fix compass arena (#854)

This commit is contained in:
bittersweet1999 2024-01-30 16:34:38 +08:00 committed by GitHub
parent 4f78388c71
commit 5c6dc908cd
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 81 additions and 64 deletions

View File

@ -88,19 +88,6 @@ math_prompt = """
reason_prompt = math_prompt
qa_prompt = """
请根据提供的 评分要求用户问题 以及 相应的两个回答回答1回答2判断两个回答中哪一个更好
评分要求重要性依次递减:
1. 好的回答必须首先具有事实正确性即除了想象的内容外所引用或阐述的各种信息都是真实正确的
2. 好的回答必须具有逻辑连贯性围绕一个中心进行回答且前后连贯逻辑没有问题
3. 在都准确答对问题的前提下更好的回答能进行额外补充且补充的内容准确无误
[用户问题]
{question}
""" + base_prompt
creation_prompt = """
请根据提供的 评分要求用户问题 以及 相应的两个回答回答1回答2判断两个回答中哪一个更好
评分要求重要性依次递减:
@ -112,11 +99,9 @@ creation_prompt = """
{question}
""" + base_prompt
sub_map = {"knowledge": knowledge_prompt, "language": language_prompt, "math_v2": math_prompt, "reason_v2": reason_prompt, "creationv2_zh": creation_prompt}
subjective_all_sets = ["knowledge", "language", "math", "reason", "qa", "creationv2_zh"]
prompt_all_sets = [knowledge_prompt, language_prompt, math_prompt, reason_prompt, qa_prompt, creation_prompt]
for _name,_prompt in zip(subjective_all_sets, prompt_all_sets):
for _name, _prompt in sub_map.items():
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,

View File

@ -3,7 +3,6 @@ from opencompass.models import HuggingFaceCausalLM
from mmengine.config import read_base
with read_base():
from .models.chatglm.hf_chatglm3_6b_32k import models as chatglm3_6b_32k_model
from .models.yi.hf_yi_6b_chat import models as yi_6b_chat_model
from .datasets.subjective.compassarena.compassarena_compare import subjective_datasets
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3, OpenAI
@ -19,7 +18,7 @@ from opencompass.summarizers import CompassArenaSummarizer
infer = dict(
#partitioner=dict(type=NaivePartitioner),
partitioner=dict(type=SizePartitioner, max_task_size=10000),
partitioner=dict(type=SizePartitioner, strategy='split', max_task_size=10000),
runner=dict(
type=SlurmSequentialRunner,
partition='llm_dev2',
@ -47,12 +46,12 @@ gpt4 = dict(
retry=20,
temperature = 1
)
models = [*chatglm3_6b_32k_model, *yi_6b_chat_model]
models = [*chatglm3_6b_32k_model]
datasets = [*subjective_datasets]
work_dir = 'outputs/compass_arena/'
work_dir = 'outputs/compass_arena_debug/'
# -------------Inferen Stage ----------------------------------------
@ -68,6 +67,7 @@ judge_model = dict(
retry=20,
temperature = 0
)
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(
@ -76,7 +76,7 @@ eval = dict(
max_task_size=10000,
mode='m2n',
base_models = [gpt4],
compare_models = [*chatglm3_6b_32k_model, *yi_6b_chat_model, ]
compare_models = [*chatglm3_6b_32k_model]
),
runner=dict(
type=SlurmSequentialRunner,
@ -91,5 +91,6 @@ eval = dict(
summarizer = dict(
type=CompassArenaSummarizer
type=CompassArenaSummarizer,
summary_type='half_add'
)

