.hf_internlm.hf_internlm2_chat_7b import models
|
||||
# from .models.yi.hf_yi_1_5_34b_chat import models as yi_model
|
||||
# from .models.qwen.hf_qwen1_5_72b_chat import models as qwen_model
|
||||
|
||||
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
|
||||
from opencompass.partitioners import NaivePartitioner, SizePartitioner
|
||||
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
|
||||
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
|
||||
from opencompass.runners import LocalRunner
|
||||
from opencompass.runners import SlurmSequentialRunner
|
||||
from opencompass.tasks import OpenICLInferTask
|
||||
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
|
||||
from opencompass.summarizers import WildBenchPairSummarizer
|
||||
from opencompass.models.claude_api.claude_api import Claude
|
||||
from opencompass.models import HuggingFacewithChatTemplate
|
||||
|
||||
|
||||
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
|
||||
|
||||
api_meta_template = dict(
|
||||
round=[
|
||||
dict(role='SYSTEM', api_role='SYSTEM'),
|
||||
dict(role='HUMAN', api_role='HUMAN'),
|
||||
dict(role='BOT', api_role='BOT', generate=True),
|
||||
]
|
||||
)
|
||||
|
||||
# _meta_template = dict(
|
||||
# round=[
|
||||
# dict(role='HUMAN', begin='\n<|im_start|>user\n', end='<|im_end|>'),
|
||||
# dict(role='BOT', begin='\n<|im_start|>assistant\n', end='<|im_end|>', generate=True),
|
||||
# ],
|
||||
# )
|
||||
# -------------Inference Stage ----------------------------------------
|
||||
# For subjective evaluation, we often set do sample for models
|
||||
|
||||
models = [
|
||||
dict(
|
||||
type=HuggingFacewithChatTemplate,
|
||||
abbr='llama-3-8b-instruct-hf',
|
||||
path='meta-llama/Meta-Llama-3-8B-Instruct',
|
||||
max_out_len=4096,
|
||||
batch_size=8,
|
||||
run_cfg=dict(num_gpus=1),
|
||||
stop_words=['<|end_of_text|>', '<|eot_id|>'],
|
||||
),
|
||||
dict(
|
||||
type=HuggingFacewithChatTemplate,
|
||||
abbr='yi-1.5-6b-chat-hf',
|
||||
path='01-ai/Yi-1.5-6B-Chat',
|
||||
max_out_len=4096,
|
||||
batch_size=8,
|
||||
run_cfg=dict(num_gpus=1),
|
||||
),
|
||||
dict(
|
||||
type=HuggingFacewithChatTemplate,
|
||||
abbr='qwen1.5-7b-chat-hf',
|
||||
path='Qwen/Qwen1.5-7B-Chat',
|
||||
max_out_len=4096,
|
||||
batch_size=8,
|
||||
run_cfg=dict(num_gpus=1),
|
||||
),
|
||||
# dict(
|
||||
# type=HuggingFacewithChatTemplate,
|
||||
# abbr='llama-3-70b-instruct-hf',
|
||||
# path='meta-llama/Meta-Llama-3-70B-Instruct',
|
||||
# max_out_len=4096,
|
||||
# batch_size=8,
|
||||
# run_cfg=dict(num_gpus=4),
|
||||
# stop_words=['<|end_of_text|>', '<|eot_id|>'],
|
||||
# ),
|
||||
# dict(
|
||||
# type=HuggingFacewithChatTemplate,
|
||||
# abbr='yi-1.5-34b-chat-hf',
|
||||
# path='01-ai/Yi-1.5-34B-Chat',
|
||||
# max_out_len=4096,
|
||||
# batch_size=8,
|
||||
# run_cfg=dict(num_gpus=2),
|
||||
# ),
|
||||
# dict(
|
||||
# type=HuggingFacewithChatTemplate,
|
||||
# abbr='qwen1.5-72b-chat-hf',
|
||||
# path='Qwen/Qwen1.5-72B-Chat',
|
||||
# max_out_len=4096,
|
||||
# batch_size=8,
|
||||
# run_cfg=dict(num_gpus=8),
|
||||
# )
|
||||
]
|
||||
|
||||
datasets = [*subjective_datasets]
|
||||
|
||||
# -------------Evalation Stage ----------------------------------------
|
||||
