Add MedXpertQA

This commit is contained in:
Yejin0111 2025-04-03 13:44:46 +00:00
parent f982d6278e
commit 659b00acd0
4 changed files with 381 additions and 1 deletions

View File

@ -0,0 +1,57 @@
from opencompass.datasets import MedXpertQADataset, MedXpertQAEvaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
SYSTEM_PROMPT = 'You are a helpful medical assistant.\n\n' # Where to put this?
ZERO_SHOT_PROMPT = "Q: {question}\nA: Among {start} through {end}, the answer is"
# Reader configuration
reader_cfg = dict(
input_columns=[
'question',
'options',
'medical_task',
'body_system',
'question_type',
'prompt_mode',
],
output_column='label',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(role='SYSTEM', fallback_role='HUMAN', prompt=SYSTEM_PROMPT),
],
round=[
dict(
role='HUMAN',
prompt=ZERO_SHOT_PROMPT, # prompt mode: zero-shot
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(type=MedXpertQAEvaluator),
pred_role='BOT',
)
medxpertqa_dataset = dict(
type=MedXpertQADataset,
abbr='medxpertqa',
path='TsinghuaC3I/MedXpertQA',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
medxpertqa_datasets = [medxpertqa_dataset]

View File

@ -0,0 +1,104 @@
from opencompass.datasets import MedXpertQADataset, MedXpertQA_llmjudge_postprocess
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.evaluator import GenericLLMEvaluator
SYSTEM_PROMPT = 'You are a helpful medical assistant.\n\n' # Where to put this?
ZERO_SHOT_PROMPT = "Q: {question}\nA: Among {start} through {end}, the answer is"
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: Q: {question}\nA: Among {start} through {end}, the answer is\n<Original Question End>\n\n
<Gold Target Begin>: \n{label}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
# Reader configuration
reader_cfg = dict(
input_columns=[
'question',
'options',
'medical_task',
'body_system',
'question_type',
'prompt_mode',
],
output_column='label',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(role='SYSTEM', fallback_role='HUMAN', prompt=SYSTEM_PROMPT),
],
round=[
dict(
role='HUMAN',
prompt=ZERO_SHOT_PROMPT, # prompt mode: zero-shot
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=MedXpertQADataset,
path='TsinghuaC3I/MedXpertQA',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=MedXpertQA_llmjudge_postprocess),
),
)
medxpertqa_dataset = dict(
type=MedXpertQADataset,
abbr='medxpertqa',
path='TsinghuaC3I/MedXpertQA',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
medxpertqa_datasets = [medxpertqa_dataset]

