mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
fix compass arena (#854)
This commit is contained in:
parent
4f78388c71
commit
5c6dc908cd
@ -88,19 +88,6 @@ math_prompt = """
|
||||
|
||||
reason_prompt = math_prompt
|
||||
|
||||
qa_prompt = """
|
||||
请根据提供的 评分要求,用户问题 以及 相应的两个回答(回答1,回答2),判断两个回答中哪一个更好。
|
||||
评分要求(重要性依次递减):
|
||||
1. 好的回答必须首先具有事实正确性,即除了想象的内容外,所引用或阐述的各种信息都是真实正确的
|
||||
2. 好的回答必须具有逻辑连贯性,围绕一个中心进行回答,且前后连贯,逻辑没有问题
|
||||
3. 在都准确答对问题的前提下,更好的回答能进行额外补充,且补充的内容准确无误
|
||||
|
||||
[用户问题]
|
||||
{question}
|
||||
""" + base_prompt
|
||||
|
||||
|
||||
|
||||
creation_prompt = """
|
||||
请根据提供的 评分要求,用户问题 以及 相应的两个回答(回答1,回答2),判断两个回答中哪一个更好。
|
||||
评分要求(重要性依次递减):
|
||||
@ -112,11 +99,9 @@ creation_prompt = """
|
||||
{question}
|
||||
""" + base_prompt
|
||||
|
||||
sub_map = {"knowledge": knowledge_prompt, "language": language_prompt, "math_v2": math_prompt, "reason_v2": reason_prompt, "creationv2_zh": creation_prompt}
|
||||
|
||||
subjective_all_sets = ["knowledge", "language", "math", "reason", "qa", "creationv2_zh"]
|
||||
prompt_all_sets = [knowledge_prompt, language_prompt, math_prompt, reason_prompt, qa_prompt, creation_prompt]
|
||||
|
||||
for _name,_prompt in zip(subjective_all_sets, prompt_all_sets):
|
||||
for _name, _prompt in sub_map.items():
|
||||
subjective_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
|
@ -3,7 +3,6 @@ from opencompass.models import HuggingFaceCausalLM
|
||||
from mmengine.config import read_base
|
||||
with read_base():
|
||||
from .models.chatglm.hf_chatglm3_6b_32k import models as chatglm3_6b_32k_model
|
||||
from .models.yi.hf_yi_6b_chat import models as yi_6b_chat_model
|
||||
from .datasets.subjective.compassarena.compassarena_compare import subjective_datasets
|
||||
|
||||
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
|
||||
@ -19,7 +18,7 @@ from opencompass.summarizers import CompassArenaSummarizer
|
||||
|
||||
infer = dict(
|
||||
#partitioner=dict(type=NaivePartitioner),
|
||||
partitioner=dict(type=SizePartitioner, max_task_size=10000),
|
||||
partitioner=dict(type=SizePartitioner, strategy='split', max_task_size=10000),
|
||||
runner=dict(
|
||||
type=SlurmSequentialRunner,
|
||||
partition='llm_dev2',
|
||||
@ -47,12 +46,12 @@ gpt4 = dict(
|
||||
retry=20,
|
||||
temperature = 1
|
||||
)
|
||||
models = [*chatglm3_6b_32k_model, *yi_6b_chat_model]
|
||||
models = [*chatglm3_6b_32k_model]
|
||||
datasets = [*subjective_datasets]
|
||||
|
||||
|
||||
|
||||
work_dir = 'outputs/compass_arena/'
|
||||
work_dir = 'outputs/compass_arena_debug/'
|
||||
|
||||
# -------------Inferen Stage ----------------------------------------
|
||||
|
||||
@ -68,6 +67,7 @@ judge_model = dict(
|
||||
retry=20,
|
||||
temperature = 0
|
||||
)
|
||||
|
||||
## ------------- Evaluation Configuration
|
||||
eval = dict(
|
||||
partitioner=dict(
|
||||
@ -76,7 +76,7 @@ eval = dict(
|
||||
max_task_size=10000,
|
||||
mode='m2n',
|
||||
base_models = [gpt4],
|
||||
compare_models = [*chatglm3_6b_32k_model, *yi_6b_chat_model, ]
|
||||
compare_models = [*chatglm3_6b_32k_model]
|
||||
),
|
||||
runner=dict(
|
||||
type=SlurmSequentialRunner,
|
||||
@ -91,5 +91,6 @@ eval = dict(
|
||||
|
||||
|
||||
summarizer = dict(
|
||||
type=CompassArenaSummarizer
|
||||
type=CompassArenaSummarizer,
|
||||
summary_type='half_add'
|
||||
)
|
@ -35,7 +35,7 @@ def check_position_bias(judged_answers, references, banned_choice=['C']):
|
||||
position_bias_flag = 0
|
||||
position_bias_dict = {}
|
||||
for judge, ref in zip(judged_answers, references):
|
||||
question = ref['others']['question']
|
||||
question = ref['question']
|
||||
question_hash = hash(question)
|
||||
if question_hash not in position_bias_dict:
|
||||
position_bias_dict[question_hash] = {
|
||||
@ -58,7 +58,11 @@ class CompassArenaSummarizer:
|
||||
It's expected to be filled out at runtime.
