mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
fix dataset-index & use official llm_judge_postprocess
This commit is contained in:
parent
bc9ba0126f
commit
5e8bfee3f4
@ -1023,3 +1023,9 @@
|
|||||||
paper: https://arxiv.org/pdf/2402.09391
|
paper: https://arxiv.org/pdf/2402.09391
|
||||||
configpath: opencompass/configs/datasets/SmolInstruct/smolinstruct_gen.py
|
configpath: opencompass/configs/datasets/SmolInstruct/smolinstruct_gen.py
|
||||||
configpath_llmjudge: ''
|
configpath_llmjudge: ''
|
||||||
|
- SciKnowEval:
|
||||||
|
name: SciKnowEval
|
||||||
|
category: Science
|
||||||
|
paper: https://arxiv.org/abs/2406.09098
|
||||||
|
configpath: opencompass/configs/datasets/SciKnowEval/SciKnowEval_gen_ebe47d.py
|
||||||
|
configpath_llmjudge: opencompass/configs/datasets/SciKnowEval/SciKnowEval_llmjudge_gen_ebe47d.py
|
@ -1,5 +1,6 @@
|
|||||||
from opencompass.datasets import SciKnowEvalDataset, SciKnowEvalEvaluator, SciKnowEval_llmjudge_postprocess
|
from opencompass.datasets import SciKnowEvalDataset, SciKnowEvalEvaluator
|
||||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.datasets import generic_llmjudge_postprocess
|
||||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
from opencompass.evaluator import GenericLLMEvaluator
|
from opencompass.evaluator import GenericLLMEvaluator
|
||||||
@ -90,7 +91,7 @@ eval_cfg_biology = dict(
|
|||||||
reader_cfg=reader_cfg,
|
reader_cfg=reader_cfg,
|
||||||
),
|
),
|
||||||
judge_cfg=dict(),
|
judge_cfg=dict(),
|
||||||
dict_postprocessor=dict(type=SciKnowEval_llmjudge_postprocess),
|
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -120,7 +121,7 @@ eval_cfg_chemistry = dict(
|
|||||||
subset='chemistry',
|
subset='chemistry',
|
||||||
),
|
),
|
||||||
judge_cfg=dict(),
|
judge_cfg=dict(),
|
||||||
dict_postprocessor=dict(type=SciKnowEval_llmjudge_postprocess),
|
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -150,7 +151,7 @@ eval_cfg_material = dict(
|
|||||||
subset='material',
|
subset='material',
|
||||||
),
|
),
|
||||||
judge_cfg=dict(),
|
judge_cfg=dict(),
|
||||||
dict_postprocessor=dict(type=SciKnowEval_llmjudge_postprocess),
|
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -180,7 +181,7 @@ eval_cfg_physics = dict(
|
|||||||
subset='physics',
|
subset='physics',
|
||||||
),
|
),
|
||||||
judge_cfg=dict(),
|
judge_cfg=dict(),
|
||||||
dict_postprocessor=dict(type=SciKnowEval_llmjudge_postprocess),
|
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -27,12 +27,17 @@ class SciKnowEvalDataset(BaseDataset):
|
|||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def load(path: str, prompt_mode: str, **kwargs):
|
def load(path: str, prompt_mode: str, **kwargs):
|
||||||
|
|
||||||
def capitalize_first_letter(s):
|
def capitalize_first_letter(s):
|
||||||
if not s: # 检查字符串是否为空
|
if not s: # 检查字符串是否为空
|
||||||
return s
|
return s
|
||||||
return s[0].upper() + s[1:]
|
return s[0].upper() + s[1:]
|
||||||
|
|
||||||
subset = kwargs['subset']
|
subset = kwargs['subset']
|
||||||
data_files = {'test': f'data/{capitalize_first_letter(subset)}/sciknoweval_{subset}_test.jsonl'}