|
||||
## ------------- JudgeLLM Configuration
|
||||
judge_models = [dict(
|
||||
abbr='GPT4-Turbo',
|
||||
type=OpenAI,
|
||||
path='gpt-4-0613', # To compare with the official leaderboard, please use gpt4-0613
|
||||
key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
|
||||
meta_template=api_meta_template,
|
||||
query_per_second=16,
|
||||
max_out_len=2048,
|
||||
max_seq_len=2048,
|
||||
batch_size=8,
|
||||
temperature=0,
|
||||
)]
|
||||
|
||||
gpt4 = dict(
|
||||
abbr='gpt4-turbo',
|
||||
type=OpenAI,
|
||||
path='gpt-4-0409-preview',
|
||||
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
|
||||
meta_template=api_meta_template,
|
||||
query_per_second=1,
|
||||
max_out_len=2048,
|
||||
max_seq_len=4096,
|
||||
batch_size=4,
|
||||
retry=20,
|
||||
temperature=1,
|
||||
) # Re-inference gpt4's predictions or you can choose to use the pre-commited gpt4's predictions
|
||||
|
||||
claude = dict(abbr='HaiKu',
|
||||
type=Claude,
|
||||
path='claude-2',
|
||||
key='YOUR_CLAUDE_KEY',
|
||||
query_per_second=1,
|
||||
max_out_len=2048, max_seq_len=2048, batch_size=2,
|
||||
)
|
||||
## single evaluation
|
||||
# eval = dict(
|
||||
# partitioner=dict(type=SubjectiveSizePartitioner, strategy='split', max_task_size=10000, mode='singlescore', models=models, judge_models=judge_models),
|
||||
# runner=dict(type=LocalRunner, max_num_workers=32, task=dict(type=SubjectiveEvalTask)),
|
||||
# )
|
||||
infer = dict(
|
||||
partitioner=dict(type=SizePartitioner, max_task_size=1000, strategy='split'),
|
||||
runner=dict(
|
||||
type=SlurmSequentialRunner,
|
||||
max_num_workers=64,
|
||||
quotatype='reserved',
|
||||
partition='llmeval',
|
||||
task=dict(type=OpenICLInferTask)),
|
||||
)
|
||||
|
||||
eval = dict(
|
||||
partitioner=dict(
|
||||
type=SubjectiveNaivePartitioner,
|
||||
mode='m2n', # m个模型 与 n个模型进行对战
|
||||
infer_order='random',
|
||||
# 在m2n模式下,需要指定base_models和compare_models,将会对base_models和compare_models生成对应的两两pair(去重且不会与自身进行比较)
|
||||
base_models = [*llama2_models, gpt4, claude], # 用于对比的基线模型
|
||||
compare_models = models, # 待评测模型
|
||||
judge_models=judge_models
|
||||
),
|
||||
runner=dict(
|
||||
type=LocalRunner,
|
||||
# partition='llmeval',
|
||||
# quotatype='auto',
|
||||
max_num_workers=3,
|
||||
task=dict(
|
||||
type=SubjectiveEvalTask
|
||||
)),
|
||||
given_pred = [{'abbr':'gpt4-turbo', 'path':'./data/WildBench/gpt4'},
|
||||
{'abbr': 'llama-2-70b-chat-hf', 'path':'./data/WildBench/llama2-70b'},
|
||||
{'abbr': 'HaiKu', 'path':'./data/WildBench/claude'},
|
||||
{'abbr': 'llama-2-70b-chat-turbomind', 'path':'./data/WildBench/llama2-70b'},
|
||||
{'abbr': 'llama-2-70b-chat-vllm', 'path':'./data/WildBench/llama2-70b'}]
|
||||
)
|
||||
|
||||
summarizer = dict(type=WildBenchPairSummarizer)
|
||||
|
||||
work_dir = 'outputs/wildbench/'
|
@ -1,135 +0,0 @@
|
||||
from mmengine.config import read_base
|
||||
|
||||
with read_base():
|
||||
# from .datasets.subjective.multiround.mtbench_single_judge_diff_temp import subjective_datasets
|
||||
from .datasets.subjective.wildbench.wildbench_single_judge import subjective_datasets
|
||||
# from .models.gemma.hf_gemma_2b_it import models as gemma_2b_models
|
||||
# from .models.hf_llama.hf_llama3_70b_instruct import models as llama3_model
|
