[Feature] Add GaoKaoMath Dataset for Evaluation & MATH Model Eval Config (#1589)

* Add GaoKaoMath Dataset

* Add MATH LLM Eval

* Update GAOKAO Math Eval Dataset

* Update GAOKAO Math Eval Dataset
This commit is contained in:
liushz 2024-10-12 19:13:06 +08:00 committed by GitHub
parent 69997f11f8
commit 5faee929db
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 622 additions and 4 deletions

View File

@ -0,0 +1,108 @@
# GaoKao MATH Answer Evaluation Dataset
A dataset for testing the performance of the model in the GaoKao MATH Answer Extraction task.
Now support the following format of GAOKAO math questions:
1. '单选题'Single choice question
2. '多选题'Multiple choice question
3. '填空题'Fill in the blank question, can be multiple blanks
4. '解答题'Answer question, can be multiple answers
Sample data:
```json
[
{
"id": "3b270bc4-570a-4d77-b122-a2fc372f7d6a",
"question": "过椭圆${x^2\\over {16}} +{ y^2 \\over {4}}=1$ %内一点$M(2,1)$ %引一条弦,使该弦被点$M$ %平分,则这条弦所在直线的方程为( \nA. $x+2y-4=0$ %\nB. $x-2y-4=0$ %\nC. $x+2y+4=0$ %\nD. $x-2y+4=0$ %\n\n",
"response": "本题主要考查直线与圆锥曲线.设所求直线与椭圆的一个交点为$A(x,y)$ %,由于中点$M(2,1)$ %,所以另一个交点$B$ %为$(4-x,2-y)$ %.因为$A$ %$B$ %两点都在椭圆上,所以$x^2+4y^2=16$ %$(4-x)^2+4(2-y)^2=16$ %,两式相减,整理可得$x+2y-4=0$ %.由于过$A$ %$B$ %两点的直线只有一条,所以这条弦所在直线的方程为$x+2y-4=0$ %故本题正确答案为A\n答案是A",
"extract_answer": "A",
"question_type": "单选题"
},
{
"id": "d60e42d7-30ee-44f9-a94d-aff6a8127750",
"question": "若函数$f(x)$ 具有下列性质1.定义域为$(-1,1)$ 2.对于任意的$x,y\\in(-1,1)$ ,都有$f(x)+f(y)=f\\left({\\dfrac{x+y}{1+xy}}\\right)$ 3.当$-1< x< 0$ $f(x)>0$ ,则称函数$f(x)$ 为$δ$ 的函数$.$ 若函数$f(x)$ 为$δ$ 的函数,则以下结论正确的是$(\\quad)$\nA. $\nB. x)$ 为奇函数\nC. $\nD. x)$ 为偶函数\nE. $\nF. x)$ 为单调递减函数\nG. $\nH. x)$ 为单调递增函数\n\n",
"response": "函数$f(x)$ 为$δ$ 的函数,令$x=y=0$ ,则$f(0)+f(0)=f(0)$ ,即$f(0)=0$ ,令$y=-x$ ,则$f(x)+f(-x)=f\\left(\\dfrac{x-x}{1-{x}^{2}}\\right)=f(0)=0$ ,则$f(-x)=-f(x)$ ,即函数$f(x)$ 是奇函数,设$-1< x< y< 1$ $f(x)-f(y)=f(x)+f(-y)=f\\left(\\dfrac{x-y}{1-xy}\\right)$ $∵-1< x< y< 1$ $∴-1< \\dfrac{x-y}{1-xy}< 0$ $f\\left(\\dfrac{x-y}{1-xy}\\right)>0$ ,即$f(x)-f(y)>0$ ,则$f(x)>f(y)$ ,即$f(x)$ 在$(-1,1)$ 上是减函数.故选$AC.$ 本题考查函数的奇偶性和单调性的判断,注意运用定义法,考查运算能力和推理能力,属于中档题.可令$x=y=0$ ,求得$f(0)=0$ ,再令$y=-x$ 可得$f(-x)=-f(x)$ ,可得$f(x)$ 的奇偶性;再令$-1< x< y< 1$ 运用单调性的定义结合其偶性的定义可得其单调性\n答案是A; C",
"extract_answer": "A, C",
"question_type": "多选题"
},
{
"id": "31b3f702-e60c-4a20-9a40-73bd72b92d1e",
"question": "请完成以下题目(1)曲线$$y=-5\\text{e}^{x}+3$$在点$$(0,-2)$$处的切线方程为___.(2)若曲线$$f(x)=x \\sin x+1$$在$$x=\\dfrac{ \\pi }{2}$$处的切线与直线$$ax+2y+1=0$$相互垂直,则实数$$a=$$___.\n\n",
"response": "(1)由$$y=-5\\text{e}^{x}+3$$,得$$y'=-5\\text{e}^{x}$$,所以切线的斜率$$k=y'|_{x=0}=-5$$,所以切线方程为$$y+2=-5(x-0)$$,即$$5x+y+2=0$$.(2)因为$$f'(x)= \\sin x+x \\cos x$$,所以$$f'\\left(\\dfrac{ \\pi }{2}\\right)= \\sin \\dfrac{ \\pi }{2}+\\dfrac{ \\pi }{2}\\cdot \\cos \\dfrac{ \\pi }{2}=1$$.又直线$$ax+2y+1=0$$的斜率为$$-\\dfrac{a}{2}$$,所以根据题意得$$1\\times \\left(-\\dfrac{a}{2}\\right)=-1$$,解得$$a=2$$.\n答案是(1)$$5x+y+2=0$$ (2)$$2$$",
