[Feature] Support intern lanuage model (#51)

* support internLM

* support internLM

* simplify intern model files

* update storage_manager

* support internLM

* Modify the file organization structure

* support internLM

* support internLM

* support internLM

* support internLM

* change some details
This commit is contained in:
gowithme 2023-07-27 18:49:36 +08:00 committed by GitHub
parent 8a4d0867ab
commit 57fcfc975a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 151 additions and 0 deletions

9
configs/eval_internLM.py Normal file
View File

@ -0,0 +1,9 @@
from mmengine.config import read_base
with read_base():
# choose a list of datasets
from .datasets.collections.base_medium import datasets
# choose a model of interest
from .models.internlm_7b import models
# and output the results in a choosen format
from .summarizers.medium import summarizer

View File

@ -0,0 +1,14 @@
from opencompass.models import InternLM
models = [
dict(
type=InternLM,
path="./internData/",
tokenizer_path='./internData/V7.model',
model_config="./internData/model_config.py",
max_out_len=100,
max_seq_len=2048,
batch_size=16,
run_cfg=dict(num_gpus=1, num_procs=1))
]

View File

@ -3,5 +3,6 @@ from .base_api import APITemplateParser, BaseAPIModel # noqa
from .glm import GLM130B # noqa: F401, F403
from .huggingface import HuggingFace # noqa: F401, F403
from .huggingface import HuggingFaceCausalLM # noqa: F401, F403
from .intern_model import InternLM # noqa: F401, F403
from .llama2 import Llama2Chat # noqa: F401, F403
from .openai_api import OpenAI # noqa: F401

View File

@ -0,0 +1,127 @@
from typing import Dict, List, Optional
import numpy as np
import torch
from opencompass.models.base import BaseModel, LMTemplateParser
class InternLM(BaseModel):
def __init__(self,
path: str,
max_seq_len: int = 2048,
tokenizer_only: bool = False,
tokenizer_path: Optional[str] = None,
model_config: Optional[str] = None,
tokenizer_type: Optional[str] = 'v7',
meta_template: Optional[Dict] = None):
if tokenizer_only:
self._load_tokenizer(tokenizer_path=tokenizer_path,
tokenizer_type=tokenizer_type,
max_seq_len=max_seq_len)
else:
self._load_model(path=path,
max_seq_len=max_seq_len,
tokenizer_path=tokenizer_path,
tokenizer_type=tokenizer_type,
model_config=model_config)
self.template_parser = LMTemplateParser(meta_template)
self.eos_token_id = None
if meta_template and 'eos_token_id' in meta_template:
self.eos_token_id = meta_template['eos_token_id']
def _load_model(self,
path: str,
max_seq_len: int,
tokenizer_path: Optional[str] = None,
tokenizer_type: Optional[str] = None,
model_config: Optional[str] = None):
from internlm.load.load_model import load_llm
from internlm.model import build_model_with_cfg
self.model, self.tokenizer, self.generator, _ = load_llm(
path,
max_seq_len,
tokenizer_path=tokenizer_path,
tokenizer_type=tokenizer_type,
module=build_model_with_cfg,
model_config_path=model_config)
def _load_tokenizer(self, tokenizer_path: str, tokenizer_type: str,
max_seq_len: int):
from internlm.load.tokenizer import LLMTokenizer
from sentencepiece import SentencePieceProcessor
tokenizer = SentencePieceProcessor()
tokenizer.load(tokenizer_path)
tokenizer = LLMTokenizer(tokenizer,
max_seq_len=max_seq_len,
tokenizer_type=tokenizer_type)
self.tokenizer = tokenizer
def get_token_len(self, prompt: str) -> int:
"""Get lengths of the tokenized strings.
Args:
prompt (str): Input string.
Returns:
int: Length of the input tokens
"""
tokens = self.tokenizer([prompt], truncation=False)['tokens']
return len(tokens[0])
def generate(self, inputs: List[str], max_out_len: int) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str]): A list of strings.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
return self.generator.generate(inputs,
generation_kwargs={
'max_gen_len': max_out_len,
'eos_token_id': self.eos_token_id
})
def get_ppl(self,
input_texts: List[str],
mask_length: Optional[List[int]] = None) -> List[float]:
"""Get perplexity scores given a list of inputs.
Args:
input_texts (List[str]): A list of strings.
mask_length (Optional[List[int]]): A list of mask lengths. If
provided, the perplexity scores will be calculated with the
first mask_length[i] tokens masked out.
Returns:
List[float]: A list of perplexity scores.
"""
outputs, inputs = self.generator.get_logits(input_texts)
shift_logits = outputs[..., :-1, :].contiguous()
shift_labels = inputs['tokens'][..., 1:].contiguous()
loss_fct = torch.nn.CrossEntropyLoss(
reduction='none', ignore_index=self.tokenizer.pad_token_id)
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
shift_labels.view(-1)).view(shift_labels.size())
if mask_length is not None:
mask = torch.zeros_like(shift_labels) # [batch,seqlen]
for i in range(len(mask)):
for j in range(mask_length[i] - 1, len(mask[i])):
mask[i][j] = 1
loss = loss * mask
lens = (inputs['tokens'] !=
self.tokenizer.pad_token_id).sum(-1).cpu().numpy()
if mask_length is not None:
lens -= np.array(mask_length)
ce_loss = loss.sum(-1).cpu().detach().numpy() / lens
return ce_loss