[API] Update API (#624)

* update api

* update generation_kwargs impl

* update api

* refactor

---------

Co-authored-by: Leymore <zfz-960727@163.com>
This commit is contained in:
Songyang Zhang 2023-11-23 15:06:20 +08:00 committed by GitHub
parent d4d1330a5a
commit 5202456b4c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 345 additions and 44 deletions

View File

@ -5,8 +5,8 @@ from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from .summarizers.medium import summarizer
from .datasets.ceval.ceval_gen import ceval_datasets
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
@ -33,4 +33,4 @@ infer = dict(
task=dict(type=OpenICLInferTask)),
)
work_dir ="./output/360GPT_S2_V9"
work_dir ="./output/api_360GPT_S2_V9"

View File

@ -1,13 +1,12 @@
from mmengine.config import read_base
from opencompass.models import BaiChuan
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from .summarizers.medium import summarizer
from .datasets.ceval.ceval_gen import ceval_datasets
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,

View File

@ -0,0 +1,38 @@
from mmengine.config import read_base
from opencompass.models import ERNIEBot
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='erniebot',
type=ERNIEBot,
path='erniebot',
key='xxxxxx', # please give you key
secretkey='xxxxxxxxx', # please give your group_id
url='xxxxxxxxx',
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=2,
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_erniebot/"

View File

@ -0,0 +1,39 @@
from mmengine.config import read_base
from opencompass.models import ByteDance
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
# from .datasets.collections.chat_medium import datasets
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='skylark-pro-public',
type=ByteDance,
path='skylark-pro-public',
accesskey="xxxxxxx",
secretkey="xxxxxxx",
url='xxxxxx',
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=2,
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_bytedance/"

View File

@ -1,14 +1,12 @@
from mmengine.config import read_base
from opencompass.models import MiniMax
from opencompass.partitioners import NaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
# from .datasets.collections.chat_medium import datasets
from .summarizers.medium import summarizer
from .datasets.ceval.ceval_gen import ceval_datasets
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
@ -34,4 +32,6 @@ infer = dict(
max_num_workers=4,
concurrent_users=4,
task=dict(type=OpenICLInferTask)),
)
)
work_dir = "outputs/api_minimax/"

View File

@ -0,0 +1,37 @@
from mmengine.config import read_base
from opencompass.models import MoonShot
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
]
models = [
dict(
abbr='moonshot-v1-32k',
type=MoonShot,
path='moonshot-v1-32k',
key='xxxxxxx',
url= 'xxxxxxxx',
query_per_second=1,
max_out_len=2048,
max_seq_len=2048,
batch_size=8),
]
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=4,
concurrent_users=4,
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_moonshot/"

View File

@ -1,13 +1,12 @@
from mmengine.config import read_base
from opencompass.models import PanGu
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from .summarizers.medium import summarizer
from .datasets.ceval.ceval_gen import ceval_datasets
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,

View File

@ -5,8 +5,8 @@ from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from .summarizers.medium import summarizer
from .datasets.ceval.ceval_gen import ceval_datasets
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
@ -33,3 +33,5 @@ infer = dict(
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
work_dir = "outputs/api_sensetime/"

View File

@ -1,14 +1,13 @@
from mmengine.config import read_base
from opencompass.models.xunfei_api import XunFei
from opencompass.partitioners import NaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
# from .datasets.collections.chat_medium import datasets
from .summarizers.medium import summarizer
from .datasets.ceval.ceval_gen import ceval_datasets
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
@ -47,4 +46,6 @@ infer = dict(
max_num_workers=2,
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
)
work_dir = "outputs/api_xunfei/"

View File

@ -1,14 +1,13 @@
from mmengine.config import read_base
from opencompass.models import ZhiPuAI
from opencompass.partitioners import NaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
# from .datasets.collections.chat_medium import datasets
from .summarizers.medium import summarizer
from .datasets.ceval.ceval_gen import ceval_datasets
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets,
@ -33,4 +32,6 @@ infer = dict(
max_num_workers=2,
concurrent_users=2,
task=dict(type=OpenICLInferTask)),
)
)
work_dir = "outputs/api_zhipu/"