"extract_answer": "['(1)$$5x+y+2=0$$ (2)$$2$$']",
"question_type": "填空题"
},
{
"id": "16878941-1772-4290-bc61-00b193d5cf70",
"question": "已知函数$f\\left( x \\right)=\\left| 2x-1 \\right|$.1若不等式$f\\left( x+\\frac{1}{2} \\right)\\ge 2m+1\\left( m > 0 \\right)$的解集为$\\left( -\\infty ,-2 \\right]\\bigcup \\left[ 2,+\\infty \\right)$,求实数$m$的值2若不等式$f\\left( x \\right)\\le {{2}^{y}}+\\frac{a}{{{2}^{y}}}+\\left| 2x+3 \\right|$对任意的实数$x,y\\in R$恒成立,求实数$a$的最小值.\n\n",
"response": "1直接写出不等式解含有绝对值的函数不等式即可2这是恒成立求参的问题,根据绝对值三角不等式得到左侧函数的最值,再结合均值不等式得最值.1由条件得$\\left| 2x \\right|\\le 2m+1$得$-m-\\frac{1}{2}\\le x\\le m+\\frac{1}{2}$,所以$m=\\frac{3}{2}$.2原不等式等价于$\\left| 2x-1 \\right|-\\left| 2x+3 \\right|\\le {{2}^{y}}+\\frac{a}{{{2}^{y}}}$,而$\\left| 2x-1 \\right|-\\left| 2x+3 \\right|\\le \\left| \\left( 2x-1 \\right)-\\left( 2x+3 \\right) \\right|=4$,所以${{2}^{y}}+\\frac{a}{{{2}^{y}}}\\ge 4$,则$a\\ge {{\\left[ {{2}^{y}}\\left( 4-{{2}^{y}} \\right) \\right]}_{\\text{max}}}=4$,当且仅当$y=1$时取得.\n答案是(1) $m=\\frac{3}{2}$(2) 最小值为$a=4$.",
"extract_answer": [
"(1) $m=\\frac{3}{2}$(2) 最小值为$a=4$."
],
"question_type": "解答题"
}
]
```
## How to use
### 1. Prepare the dataset
```bash
cd opencompass
cp -rf /cpfs01/shared/public/liuhongwei/data/gaokao_math_dataset/gaokao_math ./data
```
📢If you want to evaluate your own gaokao math data, replace the `test_v2.jsonl` with your own data, but follow the format above.
### 2. Set the evaluation model
open `opencompass.datasets.gaokao_math.gaokao_math_gen_9b076f` and set the model name and api url for evaluation, multiple urls are supported for acceleration.
```python
...
gaokao_math_eval_cfg = dict(
evaluator=dict(type=GaoKaoMATHEvaluator, model_name='EVALUATE_MODEL_NAME', url=['http://0.0.0.0:23333/v1', 'http://...']))
...
```
We recommand `Qwen2.5-72B-Instruct` model for evaluation.
### 3. Set Extractor model and run the evaluation
```python
from mmengine.config import read_base
from opencompass.models import HuggingFacewithChatTemplate
with read_base():
from opencompass.datasets.gaokao_math.gaokao_math_gen_9b076f import gaokao_math_datasets
trained_qwen2_1_5b_model = [ # trained extractor model
dict(
type=HuggingFacewithChatTemplate,
abbr='gaokao_math_extractor_1_5b_v02',
path='/cpfs01/shared/public/liuhongwei/models/gaokao_math_trained/gaokao_math_extractor_1_5b_v02',
max_out_len=1024,
batch_size=8,
run_cfg=dict(num_gpus=1),
)
]
datasets = sum([v for k, v in locals().items() if k.endswith("_datasets")], [])
models = sum([v for k, v in locals().items() if k.endswith("_model")], [])
...
```
### 4. Run the evaluation
```bash
python run.py eval.py --dump-eval-details # eval and dump the evaluation details to `results` folder
```
### 5. Evaluation results
| Evaluator / Extractor | Qwen2.5-72B-Instruct | gaokao_math_extractor_1.5b_v0.2 |
|-----------------------|-----------------------|----------------------------------|
| Qwen2.5-72B-Instruct (ACC) | 95.85 | 95.2 |

