mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
fix
This commit is contained in:
parent
51f5792f7c
commit
53c6725d19
@ -30,10 +30,10 @@ aime2024_eval_cfg = dict(
|
||||
aime2024_datasets = [
|
||||
dict(
|
||||
abbr='aime2024',
|
||||
type=Aime2024Dataset,
|
||||
path='opencompass/aime2024',
|
||||
type=CustomDataset,
|
||||
path='opencompass/aime2025',
|
||||
reader_cfg=aime2024_reader_cfg,
|
||||
infer_cfg=aime2024_infer_cfg,
|
||||
eval_cfg=aime2024_eval_cfg
|
||||
eval_cfg=aime2024_eval_cfg,
|
||||
)
|
||||
]
|
@ -1,14 +1,26 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import Aime2024Dataset, MATHEvaluator, math_postprocess_v2
|
||||
from opencompass.datasets import CustomDataset
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
|
||||
aime2024_reader_cfg = dict(input_columns=['question'], output_column='answer')
|
||||
|
||||
aime2024_reader_cfg = dict(
|
||||
input_columns=['question'],
|
||||
output_column='answer'
|
||||
aime2024_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt='{question}\nRemember to put your final answer within \\boxed{}.',
|
||||
),
|
||||
],
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
@ -19,35 +31,19 @@ GRADER_TEMPLATE = """
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
|
||||
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
|
||||
<Original Question Begin>: {question}\n A) {A}\n B) {B}\n C) {C}\n D) {D}\n<Original Question End>\n\n
|
||||
<Original Question Begin>: \n{question}\n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
|
||||
|
||||
aime2024_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt='{question}\nPlease reason step by step, and put your final answer within \\boxed{}.'),
|
||||
],
|
||||
)
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer, max_out_len=2048)
|
||||
)
|
||||
|
||||
aime2024_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
@ -58,33 +54,31 @@ aime2024_eval_cfg = dict(
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=Aime2024Dataset,
|
||||
path='opencompass/aime2024',
|
||||
type=CustomDataset,
|
||||
path='opencompass/aime2025',
|
||||
reader_cfg=aime2024_reader_cfg,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
)
|
||||
|
||||
aime2024_datasets = [
|
||||
dict(
|
||||
abbr='aime2024',
|
||||
type=Aime2024Dataset,
|
||||
path='opencompass/aime2024',
|
||||
type=CustomDataset,
|
||||
path='opencompass/aime2025',
|
||||
reader_cfg=aime2024_reader_cfg,
|
||||
infer_cfg=aime2024_infer_cfg,
|
||||
eval_cfg=aime2024_eval_cfg
|
||||
eval_cfg=aime2024_eval_cfg,
|
||||
)
|
||||
]
|
@ -4,7 +4,6 @@ from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_evaluator import AccEvaluator
|
||||
from opencompass.datasets import CMMLUDataset
|
||||
from opencompass.utils.text_postprocessors import match_answer_pattern
|
||||
from opencompass.openicl.icl_evaluator import LMEvaluator
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
|
||||
@ -75,14 +74,12 @@ cmmlu_subject_mapping = {
|
||||
'traditional_chinese_medicine': '中医中药',
|
||||
'virology': '病毒学',
|
||||
'world_history': '世界历史',
|
||||
'world_religions': '世界宗教'
|
||||
'world_religions': '世界宗教',
|
||||
}
|
||||
|
||||
QUERY_TEMPLATE = """
|
||||
你回答的最后一行**必须**是以下格式 '答案: $选项' (不带引号), 其中选项是ABCD之一.