|
data_files = {
|
||||||
|
'test':
|
||||||
|
f'data/{capitalize_first_letter(subset)}/sciknoweval_{subset}_test.jsonl'
|
||||||
|
}
|
||||||
dataset = load_dataset(path, data_files=data_files, split='test')
|
dataset = load_dataset(path, data_files=data_files, split='test')
|
||||||
# dataset = dataset.select(range(20))
|
# dataset = dataset.select(range(20))
|
||||||
if prompt_mode == 'zero-shot':
|
if prompt_mode == 'zero-shot':
|
||||||
@ -101,75 +106,3 @@ def answer_cleansing(
|
|||||||
prediction[0] = prediction[0][:-1]
|
prediction[0] = prediction[0][:-1]
|
||||||
|
|
||||||
return prediction[0]
|
return prediction[0]
|
||||||
|
|
||||||
|
|
||||||
def _generic_llmjudge_postprocess(judgement: str):
|
|
||||||
match = re.search(r'(A|B)', judgement)
|
|
||||||
grade_letter = (match.group(0) if match else 'B'
|
|
||||||
) # Default to "INCORRECT" if no match
|
|
||||||
return grade_letter
|
|
||||||
|
|
||||||
|
|
||||||
def SciKnowEval_llmjudge_postprocess(
|
|
||||||
output: dict,
|
|
||||||
output_path: str,
|
|
||||||
dataset: Dataset,
|
|
||||||
) -> dict:
|
|
||||||
# Get the original dataset
|
|
||||||
original_dataset = dataset.reader.dataset['test']
|
|
||||||
|
|
||||||
judged_answers = []
|
|
||||||
original_responses = []
|
|
||||||
references = []
|
|
||||||
details = []
|
|
||||||
|
|
||||||
total_correct = 0
|
|
||||||
total_count = 0
|
|
||||||
|
|
||||||
for k, v in output.items():
|
|
||||||
idx = int(k) # Convert key to integer for indexing
|
|
||||||
original_responses.append(v['prediction'])
|
|
||||||
processed_judge = _generic_llmjudge_postprocess(v['prediction'])
|
|
||||||
|
|
||||||
sample = original_dataset[idx]
|
|
||||||
# Record the judgment
|
|
||||||
if processed_judge is not None:
|
|
||||||
judged_answers.append(processed_judge)
|
|
||||||
try:
|
|
||||||
gold = v['gold']
|
|
||||||
references.append(gold)
|
|
||||||
except KeyError:
|
|
||||||
get_logger().warning(
|
|
||||||
f'No gold answer for {k}, use empty string as reference!')
|
|
||||||
gold = ''
|
|
||||||
references.append('')
|
|
||||||
|
|
||||||
# Check if the answer is correct (A means correct)
|
|
||||||
is_correct = processed_judge == 'A'
|
|
||||||
total_count += 1
|
|
||||||
|
|
||||||
if is_correct:
|
|
||||||
total_correct += 1
|
|
||||||
|
|
||||||
# Add to details
|
|
||||||
details.append({
|
|
||||||
'id': k,
|
|
||||||
'question': sample['question'],
|
|
||||||
'origin_prompt': v['origin_prompt'],
|
|
||||||
'llm_judge': processed_judge,
|
|
||||||
'gold': gold,
|
|
||||||
'is_correct': is_correct,
|
|
||||||
})
|
|
||||||
|
|
||||||
# Calculate overall accuracy with two decimal places
|
|
||||||
overall_accuracy = (round(
|
|
||||||
(total_correct / total_count * 100), 2) if total_count > 0 else 0.00)
|
|
||||||
|
|
||||||
# Initialize results dictionary
|
|
||||||
results = {
|
|
||||||
'accuracy': overall_accuracy,
|
|
||||||
'total_correct': total_correct,
|
|
||||||
'total_count': total_count,
|
|
||||||
'details': details,
|
|
||||||
}
|
|
||||||
return results
|
|
||||||
|
Loading…
Reference in New Issue
Block a user