mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
[Feature] Add Claude support (#253)
* [Feature] Add Claude support * [Feature] Add Claude support * Update opencompass/models/claude_api.py Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com> * raise import erorr --------- Co-authored-by: Hubert <42952108+yingfhu@users.noreply.github.com>
This commit is contained in:
parent
343f785b07
commit
60c2d3d76b
28
configs/eval_claude2.py
Normal file
28
configs/eval_claude2.py
Normal file
@ -0,0 +1,28 @@
|
|||||||
|
from mmengine.config import read_base
|
||||||
|
from opencompass.models.claude_api import Claude
|
||||||
|
from opencompass.partitioners import NaivePartitioner
|
||||||
|
from opencompass.runners import LocalRunner
|
||||||
|
from opencompass.tasks import OpenICLInferTask
|
||||||
|
|
||||||
|
with read_base():
|
||||||
|
# choose a list of datasets
|
||||||
|
from .datasets.collections.chat_medium import datasets
|
||||||
|
# and output the results in a choosen format
|
||||||
|
from .summarizers.medium import summarizer
|
||||||
|
|
||||||
|
models = [
|
||||||
|
dict(abbr='Claude2',
|
||||||
|
type=Claude,
|
||||||
|
path='claude-2',
|
||||||
|
key='YOUR_CLAUDE_KEY',
|
||||||
|
query_per_second=1,
|
||||||
|
max_out_len=2048, max_seq_len=2048, batch_size=2),
|
||||||
|
]
|
||||||
|
|
||||||
|
infer = dict(
|
||||||
|
partitioner=dict(type=NaivePartitioner),
|
||||||
|
runner=dict(
|
||||||
|
type=LocalRunner,
|
||||||
|
max_num_workers=8,
|
||||||
|
task=dict(type=OpenICLInferTask)),
|
||||||
|
)
|
118
opencompass/models/claude_api.py
Normal file
118
opencompass/models/claude_api.py
Normal file
@ -0,0 +1,118 @@
|
|||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
from typing import Dict, List, Optional, Union
|
||||||
|
|
||||||
|
from opencompass.registry import MODELS
|
||||||
|
from opencompass.utils import PromptList
|
||||||
|
|
||||||
|
from .base_api import BaseAPIModel
|
||||||
|
|
||||||
|
PromptType = Union[PromptList, str]
|
||||||
|
|
||||||
|
|
||||||
|
@MODELS.register_module()
|
||||||
|
class Claude(BaseAPIModel):
|
||||||
|
"""Model wrapper around Claude API.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
key (str): Authorization key.
|
||||||
|
path (str): The model to be used. Defaults to claude-2.
|
||||||
|
query_per_second (int): The maximum queries allowed per second
|
||||||
|
between two consecutive calls of the API. Defaults to 1.
|
||||||
|
max_seq_len (int): Unused here.
|
||||||
|
meta_template (Dict, optional): The model's meta prompt
|
||||||
|
template if needed, in case the requirement of injecting or
|
||||||
|
wrapping of any meta instructions.
|
||||||
|
retry (int): Number of retires if the API call fails. Defaults to 2.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
key: str,
|
||||||
|
path: str = 'claude-2',
|
||||||
|
query_per_second: int = 2,
|
||||||
|
max_seq_len: int = 2048,
|
||||||
|
meta_template: Optional[Dict] = None,
|
||||||
|
retry: int = 2,
|
||||||
|
):
|
||||||
|
super().__init__(path=path,
|
||||||
|
max_seq_len=max_seq_len,
|
||||||
|
query_per_second=query_per_second,
|
||||||
|
meta_template=meta_template,
|
||||||
|
retry=retry)
|
||||||
|
try:
|
||||||
|
from anthropic import AI_PROMPT, HUMAN_PROMPT, Anthropic
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError('Import anthropic failed. Please install it '
|
||||||
|
'with "pip install anthropic" and try again.')
|
||||||
|
|
||||||
|
self.anthropic = Anthropic(api_key=key)
|
||||||
|
self.model = path
|
||||||
|
self.human_prompt = HUMAN_PROMPT
|
||||||
|
self.ai_prompt = AI_PROMPT
|
||||||
|
|
||||||
|
def generate(
|
||||||
|
self,
|
||||||
|
inputs: List[str or PromptList],
|
||||||
|
max_out_len: int = 512,
|
||||||
|
) -> List[str]:
|
||||||
|
"""Generate results given a list of inputs.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
inputs (List[str or PromptList]): A list of strings or PromptDicts.
|
||||||
|
The PromptDict should be organized in OpenCompass'
|
||||||
|
API format.
|
||||||
|
max_out_len (int): The maximum length of the output.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List[str]: A list of generated strings.
|
||||||
|
"""
|
||||||
|
with ThreadPoolExecutor() as executor:
|
||||||
|
results = list(
|
||||||
|
executor.map(self._generate, inputs,
|
||||||
|
[max_out_len] * len(inputs)))
|
||||||
|
return results
|
||||||
|
|
||||||
|
def _generate(
|
||||||
|
self,
|
||||||
|
input: str or PromptList,
|
||||||
|
max_out_len: int = 512,
|
||||||
|
) -> str:
|
||||||
|
"""Generate results given an input.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
inputs (str or PromptList): A string or PromptDict.
|
||||||
|
The PromptDict should be organized in OpenCompass'
|
||||||
|
API format.
|
||||||
|
max_out_len (int): The maximum length of the output.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The generated string.
|
||||||
|
"""
|
||||||
|
assert isinstance(input, (str, PromptList))
|
||||||
|
|
||||||
|
if isinstance(input, str):
|
||||||
|
messages = f'{self.human_prompt} {input}{self.ai_prompt}'
|
||||||
|
else:
|
||||||
|
messages = ''
|
||||||
|
for item in input:
|
||||||
|
if item['role'] == 'HUMAN' or item['role'] == 'SYSTEM':
|
||||||
|
messages += f'{self.human_prompt} {item["prompt"]}'
|
||||||
|
elif item['role'] == 'BOT':
|
||||||
|
messages += f'{self.ai_prompt} {item["prompt"]}'
|
||||||
|
if not messages.endswith(self.ai_prompt):
|
||||||
|
messages += self.ai_prompt
|
||||||
|
|
||||||
|
num_retries = 0
|
||||||
|
while num_retries < self.retry:
|
||||||
|
self.wait()
|
||||||
|
try:
|
||||||
|
completion = self.anthropic.completions.create(
|
||||||
|
model=self.model,
|
||||||
|
max_tokens_to_sample=max_out_len,
|
||||||
|
prompt=messages)
|
||||||
|
return completion.completion
|
||||||
|
except Exception as e:
|
||||||
|
self.logger.error(e)
|
||||||
|
num_retries += 1
|
||||||
|
raise RuntimeError('Calling Claude API failed after retrying for '
|
||||||
|
f'{self.retry} times. Check the logs for details.')
|
Loading…
Reference in New Issue
Block a user