|
||||
|
||||
{question}
|
||||
|
||||
A) {A}
|
||||
B) {B}
|
||||
C) {C}
|
||||
@ -97,14 +94,11 @@ GRADER_TEMPLATE = """
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
|
||||
<Original Question Begin>: \n {question}\n A) {A}\n B) {B}\n C) {C}\n D) {D}\n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
@ -140,14 +134,13 @@ for _name in cmmlu_all_sets:
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=CMMLUDataset,
|
||||
@ -157,7 +150,7 @@ for _name in cmmlu_all_sets:
|
||||
input_columns=['question', 'A', 'B', 'C', 'D'],
|
||||
output_column='answer',
|
||||
train_split='dev',
|
||||
test_split='test'
|
||||
test_split='test',
|
||||
),
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
@ -175,10 +168,12 @@ for _name in cmmlu_all_sets:
|
||||
input_columns=['question', 'A', 'B', 'C', 'D'],
|
||||
output_column='answer',
|
||||
train_split='dev',
|
||||
test_split='test'),
|
||||
test_split='test',
|
||||
),
|
||||
infer_cfg=cmmlu_infer_cfg,
|
||||
eval_cfg=cmmlu_eval_cfg,
|
||||
mode='singlescore',
|
||||
))
|
||||
)
|
||||
)
|
||||
|
||||
del _name, _ch_name
|
||||
|
@ -2,8 +2,9 @@ from mmengine.config import read_base
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.datasets import DropOpenAIDataset, DropOpenAIEvaluator, generic_llmjudge_postprocess
|
||||
from opencompass.datasets import DropOpenAIDataset
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
|
||||
with read_base():
|
||||
from .drop_examples import drop_examples # noqa: F401, F403
|
||||
@ -17,35 +18,33 @@ drop_reader_cfg = dict(
|
||||
|
||||
template = f'You will be asked to read a passage and answer a question. Some examples of passages and Q&A are provided below.\n\n{drop_examples}\n\n# Your Task\n\n---\n{{prompt}}\n\nThink step by step, then write a line of the form "Answer: $ANSWER" at the end of your response.'
|
||||
|
||||
drop_infer_cfg = dict(
|
||||
prompt_template=dict(type=PromptTemplate, template=dict(round=[dict(role='HUMAN', prompt=template)])),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer))
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
|
||||
Here are some evaluation criteria:
|
||||
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
|
||||
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
|
||||
|
||||
<Original Question Begin>: {question}\n {options_str} \n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Original Question Begin>: {prompt}\n \n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answers}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
drop_infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(round=[dict(role='HUMAN', prompt=template)]),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
drop_eval_cfg = dict(
|
||||
evaluator=dict(
|
||||
@ -53,18 +52,17 @@ drop_eval_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
],
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt = GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=DropOpenAIDataset,
|
||||
@ -76,8 +74,6 @@ drop_eval_cfg = dict(
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
|
||||
drop_datasets = [
|
||||
dict(
|
||||
abbr='drop',
|
||||
@ -85,5 +81,6 @@ drop_datasets = [
|
||||
path='data/drop_simple_eval/dev.jsonl',
|
||||
reader_cfg=drop_reader_cfg,
|
||||
infer_cfg=drop_infer_cfg,
|
||||
eval_cfg=drop_eval_cfg)
|
||||
eval_cfg=drop_eval_cfg,
|
||||
)
|
||||
]
|
@ -1,10 +1,11 @@
|
||||
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||
from opencompass.openicl.icl_retriever import FixKRetriever
|
||||
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||
from opencompass.openicl.icl_evaluator import AccwithDetailsEvaluator
|
||||
from opencompass.datasets import HellaswagDatasetwithICE, generic_llmjudge_postprocess
|
||||
from opencompass.datasets import HellaswagDatasetwithICE
|
||||
from opencompass.utils.text_postprocessors import first_option_postprocess
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
|
||||
hellaswag_reader_cfg = dict(
|
||||
input_columns=['ctx', 'A', 'B', 'C', 'D'],
|
||||
@ -13,6 +14,14 @@ hellaswag_reader_cfg = dict(
|
||||
test_split='val',
|
||||
)
|
||||
|
||||
align_prompt = """Continue the following text without adding any additional information or formatting:
|
||||
{ctx}
|
||||
A) {A}
|
||||
B) {B}
|
||||
C) {C}
|
||||
D) {D}
|
||||
What is the right option?'"""
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
|
||||
@ -21,45 +30,27 @@ GRADER_TEMPLATE = """
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
|
||||
<Original Question Begin>: {question}\n {options_str} \n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Original Question Begin>: {ctx}\n A) {A}\n B) {B}\n C) {C}\n D) {D}\n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{label}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
hellaswag_infer_cfg = dict(
|
||||
ice_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=f'{{ctx}}\nA) {{A}}\nB) {{B}}\nC) {{C}}\nD) {{D}}\nWhat is the right option?'),
|
||||
dict(role='BOT', prompt='{label}\n'),
|
||||
]
|
||||
),
|
||||
),
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(role='HUMAN', prompt='Continue the following text without adding any additional information or formatting:\n'),
|
||||
'</E>',
|
||||
],
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=f'{{ctx}}\nA) {{A}}\nB) {{B}}\nC) {{C}}\nD) {{D}}\nWhat is the right option?'),
|
||||
dict(role='BOT', prompt='{label}\n'),
|
||||
dict(role='HUMAN', prompt=align_prompt),
|
||||
],
|
||||
),
|
||||
ice_token='</E>',
|
||||
),
|
||||
retriever=dict(type=FixKRetriever, fix_id_list=list(range(10))),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
@ -73,14 +64,13 @@ hellaswag_eval_cfg = dict(
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=HellaswagDatasetwithICE,
|
||||
@ -90,8 +80,6 @@ hellaswag_eval_cfg = dict(
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
hellaswag_datasets = [
|
||||
|
@ -15,10 +15,8 @@ with read_base():
|
||||
# Please download the dataset from https://people.eecs.berkeley.edu/~hendrycks/data.tar
|
||||
|
||||
QUERY_TEMPLATE = """
|
||||
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of ABCD. Think step by step before answering.