View File

@ -35,7 +35,7 @@ def check_position_bias(judged_answers, references, banned_choice=['C']):
position_bias_flag = 0
position_bias_dict = {}
for judge, ref in zip(judged_answers, references):
question = ref['others']['question']
question = ref['question']
question_hash = hash(question)
if question_hash not in position_bias_dict:
position_bias_dict[question_hash] = {
@ -58,7 +58,11 @@ class CompassArenaSummarizer:
It's expected to be filled out at runtime.
"""
def __init__(self, config: ConfigDict, judge_type='general') -> None:
def __init__(self,
config: ConfigDict,
judge_type='general',
check_pos_bias=True,
summary_type='single') -> None:
self.tasks = []
self.cfg = config
self.base_models = self.cfg['eval']['partitioner']['base_models']
@ -70,10 +74,13 @@ class CompassArenaSummarizer:
'general': post_process_compass_arena,
}
self.judge_function = self.judge_map[self.judge_type]
self.check_pos_bias = check_pos_bias
self.summary_type = summary_type
def summarize(self,
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'),
check_pos_bias=True):
def summarize(
self,
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S'),
):
"""Summarize the subjectivity analysis based on evaluation results.
Args:
@ -88,25 +95,25 @@ class CompassArenaSummarizer:
product(self.base_models, self.compare_models))
unique_combinations = remove_duplicate_pairs(
[combo for combo in model_combinations if combo[0] != combo[1]])
judge_model = self.judge_abbr
fout_list = []
for model_pair in unique_combinations:
model1, model2, judge_model = model_pair[0]['abbr'], model_pair[1][
'abbr'], self.judge_abbr
subdir = model1 + '_' + model2 + '_judged-by--' + self.judge_abbr
subdir_path = os.path.join(results_folder, subdir)
if os.path.isdir(subdir_path):
for dataset in dataset_cfgs:
dataset_abbr = dataset_abbr_from_cfg(dataset)
fout = osp.join(
output_dir, 'judged-by--' + judge_model + '-' +
dataset_abbr + '-report.csv')
fout_list.append(fout)
for dataset in dataset_cfgs:
dataset_abbr = dataset_abbr_from_cfg(dataset)
fout = osp.join(
output_dir, 'judged-by--' + judge_model + '-' + dataset_abbr +
'-report.csv')
fout_list.append(fout)
for model_pair in unique_combinations:
model1, model2, = model_pair[0]['abbr'], model_pair[1]['abbr'],
subdir = model1 + '_' + model2 + '_judged-by--' + judge_model
subdir_path = os.path.join(results_folder, subdir)
if os.path.isdir(subdir_path):
judged_answers, references = get_judgeanswer_and_reference(
dataset,
subdir_path,
self.judge_function,
)
if check_pos_bias:
if self.check_pos_bias:
bias_num = check_position_bias(judged_answers,
references)
else:
@ -117,24 +124,47 @@ class CompassArenaSummarizer:
'answer2']
for prediction, reference in zip(judged_answers,
references):
if dataset_abbr == 'qa':
reference['capability'] = 'QA'
categories['total'] += 1
categories[reference['capability']] += 1
if prediction == 'A':
if reference['answer1'] == model1:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
else:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
elif prediction == 'B':
if reference['answer1'] == model1:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
else:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
if self.summary_type == 'single':
if prediction == 'A':
categories['total'] += 1
categories[reference['capability']] += 1
if reference['answer1'] == model1:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
else:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
elif prediction == 'B':
categories['total'] += 1
categories[reference['capability']] += 1
if reference['answer1'] == model1:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
else:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
elif self.summary_type == 'half_add':
categories['total'] += 1
categories[reference['capability']] += 1
if prediction == 'A':
if reference['answer1'] == model1:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
else:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
elif prediction == 'B':
if reference['answer1'] == model1:
win_model2[reference['capability']] += 1
win_model2['total'] += 1
else:
win_model1[reference['capability']] += 1
win_model1['total'] += 1
elif prediction == 'C':
win_model1[reference['capability']] += 0.5
win_model1['total'] += 0.5
win_model2[reference['capability']] += 0.5
win_model2['total'] += 0.5
for capability in categories:
if capability not in win_model1:
win_model1[capability] = 0.0
@ -166,8 +196,8 @@ class CompassArenaSummarizer:
writer.writerow(
[row] +
[scores[row][column] for column in columns])
else:
print(subdir_path + ' is not exist! please check!')
else:
print(subdir_path + ' is not exist! please check!')
for fout in fout_list:
with open(fout, 'r') as f:
x = from_csv(f)

View File

@ -64,9 +64,10 @@ def get_judgeanswer_and_reference(dataset, subdir_path, post_process):
if processed_judge is not None:
judged_answers.append(processed_judge)
references.append(v['gold'])
print(
f'Among {len(result)} judgements, successfully extracted {len(judged_answers)} judgements.'
)
if len(judged_answers) != len(result):
print(
f'Among {len(result)} judgements, successfully extracted {len(judged_answers)} judgements, please check!'
)
if len(judged_answers) == 0:
print('*' * 100)
print(