View File

@ -0,0 +1,48 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import GaoKaoMATHDataset, GaoKaoMATHEvaluator
MATH_CN_PROMPT="""
你是一个数学阅卷专家任务是从给定的回答句子中提取精确的关键答案你必须只提供提取的关键答案不包括任何额外的文字
我将为你提供一个问题回答句子和问题类型回答句子是对所提供问题的回应利用提供的信息你必须准确而精确地确定并从回答句子中提取预期的关键答案请不要对问题发表主观看法
对于单选题答案应该是选项字母例如 "A"
对于多选题答案应该是一个选项字母的列表例如 ["A"] ["A", "B", "C"]
对于填空题答案应该是一个填入空白处的答案列表列表的数量应该与问题中的空白数量相同例如 ["$$\\frac{{1}}{{2}}$$"] ["$$\\frac{{1}}{{2}}$$", "2"]
对于问答题类似填空题为每个小问抽出相应答案例如 ["$$\\frac{{1}}{{2}}$$"] ["$$\\frac{{1}}{{2}}$$", "2"]
如果回答句子提供了多个不同的答案请仔细判断后面提供的答案是否是对前面答案的修正或修改如果是这样提取这个修正或修改后的答案作为最终答案相反如果回答句子在多个答案之间波动而没有明确的最终答案你应该输出 [No valid answer]
问题类型: {question_type}
原始问题: {question}
回答: {response}
提取的关键答案:
"""
gaokao_math_reader_cfg = dict(input_columns=['question', 'response', 'question_type'], output_column='extract_answer')
gaokao_math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(role='HUMAN', prompt=MATH_CN_PROMPT),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
gaokao_math_eval_cfg = dict(
evaluator=dict(type=GaoKaoMATHEvaluator, model_name='Qwen/Qwen2.5-72B-Instruct', url=['http://22.8.73.119:23333/v1', 'http://22.8.4.97:23333/v1', 'http://22.8.22.254:23333/v1', 'http://22.8.17.14:23333/v1']))
gaokao_math_datasets = [
dict(
type=GaoKaoMATHDataset,
abbr='GaoKaoMATH',
path='./data/gaokao_math/test_2k.json',
reader_cfg=gaokao_math_reader_cfg,
infer_cfg=gaokao_math_infer_cfg,
eval_cfg=gaokao_math_eval_cfg)
]