|
||||
"""
|
||||
|
||||
def __init__(self, config: ConfigDict, judge_type='general') -> None:
|
||||
def __init__(self,
|
||||
config: ConfigDict,
|
||||
judge_type='general',
|
||||
check_pos_bias=True,
|
||||
summary_type='single') -> None:
|
||||
self.tasks = []
|
||||
self.cfg = config
|
||||
self.base_models = self.cfg['eval']['partitioner']['base_models']
|
||||
@ -70,10 +74,13 @@ class CompassArenaSummarizer:
|
||||
'general': post_process_compass_arena,
|
||||
}
|
||||
self.judge_function = self.judge_map[self.judge_type]
|
||||
self.check_pos_bias = check_pos_bias
|
||||
self.summary_type = summary_type
|
||||
|
||||
def summarize(self,
|
||||
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'),
|
||||
check_pos_bias=True):
|
||||
def summarize(
|
||||
self,
|
||||
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'),
|
||||
):
|
||||
"""Summarize the subjectivity analysis based on evaluation results.
|
||||
|
||||
Args:
|
||||
@ -88,25 +95,25 @@ class CompassArenaSummarizer:
|
||||
product(self.base_models, self.compare_models))
|
||||
unique_combinations = remove_duplicate_pairs(
|
||||
[combo for combo in model_combinations if combo[0] != combo[1]])
|
||||
judge_model = self.judge_abbr
|
||||
fout_list = []
|
||||
for model_pair in unique_combinations:
|
||||
model1, model2, judge_model = model_pair[0]['abbr'], model_pair[1][
|
||||
'abbr'], self.judge_abbr
|
||||
subdir = model1 + '_' + model2 + '_judged-by--' + self.judge_abbr
|
||||
subdir_path = os.path.join(results_folder, subdir)
|
||||
if os.path.isdir(subdir_path):
|
||||
for dataset in dataset_cfgs:
|
||||
dataset_abbr = dataset_abbr_from_cfg(dataset)
|
||||
fout = osp.join(
|
||||
output_dir, 'judged-by--' + judge_model + '-' +
|
||||
dataset_abbr + '-report.csv')
|
||||
fout_list.append(fout)
|
||||
for dataset in dataset_cfgs:
|
||||
dataset_abbr = dataset_abbr_from_cfg(dataset)
|
||||
fout = osp.join(
|
||||
output_dir, 'judged-by--' + judge_model + '-' + dataset_abbr +
|
||||
'-report.csv')
|
||||
fout_list.append(fout)
|
||||
for model_pair in unique_combinations:
|
||||
model1, model2, = model_pair[0]['abbr'], model_pair[1]['abbr'],
|
||||
subdir = model1 + '_' + model2 + '_judged-by--' + judge_model
|
||||
subdir_path = os.path.join(results_folder, subdir)
|
||||
if os.path.isdir(subdir_path):
|
||||
judged_answers, references = get_judgeanswer_and_reference(
|
||||
dataset,
|
||||
subdir_path,
|
||||
self.judge_function,
|
||||
)
|
||||
if check_pos_bias:
|
||||
if self.check_pos_bias:
|
||||
bias_num = check_position_bias(judged_answers,
|
||||
references)
|
||||
else:
|
||||
@ -117,24 +124,47 @@ class CompassArenaSummarizer:
|
||||
'answer2']
|
||||
for prediction, reference in zip(judged_answers,
|
||||
references):
|
||||
if dataset_abbr == 'qa':
|
||||
reference['capability'] = 'QA'
|
||||
categories['total'] += 1
|
||||
categories[reference['capability']] += 1
|
||||
if prediction == 'A':
|
||||
if reference['answer1'] == model1:
|
||||
win_model1[reference['capability']] += 1