|
||||
|
||||
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of ABCD.
|
||||
{input}
|
||||
|
||||
A) {A}
|
||||
B) {B}
|
||||
C) {C}
|
||||
@ -33,16 +31,13 @@ GRADER_TEMPLATE = """
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
|
||||
<Original Question Begin>: {question}\n A) {A}\n B) {B}\n C) {C}\n D) {D}\n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Original Question Begin>: {input}\n A) {A}\n B) {B}\n C) {C}\n D) {D}\n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{target}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
@ -50,7 +45,8 @@ GRADER_TEMPLATE = """
|
||||
mmlu_reader_cfg = dict(
|
||||
input_columns=['input', 'A', 'B', 'C', 'D'],
|
||||
output_column='target',
|
||||
train_split='dev')
|
||||
train_split='dev',
|
||||
)
|
||||
|
||||
mmlu_datasets = []
|
||||
for name in mmlu_all_sets:
|
||||
@ -77,14 +73,13 @@ for name in mmlu_all_sets:
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=MMLUDataset,
|
||||
@ -97,7 +92,6 @@ for name in mmlu_all_sets:
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
|
||||
mmlu_datasets.append(
|
||||
dict(
|
||||
abbr=f'lukaemon_mmlu_{name}',
|
||||
@ -107,4 +101,6 @@ for name in mmlu_all_sets:
|
||||
reader_cfg=mmlu_reader_cfg,
|
||||
infer_cfg=mmlu_infer_cfg,
|
||||
eval_cfg=mmlu_eval_cfg,
|
||||
))
|
||||
mode='singlescore',
|
||||
)
|
||||
)
|
@ -10,13 +10,10 @@ with read_base():
|
||||
|
||||
QUERY_TEMPLATE = """
|
||||
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of Options(e.g. one of ABCDEFGHIJKLMNOP). Think step by step before answering.
|
||||
|
||||
Question:\n
|
||||
{question}
|
||||
|
||||
Options:\n
|
||||
{options_str}
|
||||
|
||||
""".strip()
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
@ -27,14 +24,11 @@ GRADER_TEMPLATE = """
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
|
||||
<Original Question Begin>: {question}\n {options_str} \n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
|
@ -1,8 +1,6 @@
|
||||
from opencompass.datasets import MusrDataset, MusrEvaluator
|
||||
from opencompass.openicl import PromptTemplate, ZeroRetriever, GenInferencer
|
||||
from opencompass.datasets import generic_llmjudge_postprocess
|
||||
from opencompass.datasets import MusrDataset, generic_llmjudge_postprocess
|
||||
from opencompass.evaluator import GenericLLMEvaluator
|
||||
|
||||
from opencompass.openicl import PromptTemplate, ZeroRetriever, GenInferencer
|
||||
|
||||
GRADER_TEMPLATE = """
|
||||
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
|
||||
@ -12,217 +10,80 @@ GRADER_TEMPLATE = """
|
||||
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
|
||||
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
|
||||
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
|
||||
|
||||
5. If the prediction is given with \\boxed{}, please ignore the \\boxed{} and only judge whether the candidate's answer is consistent with the standard answer.
|
||||
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
|
||||
A: CORRECT
|
||||
B: INCORRECT
|
||||
Just return the letters "A" or "B", with no text around it.