View File

@ -0,0 +1,78 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MATHDataset, MATHEvaluator, math_postprocess_v2, GaoKaoMATHEvaluator
from opencompass.utils.model_postprocessors import naive_model_postprocess, xfinder_postprocess
from opencompass.utils.postprocessors.naive import MATH_NAVIE_PROMPT_TEMPLATE
# ----------------------------- Eval Parameters -----------------------------
## Postprocess function
post_func = 're' # 're', 'xfinder_model', 'naive_model'
## Evalute function
eval_func = 'naive_model' # 're', 'naive_model'
## Model api url
xfinder_url = 'http://0.0.0.0:23333/v1' # for 'xFinder-qwen1505' if post_func is 'xfinder_model'
naive_model_name = 'Qwen/Qwen2.5-72B-Instruct' # replace with your model name
naive_model_url = ['http://22.8.6.22:23333/v1', 'http://22.8.67.84:23333/v1', 'http://22.8.72.81:23333/v1', 'http://22.9.42.143:23333/v1'] # Multi-apis for accerlation
# ----------------------------- Detailed Config -----------------------------
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{problem}\nPlease reason step by step, and put your final answer within \\boxed{}.'),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024),
)
if post_func == 're':
pred_postprocessor = dict(type=math_postprocess_v2)
elif post_func == 'xfinder_model':
pred_postprocessor = dict(
type=xfinder_postprocess,
question_type='math',
model_name='xFinder-qwen1505',
num_processes=128,
api_url=xfinder_url,
)
elif post_func == 'naive_model':
pred_postprocessor = dict(
type=naive_model_postprocess,
custom_instruction=MATH_NAVIE_PROMPT_TEMPLATE,
model_name=naive_model_name,
num_processes=64,
api_url=naive_model_url,
)
if eval_func == 're':
evaluator = dict(type=MATHEvaluator, version='v2')
elif eval_func == 'naive_model':
evaluator = dict(
type=GaoKaoMATHEvaluator,
model_name=naive_model_name,
url=naive_model_url,
)
math_eval_cfg = dict(
evaluator=evaluator, pred_postprocessor=pred_postprocessor,
)
math_datasets = [
dict(
type=MATHDataset,
abbr='math',
path='opencompass/math',
reader_cfg=math_reader_cfg,
infer_cfg=math_infer_cfg,
eval_cfg=math_eval_cfg,
)
]