|
||||
win_model1['total'] += 1
|
||||
else:
|
||||
win_model2[reference['capability']] += 1
|
||||
win_model2['total'] += 1
|
||||
elif prediction == 'B':
|
||||
if reference['answer1'] == model1:
|
||||
win_model2[reference['capability']] += 1
|
||||
win_model2['total'] += 1
|
||||
else:
|
||||
win_model1[reference['capability']] += 1
|
||||
win_model1['total'] += 1
|
||||
if self.summary_type == 'single':
|
||||
if prediction == 'A':
|
||||
categories['total'] += 1
|
||||
categories[reference['capability']] += 1
|
||||
if reference['answer1'] == model1:
|
||||
win_model1[reference['capability']] += 1
|
||||
win_model1['total'] += 1
|
||||
else:
|
||||
win_model2[reference['capability']] += 1
|
||||
win_model2['total'] += 1
|
||||
elif prediction == 'B':
|
||||
categories['total'] += 1
|
||||
categories[reference['capability']] += 1
|
||||
if reference['answer1'] == model1:
|
||||
win_model2[reference['capability']] += 1
|
||||
win_model2['total'] += 1
|
||||
else:
|
||||
win_model1[reference['capability']] += 1
|
||||
win_model1['total'] += 1
|
||||
elif self.summary_type == 'half_add':
|
||||
categories['total'] += 1
|
||||
categories[reference['capability']] += 1
|
||||
if prediction == 'A':
|
||||
if reference['answer1'] == model1:
|
||||
win_model1[reference['capability']] += 1
|
||||
win_model1['total'] += 1
|
||||
else:
|
||||
win_model2[reference['capability']] += 1
|
||||
win_model2['total'] += 1
|
||||
elif prediction == 'B':
|
||||
if reference['answer1'] == model1:
|
||||
win_model2[reference['capability']] += 1
|
||||
win_model2['total'] += 1
|
||||
else:
|
||||
win_model1[reference['capability']] += 1
|
||||
win_model1['total'] += 1
|
||||
elif prediction == 'C':
|
||||
win_model1[reference['capability']] += 0.5
|
||||
win_model1['total'] += 0.5
|
||||
win_model2[reference['capability']] += 0.5
|
||||
win_model2['total'] += 0.5
|
||||
for capability in categories:
|
||||
if capability not in win_model1:
|
||||
win_model1[capability] = 0.0
|
||||
@ -166,8 +196,8 @@ class CompassArenaSummarizer:
|
||||
writer.writerow(
|
||||
[row] +
|
||||
[scores[row][column] for column in columns])
|
||||
else:
|
||||
print(subdir_path + ' is not exist! please check!')
|
||||
else:
|
||||
print(subdir_path + ' is not exist! please check!')
|
||||
for fout in fout_list:
|
||||
with open(fout, 'r') as f:
|
||||
x = from_csv(f)
|
||||
|
@ -64,9 +64,10 @@ def get_judgeanswer_and_reference(dataset, subdir_path, post_process):
|
||||
if processed_judge is not None:
|
||||
judged_answers.append(processed_judge)
|
||||
references.append(v['gold'])
|
||||
print(
|
||||
f'Among {len(result)} judgements, successfully extracted {len(judged_answers)} judgements.'
|
||||
)
|
||||
if len(judged_answers) != len(result):
|
||||
print(
|
||||
f'Among {len(result)} judgements, successfully extracted {len(judged_answers)} judgements, please check!'
|
||||
)
|
||||
if len(judged_answers) == 0:
|
||||
print('*' * 100)
|
||||
print(
|
||||
|
Loading…
Reference in New Issue
Block a user