||||
# # from .models.hf_internlm.hf_internlm2_chat_7b import models
|
||||
# from .models.yi.hf_yi_1_5_34b_chat import models as yi_model
|
||||
# from .models.qwen.hf_qwen1_5_72b_chat import models as qwen_model
|
||||
|
||||
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
|
||||
from opencompass.partitioners import NaivePartitioner, SizePartitioner
|
||||
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
|
||||
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
|
||||
from opencompass.runners import LocalRunner
|
||||
from opencompass.runners import SlurmSequentialRunner
|
||||
from opencompass.tasks import OpenICLInferTask
|
||||
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
|
||||
from opencompass.summarizers import WildBenchSingleSummarizer
|
||||
from opencompass.models import HuggingFacewithChatTemplate
|
||||
|
||||
|
||||
# models = sum([v for k, v in locals().items() if k.endswith("_model")], [])
|
||||
|
||||
api_meta_template = dict(
|
||||
round=[
|
||||
dict(role='SYSTEM', api_role='SYSTEM'),
|
||||
dict(role='HUMAN', api_role='HUMAN'),
|
||||
dict(role='BOT', api_role='BOT', generate=True),
|
||||
]
|
||||
)
|
||||
|
||||
# _meta_template = dict(
|
||||
# round=[
|
||||
# dict(role='HUMAN', begin='\n<|im_start|>user\n', end='<|im_end|>'),
|
||||
# dict(role='BOT', begin='\n<|im_start|>assistant\n', end='<|im_end|>', generate=True),
|
||||
# ],
|
||||
# )
|
||||
# -------------Inference Stage ----------------------------------------
|
||||
# For subjective evaluation, we often set do sample for models
|
||||
# set max_out_len to 4096.
|
||||
models = [
|
||||
dict(
|
||||
type=HuggingFacewithChatTemplate,
|
||||
abbr='llama-3-8b-instruct-hf',
|
||||
path='meta-llama/Meta-Llama-3-8B-Instruct',
|
||||
max_out_len=4096,
|
||||
batch_size=8,
|
||||
run_cfg=dict(num_gpus=1),
|
||||
stop_words=['<|end_of_text|>', '<|eot_id|>'],
|
||||
),
|
||||
dict(
|
||||
type=HuggingFacewithChatTemplate,
|
||||
abbr='yi-1.5-6b-chat-hf',
|
||||
path='01-ai/Yi-1.5-6B-Chat',
|
||||
max_out_len=4096,
|
||||
batch_size=8,
|
||||
run_cfg=dict(num_gpus=1),
|
||||
),
|
||||
dict(
|
||||
type=HuggingFacewithChatTemplate,
|
||||
abbr='qwen1.5-7b-chat-hf',
|
||||
path='Qwen/Qwen1.5-7B-Chat',
|
||||
max_out_len=4096,
|
||||
batch_size=8,
|
||||
run_cfg=dict(num_gpus=1),
|
||||
),
|
||||
# dict(
|
||||
# type=HuggingFacewithChatTemplate,
|
||||
# abbr='llama-3-70b-instruct-hf',
|
||||
# path='meta-llama/Meta-Llama-3-70B-Instruct',
|
||||
# max_out_len=4096,
|
||||
# batch_size=8,
|
||||
# run_cfg=dict(num_gpus=4),
|
||||
# stop_words=['<|end_of_text|>', '<|eot_id|>'],
|
||||
# ),
|
||||
# dict(
|
||||
# type=HuggingFacewithChatTemplate,
|
||||
# abbr='yi-1.5-34b-chat-hf',
|
||||
# path='01-ai/Yi-1.5-34B-Chat',
|
||||
# max_out_len=4096,
|
||||
# batch_size=8,
|
||||
# run_cfg=dict(num_gpus=2),
|
||||
# ),
|
||||
# dict(
|
||||
# type=HuggingFacewithChatTemplate,
|
||||
# abbr='qwen1.5-72b-chat-hf',
|
||||
# path='Qwen/Qwen1.5-72B-Chat',
|
||||
# max_out_len=4096,
|
||||
# batch_size=8,
|
||||
# run_cfg=dict(num_gpus=4),
|
||||
# )
|
||||
]
|
||||
|
||||
datasets = [*subjective_datasets]
|
||||
|
||||
# -------------Evalation Stage ----------------------------------------
|