View File

@ -0,0 +1,108 @@
# GaoKao MATH Answer Evaluation Dataset
A dataset for testing the performance of the model in the GaoKao MATH Answer Extraction task.
Now support the following format of GAOKAO math questions:
1. '单选题'Single choice question
2. '多选题'Multiple choice question
3. '填空题'Fill in the blank question, can be multiple blanks
4. '解答题'Answer question, can be multiple answers
Sample data:
```json
[
{
"id": "3b270bc4-570a-4d77-b122-a2fc372f7d6a",
"question": "过椭圆${x^2\\over {16}} +{ y^2 \\over {4}}=1$ %内一点$M(2,1)$ %引一条弦,使该弦被点$M$ %平分,则这条弦所在直线的方程为( \nA. $x+2y-4=0$ %\nB. $x-2y-4=0$ %\nC. $x+2y+4=0$ %\nD. $x-2y+4=0$ %\n\n",
"response": "本题主要考查直线与圆锥曲线.设所求直线与椭圆的一个交点为$A(x,y)$ %,由于中点$M(2,1)$ %,所以另一个交点$B$ %为$(4-x,2-y)$ %.因为$A$ %$B$ %两点都在椭圆上,所以$x^2+4y^2=16$ %$(4-x)^2+4(2-y)^2=16$ %,两式相减,整理可得$x+2y-4=0$ %.由于过$A$ %$B$ %两点的直线只有一条,所以这条弦所在直线的方程为$x+2y-4=0$ %故本题正确答案为A\n答案是A",
"extract_answer": "A",
"question_type": "单选题"
},
{
"id": "d60e42d7-30ee-44f9-a94d-aff6a8127750",
"question": "若函数$f(x)$ 具有下列性质1.定义域为$(-1,1)$ 2.对于任意的$x,y\\in(-1,1)$ ,都有$f(x)+f(y)=f\\left({\\dfrac{x+y}{1+xy}}\\right)$ 3.当$-1< x< 0$ $f(x)>0$ ,则称函数$f(x)$ 为$δ$ 的函数$.$ 若函数$f(x)$ 为$δ$ 的函数,则以下结论正确的是$(\\quad)$\nA. $\nB. x)$ 为奇函数\nC. $\nD. x)$ 为偶函数\nE. $\nF. x)$ 为单调递减函数\nG. $\nH. x)$ 为单调递增函数\n\n",
"response": "函数$f(x)$ 为$δ$ 的函数,令$x=y=0$ ,则$f(0)+f(0)=f(0)$ ,即$f(0)=0$ ,令$y=-x$ ,则$f(x)+f(-x)=f\\left(\\dfrac{x-x}{1-{x}^{2}}\\right)=f(0)=0$ ,则$f(-x)=-f(x)$ ,即函数$f(x)$ 是奇函数,设$-1< x< y< 1$ $f(x)-f(y)=f(x)+f(-y)=f\\left(\\dfrac{x-y}{1-xy}\\right)$ $∵-1< x< y< 1$ $∴-1< \\dfrac{x-y}{1-xy}< 0$ $f\\left(\\dfrac{x-y}{1-xy}\\right)>0$ ,即$f(x)-f(y)>0$ ,则$f(x)>f(y)$ ,即$f(x)$ 在$(-1,1)$ 上是减函数.故选$AC.$ 本题考查函数的奇偶性和单调性的判断,注意运用定义法,考查运算能力和推理能力,属于中档题.可令$x=y=0$ ,求得$f(0)=0$ ,再令$y=-x$ 可得$f(-x)=-f(x)$ ,可得$f(x)$ 的奇偶性;再令$-1< x< y< 1$ 运用单调性的定义结合其偶性的定义可得其单调性\n答案是A; C",
"extract_answer": "A, C",
"question_type": "多选题"
},
{
"id": "31b3f702-e60c-4a20-9a40-73bd72b92d1e",
"question": "请完成以下题目(1)曲线$$y=-5\\text{e}^{x}+3$$在点$$(0,-2)$$处的切线方程为___.(2)若曲线$$f(x)=x \\sin x+1$$在$$x=\\dfrac{ \\pi }{2}$$处的切线与直线$$ax+2y+1=0$$相互垂直,则实数$$a=$$___.\n\n",
"response": "(1)由$$y=-5\\text{e}^{x}+3$$,得$$y'=-5\\text{e}^{x}$$,所以切线的斜率$$k=y'|_{x=0}=-5$$,所以切线方程为$$y+2=-5(x-0)$$,即$$5x+y+2=0$$.(2)因为$$f'(x)= \\sin x+x \\cos x$$,所以$$f'\\left(\\dfrac{ \\pi }{2}\\right)= \\sin \\dfrac{ \\pi }{2}+\\dfrac{ \\pi }{2}\\cdot \\cos \\dfrac{ \\pi }{2}=1$$.又直线$$ax+2y+1=0$$的斜率为$$-\\dfrac{a}{2}$$,所以根据题意得$$1\\times \\left(-\\dfrac{a}{2}\\right)=-1$$,解得$$a=2$$.\n答案是(1)$$5x+y+2=0$$ (2)$$2$$",
"extract_answer": "['(1)$$5x+y+2=0$$ (2)$$2$$']",
"question_type": "填空题"
},
{
"id": "16878941-1772-4290-bc61-00b193d5cf70",
"question": "已知函数$f\\left( x \\right)=\\left| 2x-1 \\right|$.1若不等式$f\\left( x+\\frac{1}{2} \\right)\\ge 2m+1\\left( m > 0 \\right)$的解集为$\\left( -\\infty ,-2 \\right]\\bigcup \\left[ 2,+\\infty \\right)$,求实数$m$的值2若不等式$f\\left( x \\right)\\le {{2}^{y}}+\\frac{a}{{{2}^{y}}}+\\left| 2x+3 \\right|$对任意的实数$x,y\\in R$恒成立,求实数$a$的最小值.\n\n",
"response": "1直接写出不等式解含有绝对值的函数不等式即可2这是恒成立求参的问题,根据绝对值三角不等式得到左侧函数的最值,再结合均值不等式得最值.1由条件得$\\left| 2x \\right|\\le 2m+1$得$-m-\\frac{1}{2}\\le x\\le m+\\frac{1}{2}$,所以$m=\\frac{3}{2}$.2原不等式等价于$\\left| 2x-1 \\right|-\\left| 2x+3 \\right|\\le {{2}^{y}}+\\frac{a}{{{2}^{y}}}$,而$\\left| 2x-1 \\right|-\\left| 2x+3 \\right|\\le \\left| \\left( 2x-1 \\right)-\\left( 2x+3 \\right) \\right|=4$,所以${{2}^{y}}+\\frac{a}{{{2}^{y}}}\\ge 4$,则$a\\ge {{\\left[ {{2}^{y}}\\left( 4-{{2}^{y}} \\right) \\right]}_{\\text{max}}}=4$,当且仅当$y=1$时取得.\n答案是(1) $m=\\frac{3}{2}$(2) 最小值为$a=4$.",
"extract_answer": [
"(1) $m=\\frac{3}{2}$(2) 最小值为$a=4$."
],
"question_type": "解答题"
}
]
```
## How to use
### 1. Prepare the dataset
```bash
cd opencompass
cp -rf /cpfs01/shared/public/liuhongwei/data/gaokao_math_dataset/gaokao_math ./data
```
📢If you want to evaluate your own gaokao math data, replace the `test_v2.jsonl` with your own data, but follow the format above.
### 2. Set the evaluation model
open `opencompass.datasets.gaokao_math.gaokao_math_gen_9b076f` and set the model name and api url for evaluation, multiple urls are supported for acceleration.
```python
...
gaokao_math_eval_cfg = dict(
evaluator=dict(type=GaoKaoMATHEvaluator, model_name='EVALUATE_MODEL_NAME', url=['http://0.0.0.0:23333/v1', 'http://...']))
...
```
We recommand `Qwen2.5-72B-Instruct` model for evaluation.
### 3. Set Extractor model and run the evaluation
```python
from mmengine.config import read_base
from opencompass.models import HuggingFacewithChatTemplate
with read_base():
from opencompass.datasets.gaokao_math.gaokao_math_gen_9b076f import gaokao_math_datasets
trained_qwen2_1_5b_model = [ # trained extractor model
dict(
type=HuggingFacewithChatTemplate,
abbr='gaokao_math_extractor_1_5b_v02',
path='/cpfs01/shared/public/liuhongwei/models/gaokao_math_trained/gaokao_math_extractor_1_5b_v02',
max_out_len=1024,
batch_size=8,
run_cfg=dict(num_gpus=1),
)
]
datasets = sum([v for k, v in locals().items() if k.endswith("_datasets")], [])
models = sum([v for k, v in locals().items() if k.endswith("_model")], [])
...
```
### 4. Run the evaluation
```bash
python run.py eval.py --dump-eval-details # eval and dump the evaluation details to `results` folder
```
### 5. Evaluation results
| Evaluator / Extractor | Qwen2.5-72B-Instruct | gaokao_math_extractor_1.5b_v0.2 |
|-----------------------|-----------------------|----------------------------------|
| Qwen2.5-72B-Instruct (ACC) | 95.85 | 95.2 |