View File

@ -0,0 +1,219 @@
import csv
import os
import random
import re
from datasets import Dataset, load_dataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
from opencompass.utils import get_data_path
from .base import BaseDataset
def _parse(item, prompt_mode):
item['start'] = chr(65)
item['end'] = chr(65 + len(item.get('options', [])) - 1)
item['prompt_mode'] = prompt_mode
return item
@LOAD_DATASET.register_module()
class MedXpertQADataset(BaseDataset):
@staticmethod
def load(path: str, prompt_mode: str, **kwargs):
dataset = load_dataset(path, 'Text', split='test')
# dataset = load_dataset(path, 'Text', split='dev')
if prompt_mode == 'zero-shot':
dataset = dataset.map(lambda item: _parse(item, prompt_mode))
elif prompt_mode == 'few-shot':
pass # TODO: Implement few-shot prompt
return dataset
class MedXpertQAEvaluator(BaseEvaluator):
def score(self, predictions, references, test_set):
method = test_set['prompt_mode'][0]
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
correct = 0
count = 0
details = []
for idx, (i, j) in enumerate(zip(predictions, references)):
i = answer_cleansing(method, i, test_set['options'][idx], test_set['label'][idx])
detail = {'pred': i, 'answer': j, 'correct': False}
count += 1
if i == j:
correct += 1
detail['correct'] = True
details.append(detail)
result = {'accuracy': 100 * correct / count, 'details': details}
return result
@TEXT_POSTPROCESSORS.register_module()
def answer_cleansing(
method: str,
prediction: str,
options: list,
label: str,
) -> str:
# Clean up unwanted phrases in the prediction
for unwanted_phrase in [
"I understand",
"A through J",
"A through E",
"A through D",
]:
prediction = prediction.replace(unwanted_phrase, "")
options_num = len(options)
options = [chr(65 + i) for i in range(options_num)]
options_str = r"\b(" + "|".join(options) + r")\b"
prediction = re.findall(options_str, prediction)
if len(prediction) == 0:
prediction = []
else:
# If there is a "label" and its length is 1, process prediction accordingly
if len(label) == 1:
if method == "few-shot":
answer_flag = True if len(prediction) > 1 else False
# choose the first or last element based on the answer_flag
prediction = [prediction[0]] if answer_flag else [prediction[-1]]
elif method == "zero-shot":
# choose the first element in list
prediction = [prediction[0]]
else:
raise ValueError("Method is not properly defined ...")
# Remove trailing period if it exists
if prediction[0] and prediction[0].endswith("."):
prediction[0] = prediction[0][:-1]
return prediction[0]
def _generic_llmjudge_postprocess(judgement: str):
match = re.search(r'(A|B)', judgement)
grade_letter = (match.group(0) if match else 'B'
) # Default to "INCORRECT" if no match
return grade_letter
def MedXpertQA_llmjudge_postprocess(output: dict, output_path: str, dataset: Dataset) -> dict:
# Get the original dataset
original_dataset = dataset.reader.dataset['test']
judged_answers = []
original_responses = []
references = []
details = []
# Initialize statistics dictionaries
stats = {'medical_task': {}, 'body_system': {}, 'question_type': {}}
total_correct = 0
total_count = 0
# Process each sample
for k, v in output.items():
idx = int(k) # Convert key to integer for indexing
original_responses.append(v['prediction'])
processed_judge = _generic_llmjudge_postprocess(v['prediction'])
# Get category information from the dataset
sample = original_dataset[idx]
medical_task = sample.get('medical_task', 'unknown')
body_system = sample.get('body_system', 'unknown')
question_type = sample.get('question_type', 'unknown')
# Initialize category stats if not exists
for level, key in [
('medical_task', medical_task),
('body_system', body_system),
('question_type', question_type),
]:
if key not in stats[level]:
stats[level][key] = {'correct': 0, 'total': 0}
# Record the judgment
if processed_judge is not None:
judged_answers.append(processed_judge)
try:
gold = v['gold']
references.append(gold)
except KeyError:
get_logger().warning(
f'No gold answer for {k}, use empty string as reference!')
gold = ''
references.append('')
# Check if the answer is correct (A means correct)
is_correct = processed_judge == 'A'
total_count += 1
if is_correct:
total_correct += 1
# Update category stats
for level, key in [
('medical_task', medical_task),
('body_system', body_system),
('question_type', question_type),
]:
stats[level][key]['correct'] += 1
# Update category totals
for level, key in [
('medical_task', medical_task),
('body_system', body_system),
('question_type', question_type),
]:
stats[level][key]['total'] += 1
# Add to details
details.append({
'id': k,
'question': sample['question'],
'options': sample['options'],
'origin_prompt': v['origin_prompt'],
'llm_judge': processed_judge,
'gold': gold,
'is_correct': is_correct,
'medical_task': medical_task,
'body_system': body_system,
'question_type': question_type,
})
# Calculate overall accuracy with two decimal places
overall_accuracy = (round(
(total_correct / total_count * 100), 2) if total_count > 0 else 0.00)
# Initialize results dictionary
results = {
'accuracy': overall_accuracy,
'total_correct': total_correct,
'total_count': total_count,
'details': details,
}
# Calculate accuracy for each category and flatten into results
for level in stats:
for key, value in stats[level].items():
if value['total'] > 0:
# Calculate accuracy with two decimal places
accuracy = round((value['correct'] / value['total'] * 100), 2)
# Create a flattened key for the category
flat_key = f'MedXpertQA-{key}'
# Add to results
results[flat_key] = accuracy
return results

View File

@ -92,6 +92,7 @@ from .math_intern import * # noqa: F401, F403
from .mathbench import * # noqa: F401, F403
from .mbpp import * # noqa: F401, F403
from .medbench import * # noqa: F401, F403
from .MedXpertQA import * # noqa: F401, F403
from .mgsm import * # noqa: F401, F403
from .mmlu import * # noqa: F401, F403
from .mmlu_cf import * # noqa: F401, F403
@ -106,7 +107,6 @@ from .natural_question import * # noqa: F401, F403
from .natural_question_cn import * # noqa: F401, F403
from .NPHardEval import * # noqa: F401, F403
from .obqa import * # noqa: F401, F403
from .olymmath import * # noqa: F401, F403
from .OlympiadBench import * # noqa: F401, F403
from .OpenFinData import * # noqa: F401, F403
from .piqa import * # noqa: F401, F403