||||
|
||||
## ------------- JudgeLLM Configuration
|
||||
judge_models = [dict(
|
||||
abbr='GPT4-Turbo',
|
||||
type=OpenAI,
|
||||
path='gpt-4-0613', # To compare with the official leaderboard, please use gpt4-0613
|
||||
key='xxxx', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
|
||||
meta_template=api_meta_template,
|
||||
query_per_second=16,
|
||||
max_out_len=2048,
|
||||
max_seq_len=2048,
|
||||
batch_size=8,
|
||||
temperature=0,
|
||||
)]
|
||||
|
||||
|
||||
infer = dict(
|
||||
partitioner=dict(type=SizePartitioner, max_task_size=1000, strategy='split'),
|
||||
runner=dict(
|
||||
type=SlurmSequentialRunner,
|
||||
max_num_workers=64,
|
||||
quotatype='reserved',
|
||||
partition='llmeval',
|
||||
task=dict(type=OpenICLInferTask)),
|
||||
)
|
||||
|
||||
## single evaluation
|
||||
eval = dict(
|
||||
partitioner=dict(type=SubjectiveSizePartitioner, strategy='split', max_task_size=10000, mode='singlescore', models=models, judge_models=judge_models),
|
||||
runner=dict(type=LocalRunner,
|
||||
max_num_workers=2,
|
||||
task=dict(type=SubjectiveEvalTask)),
|
||||
)
|
||||
|
||||
summarizer = dict(type=WildBenchSingleSummarizer)
|
||||
|
||||
work_dir = 'outputs/wildbench/'
|
@ -21,6 +21,7 @@ We support the use of GPT-4 (or other JudgeLLM) for the subjective evaluation of
|
||||
4. AlpacaEvalv2 English Compare Dataset (https://github.com/tatsu-lab/alpaca_eval)
|
||||
5. ArenaHard English Compare Dataset, mainly focused on coding (https://github.com/lm-sys/arena-hard/tree/main)
|
||||
6. Fofo English Scoring Dataset (https://github.com/SalesforceAIResearch/FoFo/)
|
||||
7. Wildbench English Score and Compare Dataset(https://github.com/allenai/WildBench)
|
||||
|
||||
## Initiating Subjective Evaluation
|
||||
|
||||
|
@ -21,6 +21,7 @@
|
||||
4. AlpacaEvalv2 英文Compare数据集(https://github.com/tatsu-lab/alpaca_eval)
|
||||
5. ArenaHard 英文Compare数据集,主要面向coding(https://github.com/lm-sys/arena-hard/tree/main)
|
||||
6. Fofo 英文Socring数据集(https://github.com/SalesforceAIResearch/FoFo/)
|
||||
7. Wildbench 英文Score和Compare数据集(https://github.com/allenai/WildBench)
|
||||
|
||||
## 启动主观评测
|
||||
|
||||
|
@ -209,7 +209,7 @@ def parse_conversation(conversation):
|
||||
@LOAD_DATASET.register_module()
|
||||
class WildBenchDataset(BaseDataset):
|
||||
|
||||
def load(self, path: str, K=-1, mode='pair'):
|
||||
def load(self, path: str, K=-1, eval_mode='pair', *args, **kwargs):
|
||||
dataset = DatasetDict()
|
||||
raw_data = []
|
||||
with open(path, 'r', encoding='utf-8') as file:
|
||||
@ -222,13 +222,13 @@ class WildBenchDataset(BaseDataset):
|
||||
for checklist_item in item['checklist']:
|
||||
checklist_mardkdown += f'- {checklist_item}\n'
|
||||
|
||||
if mode == 'single':
|
||||
if eval_mode == 'single':
|
||||
prompt = score_prompt
|
||||
elif mode == 'pair':
|
||||
elif eval_mode == 'pair':
|
||||
prompt = pair_prompt
|
||||
else:
|
||||
assert NotImplementedError(
|
||||
f'Mode {mode} not in single or pair.')
|
||||
f'Eval mode {eval_mode} not in single or pair.')
|
||||
|
||||
prompt = prompt.replace('{history}', history)
|
||||
prompt = prompt.replace('{user_query}', last_query)
|
||||
|
Loading…
Reference in New Issue
Block a user