View File

@ -0,0 +1,48 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import GaoKaoMATHDataset, GaoKaoMATHEvaluator
MATH_CN_PROMPT="""
你是一个数学阅卷专家任务是从给定的回答句子中提取精确的关键答案你必须只提供提取的关键答案不包括任何额外的文字
我将为你提供一个问题回答句子和问题类型回答句子是对所提供问题的回应利用提供的信息你必须准确而精确地确定并从回答句子中提取预期的关键答案请不要对问题发表主观看法
对于单选题答案应该是选项字母例如 "A"
对于多选题答案应该是一个选项字母的列表例如 ["A"] ["A", "B", "C"]
对于填空题答案应该是一个填入空白处的答案列表列表的数量应该与问题中的空白数量相同例如 ["$$\\frac{{1}}{{2}}$$"] ["$$\\frac{{1}}{{2}}$$", "2"]
对于问答题类似填空题为每个小问抽出相应答案例如 ["$$\\frac{{1}}{{2}}$$"] ["$$\\frac{{1}}{{2}}$$", "2"]
如果回答句子提供了多个不同的答案请仔细判断后面提供的答案是否是对前面答案的修正或修改如果是这样提取这个修正或修改后的答案作为最终答案相反如果回答句子在多个答案之间波动而没有明确的最终答案你应该输出 [No valid answer]
问题类型: {question_type}
原始问题: {question}
回答: {response}
提取的关键答案:
"""
gaokao_math_reader_cfg = dict(input_columns=['question', 'response', 'question_type'], output_column='extract_answer')
gaokao_math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(role='HUMAN', prompt=MATH_CN_PROMPT),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
gaokao_math_eval_cfg = dict(
evaluator=dict(type=GaoKaoMATHEvaluator, model_name='Qwen/Qwen2.5-72B-Instruct', url=['http://22.8.73.119:23333/v1', 'http://22.8.4.97:23333/v1', 'http://22.8.22.254:23333/v1', 'http://22.8.17.14:23333/v1']))
gaokao_math_datasets = [
dict(
type=GaoKaoMATHDataset,
abbr='GaoKaoMATH',
path='./data/gaokao_math/test_2k.json',
reader_cfg=gaokao_math_reader_cfg,
infer_cfg=gaokao_math_infer_cfg,
eval_cfg=gaokao_math_eval_cfg)
]

