mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
[Feature] Add Claude support (#253)
* [Feature] Add Claude support * [Feature] Add Claude support * Update opencompass/models/claude_api.py Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com> * raise import erorr --------- Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com>
This commit is contained in:
parent
343f785b07
commit
60c2d3d76b
28
configs/eval_claude2.py
Normal file
28
configs/eval_claude2.py
Normal file
@ -0,0 +1,28 @@
|
||||
from mmengine.config import read_base
|
||||
from opencompass.models.claude_api import Claude
|
||||
from opencompass.partitioners import NaivePartitioner
|
||||
from opencompass.runners import LocalRunner
|
||||
from opencompass.tasks import OpenICLInferTask
|
||||
|
||||
with read_base():
|
||||
# choose a list of datasets
|
||||
from .datasets.collections.chat_medium import datasets
|
||||
# and output the results in a choosen format
|
||||
from .summarizers.medium import summarizer
|
||||
|
||||
models = [
|
||||
dict(abbr='Claude2',
|
||||
type=Claude,
|
||||
path='claude-2',
|
||||
key='YOUR_CLAUDE_KEY',
|
||||
query_per_second=1,
|
||||
max_out_len=2048, max_seq_len=2048, batch_size=2),
|
||||
]
|
||||
|
||||
infer = dict(
|
||||
partitioner=dict(type=NaivePartitioner),
|
||||
runner=dict(
|
||||
type=LocalRunner,
|
||||
max_num_workers=8,
|
||||
task=dict(type=OpenICLInferTask)),
|
||||
)
|
118
opencompass/models/claude_api.py
Normal file
118
opencompass/models/claude_api.py
Normal file
@ -0,0 +1,118 @@
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
from opencompass.registry import MODELS
|
||||
from opencompass.utils import PromptList
|
||||
|
||||
from .base_api import BaseAPIModel
|
||||
|
||||
PromptType = Union[PromptList, str]
|
||||
|
||||
|
||||
@MODELS.register_module()
|
||||
class Claude(BaseAPIModel):
|
||||
"""Model wrapper around Claude API.
|
||||
|
||||
Args:
|
||||
key (str): Authorization key.
|
||||
path (str): The model to be used. Defaults to claude-2.
|
||||
query_per_second (int): The maximum queries allowed per second
|
||||
between two consecutive calls of the API. Defaults to 1.
|
||||
max_seq_len (int): Unused here.
|
||||
meta_template (Dict, optional): The model's meta prompt
|
||||
template if needed, in case the requirement of injecting or
|
||||
wrapping of any meta instructions.
|
||||
retry (int): Number of retires if the API call fails. Defaults to 2.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
key: str,
|
||||
path: str = 'claude-2',
|
||||
query_per_second: int = 2,
|
||||
max_seq_len: int = 2048,
|
||||
meta_template: Optional[Dict] = None,
|
||||
retry: int = 2,
|
||||
):
|
||||
super().__init__(path=path,
|
||||
max_seq_len=max_seq_len,
|
||||
query_per_second=query_per_second,
|
||||
meta_template=meta_template,
|
||||
retry=retry)
|
||||
try:
|
||||
from anthropic import AI_PROMPT, HUMAN_PROMPT, Anthropic
|
||||
except ImportError:
|
||||
raise ImportError('Import anthropic failed. Please install it '
|
||||
'with "pip install anthropic" and try again.')
|
||||
|
||||
self.anthropic = Anthropic(api_key=key)
|
||||
self.model = path
|
||||
self.human_prompt = HUMAN_PROMPT
|
||||
self.ai_prompt = AI_PROMPT
|
||||
|
||||
def generate(
|
||||
self,
|
||||
inputs: List[str or PromptList],
|
||||
max_out_len: int = 512,
|
||||
) -> List[str]:
|
||||
"""Generate results given a list of inputs.
|
||||
|
||||
Args:
|
||||
inputs (List[str or PromptList]): A list of strings or PromptDicts.
|
||||
The PromptDict should be organized in OpenCompass'
|
||||
API format.
|
||||
max_out_len (int): The maximum length of the output.
|
||||
|
||||
Returns:
|
||||
List[str]: A list of generated strings.
|
||||
"""
|
||||
with ThreadPoolExecutor() as executor:
|
||||
results = list(
|
||||
executor.map(self._generate, inputs,
|
||||
[max_out_len] * len(inputs)))
|
||||
return results
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
input: str or PromptList,
|
||||
max_out_len: int = 512,
|
||||
) -> str:
|
||||
"""Generate results given an input.
|
||||
|
||||
Args:
|
||||
inputs (str or PromptList): A string or PromptDict.
|
||||
The PromptDict should be organized in OpenCompass'
|
||||
API format.
|
||||
max_out_len (int): The maximum length of the output.
|
||||
|
||||
Returns:
|
||||
str: The generated string.
|
||||
"""
|
||||
assert isinstance(input, (str, PromptList))
|
||||
|
||||
if isinstance(input, str):
|
||||
messages = f'{self.human_prompt} {input}{self.ai_prompt}'
|
||||
else:
|
||||
messages = ''
|
||||
for item in input:
|
||||
if item['role'] == 'HUMAN' or item['role'] == 'SYSTEM':
|
||||
messages += f'{self.human_prompt} {item["prompt"]}'
|
||||
elif item['role'] == 'BOT':
|
||||
messages += f'{self.ai_prompt} {item["prompt"]}'
|
||||
if not messages.endswith(self.ai_prompt):
|
||||
messages += self.ai_prompt
|
||||
|
||||
num_retries = 0
|
||||
while num_retries < self.retry:
|
||||
self.wait()
|
||||
try:
|
||||
completion = self.anthropic.completions.create(
|
||||
model=self.model,
|
||||
max_tokens_to_sample=max_out_len,
|
||||
prompt=messages)
|
||||
return completion.completion
|
||||
except Exception as e:
|
||||
self.logger.error(e)
|
||||
num_retries += 1
|
||||
raise RuntimeError('Calling Claude API failed after retrying for '
|
||||
f'{self.retry} times. Check the logs for details.')
|
Loading…
Reference in New Issue
Block a user