|
||||
|
||||
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
|
||||
|
||||
<Original Question Begin>: {question}\n {options_str} \n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
|
||||
<Original Question Begin>: {system_prompt}\n{prompt}\n<Original Question End>\n\n
|
||||
<Gold Target Begin>: \n{gold_answer}\n<Gold Target End>\n\n
|
||||
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
|
||||
|
||||
Judging the correctness of candidates' answers:
|
||||
""".strip()
|
||||
|
||||
# Common configuration components
|
||||
reader_cfg = dict(
|
||||
input_columns=[
|
||||
'context',
|
||||
'question_text',
|
||||
'question',
|
||||
'answer',
|
||||
'choices',
|
||||
'choices_str',
|
||||
'intermediate_trees',
|
||||
'intermediate_data',
|
||||
'prompt',
|
||||
'system_prompt',
|
||||
'gold_answer',
|
||||
'scidx',
|
||||
'self_consistency_n',
|
||||
'ablation_name',
|
||||
],
|
||||
output_column='gold_answer',
|
||||
)
|
||||
|
||||
infer_cfg = dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt='{system_prompt}',
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(role='HUMAN', prompt='{prompt}'),
|
||||
],
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
)
|
||||
|
||||
# Dataset configurations
|
||||
DATASET_CONFIGS = {
|
||||
'murder_mysteries': {
|
||||
'abbr': 'musr_murder_mysteries',
|
||||
'name': 'murder_mysteries',
|
||||
'path': 'opencompass/musr',
|
||||
'reader_cfg': dict(
|
||||
input_columns=['context', 'question_text', 'question', 'answer', 'choices', 'choices_str', 'intermediate_trees', 'intermediate_data', 'prompt', 'system_prompt', 'gold_answer', 'scidx', 'self_consistency_n', 'ablation_name'],
|
||||
output_column='gold_answer',
|
||||
),
|
||||
'infer_cfg': dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt='{system_prompt}'
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt='{prompt}'
|
||||
),
|
||||
]
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
),
|
||||
'eval_cfg': dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=MusrDataset,
|
||||
path='opencompass/musr',
|
||||
name='murder_mysteries',
|
||||
reader_cfg=dict(
|
||||
input_columns=['context', 'question_text', 'question', 'answer', 'choices', 'choices_str', 'intermediate_trees', 'intermediate_data', 'prompt', 'system_prompt', 'gold_answer', 'scidx', 'self_consistency_n', 'ablation_name'],
|
||||
output_column='gold_answer',
|
||||
),
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
},
|
||||
'object_placements': {
|
||||
'abbr': 'musr_object_placements',
|
||||
'name': 'object_placements',
|
||||
'path': 'opencompass/musr',
|
||||
'reader_cfg': dict(
|
||||
input_columns=['context', 'question_text', 'question', 'answer', 'choices', 'choices_str', 'intermediate_trees', 'intermediate_data', 'prompt', 'system_prompt', 'gold_answer', 'scidx', 'self_consistency_n', 'ablation_name'],
|
||||
output_column='gold_answer',
|
||||
),
|
||||
'infer_cfg': dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt='{system_prompt}'
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt='{prompt}'
|
||||
),
|
||||
]
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
),
|
||||
'eval_cfg': dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=MusrDataset,
|
||||
path='opencompass/musr',
|
||||
name='object_placements',
|
||||
reader_cfg=dict(
|
||||
input_columns=['context', 'question_text', 'question', 'answer', 'choices', 'choices_str', 'intermediate_trees', 'intermediate_data', 'prompt', 'system_prompt', 'gold_answer', 'scidx', 'self_consistency_n', 'ablation_name'],
|
||||
output_column='gold_answer',
|
||||
),
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
},
|
||||
'team_allocation': {
|
||||
'abbr': 'musr_team_allocation',
|
||||
'name': 'team_allocation',
|
||||
'path': 'opencompass/musr',
|
||||
'reader_cfg': dict(
|
||||
input_columns=['context', 'question_text', 'question', 'answer', 'choices', 'choices_str', 'intermediate_trees', 'intermediate_data', 'prompt', 'system_prompt', 'gold_answer', 'scidx', 'self_consistency_n', 'ablation_name'],
|
||||
output_column='gold_answer',
|
||||
),
|
||||
'infer_cfg': dict(
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt='{system_prompt}'
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt='{prompt}'
|
||||
),
|
||||
]
|
||||
),
|
||||
),
|
||||
retriever=dict(type=ZeroRetriever),
|
||||
inferencer=dict(type=GenInferencer),
|
||||
),
|
||||
'eval_cfg': dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.")