View File

@ -0,0 +1,78 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import MATHDataset, MATHEvaluator, math_postprocess_v2, GaoKaoMATHEvaluator
from opencompass.utils.model_postprocessors import naive_model_postprocess, xfinder_postprocess
from opencompass.utils.postprocessors.naive import MATH_NAVIE_PROMPT_TEMPLATE
# ----------------------------- Eval Parameters -----------------------------
## Postprocess function
post_func = 're' # 're', 'xfinder_model', 'naive_model'
## Evalute function
eval_func = 'naive_model' # 're', 'naive_model'
## Model api url
xfinder_url = 'http://0.0.0.0:23333/v1' # for 'xFinder-qwen1505' if post_func is 'xfinder_model'
naive_model_name = 'Qwen/Qwen2.5-72B-Instruct' # replace with your model name
naive_model_url = ['http://22.8.6.22:23333/v1', 'http://22.8.67.84:23333/v1', 'http://22.8.72.81:23333/v1', 'http://22.9.42.143:23333/v1'] # Multi-apis for accerlation
# ----------------------------- Detailed Config -----------------------------
math_reader_cfg = dict(input_columns=['problem'], output_column='solution')
math_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{problem}\nPlease reason step by step, and put your final answer within \\boxed{}.'),
]
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=1024),
)
if post_func == 're':
pred_postprocessor = dict(type=math_postprocess_v2)
elif post_func == 'xfinder_model':
pred_postprocessor = dict(
type=xfinder_postprocess,
question_type='math',
model_name='xFinder-qwen1505',
num_processes=128,
api_url=xfinder_url,
)
elif post_func == 'naive_model':
pred_postprocessor = dict(
type=naive_model_postprocess,
custom_instruction=MATH_NAVIE_PROMPT_TEMPLATE,
model_name=naive_model_name,
num_processes=64,
api_url=naive_model_url,
)
if eval_func == 're':
evaluator = dict(type=MATHEvaluator, version='v2')
elif eval_func == 'naive_model':
evaluator = dict(
type=GaoKaoMATHEvaluator,
model_name=naive_model_name,
url=naive_model_url,
)
math_eval_cfg = dict(
evaluator=evaluator, pred_postprocessor=pred_postprocessor,
)
math_datasets = [
dict(
type=MATHDataset,
abbr='math',
path='opencompass/math',
reader_cfg=math_reader_cfg,
infer_cfg=math_infer_cfg,
eval_cfg=math_eval_cfg,
)
]

View File

@ -43,6 +43,7 @@ from .eprstmt import * # noqa: F401, F403
from .FinanceIQ import * # noqa: F401, F403
from .flores import * # noqa: F401, F403
from .game24 import * # noqa: F401, F403
from .gaokao_math import * # noqa: F401, F403
from .GaokaoBench import * # noqa: F401, F403
from .govrepcrs import * # noqa: F401, F403
from .gpqa import * # noqa: F401, F403

View File

@ -0,0 +1,144 @@
import concurrent.futures
import json
import re
from datasets import Dataset
from opencompass.models import OpenAISDK
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET, MODELS
from .base import BaseDataset
# from opencompass.utils import get_data_path
EVAL_PROMPT = """
请你作为一个数学高考阅卷专家判断下面的答案是否与标准答案一致即考生是否回答正确下面是一些评判标准
1. 有些答案可能包含多项内容可能有单选题多选题填空题等只要答案与标准答案一致即可, 对于多选题和多个空的填空题需要考生对应的选项或空都回答正确才算正确
2. 有些答案可能通过不同的方式表达比如有些答案可能是一个数学表达式有些答案可能是一个文字描述只要表达的意思一致即可且有些公式通过不同的方式表达但等价也是正确的
3. 你不需要重新计算问题答案因为标准答案已经给出只需要根据问题形式来判断考生的答案是否与标准答案一致是否正确即可
请你根据上述标准判断下面的答案是否与标准答案一致如果一致请在最后输出\\boxed{{yes}}, 否则输出\\boxed{{no}}, 如果难以判断请输出\\boxed{{no}}.
原问题{question}
标准答案{gold_answer}
考生答案{answer}
分析
""" # noqa E501
def extract_boxed_answer(text):
match = re.findall(r'\\boxed{(.+?)}', text)
if match:
return match[-1]
return None
@LOAD_DATASET.register_module()
class GaoKaoMATHDataset(BaseDataset):
@staticmethod
def load(path: str):
# path = get_data_path(path, local_mode=True)
data = json.load(open(path))
for i in range(len(data)):
data[i]['extract_answer'] = str(data[i]['extract_answer'])
dataset = Dataset.from_list(data)
return dataset
api_meta_template = dict(round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
])
@ICL_EVALUATORS.register_module()
class GaoKaoMATHEvaluator(BaseEvaluator):
def __init__(self, model_name, url, **kwargs):
if isinstance(url, str):
url = [url]
self.model = [
MODELS.build(
dict(
type=OpenAISDK,
path=model_name,
openai_api_base=url,
key='EMPTY',
query_per_second=1,
meta_template=api_meta_template,
temperature=kwargs.get('temperature', 0.01),
max_seq_len=kwargs.get('max_tokens', 8192),
)) for url in url
]
def batch_response(self, inputs):
batch_num = len(self.model)
batch_size = (len(inputs) + batch_num - 1) // batch_num
result_responses = []
with concurrent.futures.ThreadPoolExecutor(
max_workers=batch_num) as executor:
futures = [
executor.submit(self.model[i].generate,
inputs[i * batch_size:(i + 1) * batch_size])
for i in range(batch_num)
]
for response in executor.map(lambda f: f.result(), futures):
result_responses.extend(response)
return result_responses
def score(self, predictions, references, origin_prompt):
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
questions = [item[0]['prompt'] for item in origin_prompt]
count = 0
correct = 0
details = []
results = []
inputs = []
for pred, ref, ques in zip(predictions, references, questions):
inputs.append(
EVAL_PROMPT.format(answer=pred, gold_answer=ref,
question=ques))
result_responses = self.batch_response(inputs)
results = [
extract_boxed_answer(result) == 'yes'
for result in result_responses
]
for pred, ref, result, result_response in zip(predictions, references,
results,
result_responses):
detail = {
'pred': pred,
'answer': ref,
'correct': False,
'eval_model_response': result_response
}
count += 1
if result:
correct += 1
detail['correct'] = True
details.append(detail)
detailed_result = {
'accuracy': 100 * correct / count,
'details': details
}
return detailed_result
if __name__ == '__main__':
evaluator = GaoKaoMATHEvaluator('http://0.0.0.0:23333/v1',
temperature=0.01,
max_tokens=2048,
procs=8)
predictions = ['1', '2', '3']
references = ['1', '2', '3']
evaluator.score(predictions, references)

View File

@ -24,8 +24,11 @@ def gen_output_naive(ori_data, extractor):
@TEXT_POSTPROCESSORS.register_module('naive')
def navie_model_postprocess(preds: list, model_name: str,
custom_instruction: str, api_url: Union[str, list],
def navie_model_postprocess(preds: list,
model_name: str,
custom_instruction: str,
api_url: Union[str, list],
num_processes: int = 8,
**kwargs) -> list:
"""Postprocess the text extracted by custom model.
Args:
@ -38,7 +41,7 @@ def navie_model_postprocess(preds: list, model_name: str,
list: The postprocessed answers.
"""
def _eval_pred(texts, extractor, num_processes=8):
def _eval_pred(texts, extractor, num_processes):
ori_data = texts
extracted_answers = []
batched_ori_data = []
@ -60,7 +63,9 @@ def navie_model_postprocess(preds: list, model_name: str,
model_name=model_name,
custom_instruction=custom_instruction,
url=api_url.split(',') if ',' in api_url else api_url)
calc_acc_func = partial(_eval_pred, extractor=extractor)
calc_acc_func = partial(_eval_pred,
extractor=extractor,
num_processes=num_processes)
extracted_answers = calc_acc_func(format_data)
return extracted_answers