|
||||
],
|
||||
round=[
|
||||
dict(
|
||||
role='HUMAN',
|
||||
prompt=GRADER_TEMPLATE
|
||||
),
|
||||
]),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=MusrDataset,
|
||||
path='opencompass/musr',
|
||||
name='team_allocation',
|
||||
reader_cfg=dict(
|
||||
input_columns=['context', 'question_text', 'question', 'answer', 'choices', 'choices_str', 'intermediate_trees', 'intermediate_data', 'prompt', 'system_prompt', 'gold_answer', 'scidx', 'self_consistency_n', 'ablation_name'],
|
||||
output_column='gold_answer',
|
||||
),
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
pred_role='BOT',
|
||||
)
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
# Create dataset configurations
|
||||
musr_datasets = []
|
||||
|
||||
for config in DATASET_CONFIGS.values():
|
||||
@ -231,8 +92,35 @@ for config in DATASET_CONFIGS.values():
|
||||
type=MusrDataset,
|
||||
path=config['path'],
|
||||
name=config['name'],
|
||||
reader_cfg=config['reader_cfg'],
|
||||
infer_cfg=config['infer_cfg'],
|
||||
eval_cfg=config['eval_cfg'],
|
||||
reader_cfg=reader_cfg,
|
||||
infer_cfg=infer_cfg,
|
||||
eval_cfg=dict(
|
||||
evaluator=dict(
|
||||
type=GenericLLMEvaluator,
|
||||
prompt_template=dict(
|
||||
type=PromptTemplate,
|
||||
template=dict(
|
||||
begin=[
|
||||
dict(
|
||||
role='SYSTEM',
|
||||
fallback_role='HUMAN',
|
||||
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
|
||||
)
|
||||
],
|
||||
round=[
|
||||
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
|
||||
],
|
||||
),
|
||||
),
|
||||
dataset_cfg=dict(
|
||||
type=MusrDataset,
|
||||
path=config['path'],
|
||||
name=config['name'],
|
||||
reader_cfg=reader_cfg,
|
||||
),
|
||||
judge_cfg=dict(),
|
||||
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||
),
|
||||
),
|
||||
)
|
||||
musr_datasets.append(dataset)
|
@ -186,17 +186,29 @@ class DefaultSummarizer:
|
||||
eval_modes.append(dataset_eval_mode.get(dataset_abbr, 'unknown'))
|
||||
else:
|
||||
group_metrics = list(functools.reduce(lambda a, b: a & b, [set(dataset_metrics[dataset_abbr]) for dataset_abbr in sg['subsets']]))
|
||||
if need_smart_metric and len(group_metrics) > 1:
|
||||
for metric in group_metrics:
|
||||
for dataset_abbr in sg['subsets']:
|
||||
scores.setdefault(metric, {})[dataset_abbr + '@' + metric] = parsed_results[model_abbr][dataset_abbr][metric]
|
||||
eval_modes.append(dataset_eval_mode.get(sg['subsets'][0], 'unknown'))
|
||||
else:
|
||||
group_metrics = [default_metric]
|
||||
group_metrics.append(default_metric)
|
||||
for metric in group_metrics:
|
||||
for dataset_abbr in sg['subsets']:
|
||||
metric = dataset_metrics[dataset_abbr][0]
|
||||
scores.setdefault(default_metric, {})[dataset_abbr + '@' + metric] = parsed_results[model_abbr][dataset_abbr][metric]
|
||||
eval_modes.append(dataset_eval_mode.get(dataset_abbr, 'unknown'))
|
||||
if metric == default_metric:
|
||||
metric_default = dataset_metrics[dataset_abbr][0]
|
||||
scores.setdefault(default_metric, {})[dataset_abbr + '@' + metric_default] = \
|
||||
parsed_results[model_abbr][dataset_abbr][metric_default]
|
||||
eval_modes.append(dataset_eval_mode.get(dataset_abbr, 'unknown'))
|
||||
else:
|
||||
scores.setdefault(metric, {})[dataset_abbr + '@' + metric] = \
|
||||
parsed_results[model_abbr][dataset_abbr][metric]
|
||||
eval_modes.append(dataset_eval_mode.get(sg['subsets'][0], 'unknown'))
|
||||
# if need_smart_metric and len(group_metrics) > 1:
|
||||
# for metric in group_metrics:
|
||||
# for dataset_abbr in sg['subsets']:
|
||||
# scores.setdefault(metric, {})[dataset_abbr + '@' + metric] = parsed_results[model_abbr][dataset_abbr][metric]
|
||||
# eval_modes.append(dataset_eval_mode.get(sg['subsets'][0], 'unknown'))
|
||||
# else:
|
||||
# group_metrics = [default_metric]
|
||||
# for dataset_abbr in sg['subsets']:
|
||||
# metric = dataset_metrics[dataset_abbr][0]
|
||||
# scores.setdefault(default_metric, {})[dataset_abbr + '@' + metric] = parsed_results[model_abbr][dataset_abbr][metric]
|
||||
# eval_modes.append(dataset_eval_mode.get(dataset_abbr, 'unknown'))
|
||||
|
||||
result = {}
|
||||
for metric in scores:
|
||||
|
Loading…
Reference in New Issue
Block a user