View File

@ -15,6 +15,7 @@ from .lightllm_api import LightllmAPI # noqa: F401
from .llama2 import Llama2, Llama2Chat # noqa: F401, F403
from .minimax_api import MiniMax # noqa: F401
from .modelscope import ModelScope, ModelScopeCausalLM # noqa: F401, F403
from .moonshot_api import MoonShot # noqa: F401
from .openai_api import OpenAI # noqa: F401
from .pangu_api import PanGu # noqa: F401
from .sensetime_api import SenseTime # noqa: F401

View File

@ -160,7 +160,6 @@ class AI360GPT(BaseAPIModel):
or raw_response.status_code == 429
or raw_response.status_code == 500):
print(raw_response.text)
# return ''
continue
print(raw_response)
max_num_retries += 1

View File

@ -150,14 +150,14 @@ class BaiChuan(BaseAPIModel):
self.wait()
continue
if raw_response.status_code == 200 and response['code'] == 0:
# msg = json.load(response.text)
# response
msg = response['data']['messages'][0]['content']
return msg
if response['code'] != 0:
print(response)
return ''
time.sleep(1)
continue
print(response)
max_num_retries += 1

View File

@ -1,3 +1,4 @@
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union
@ -165,8 +166,9 @@ class ByteDance(BaseAPIModel):
if isinstance(response, MaasException):
print(response)
return ''
print(response)
time.sleep(1)
continue
max_num_retries += 1
raise RuntimeError(response)

View File

@ -1,3 +1,4 @@
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union
@ -168,7 +169,8 @@ class MiniMax(BaseAPIModel):
or response.status_code == 1039
or response.status_code == 2013):
print(response.text)
return ''
time.sleep(1)
continue
print(response)
max_num_retries += 1

View File

@ -0,0 +1,163 @@
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union
import requests
from opencompass.utils.prompt import PromptList
from .base_api import BaseAPIModel
PromptType = Union[PromptList, str]
class MoonShot(BaseAPIModel):
"""Model wrapper around MoonShot.
Documentation:
Args:
path (str): The name of MoonShot model.
e.g. `moonshot-v1-32k`
key (str): Authorization key.
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 1.
max_seq_len (int): Unused here.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
retry (int): Number of retires if the API call fails. Defaults to 2.
"""
def __init__(
self,
path: str,
key: str,
url: str,
query_per_second: int = 2,
max_seq_len: int = 2048,
meta_template: Optional[Dict] = None,
retry: int = 2,
):
super().__init__(path=path,
max_seq_len=max_seq_len,
query_per_second=query_per_second,
meta_template=meta_template,
retry=retry)
self.headers = {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + key,
}
self.url = url
self.model = path
def generate(
self,
inputs: List[str or PromptList],
max_out_len: int = 512,
) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str or PromptList]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[max_out_len] * len(inputs)))
self.flush()
return results
def _generate(
self,
input: str or PromptList,
max_out_len: int = 512,
) -> str:
"""Generate results given an input.
Args:
inputs (str or PromptList): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
if isinstance(input, str):
messages = [{'role': 'user', 'content': input}]
else:
messages = []
for item in input:
msg = {'content': item['prompt']}
if item['role'] == 'HUMAN':
msg['role'] = 'user'
elif item['role'] == 'BOT':
msg['role'] = 'assistant'
messages.append(msg)
system = {
'role':
'system',
'content':
'你是 Kimi由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。'
'你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一些涉及恐怖主义,种族歧视,'
'黄色暴力等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。'
}
messages.insert(0, system)
data = {
'model': self.model,
'messages': messages,
}
max_num_retries = 0
while max_num_retries < self.retry:
self.acquire()
raw_response = requests.request('POST',
url=self.url,
headers=self.headers,
json=data)
response = raw_response.json()
self.release()
if response is None:
print('Connection error, reconnect.')
# if connect error, frequent requests will casuse
# continuous unstable network, therefore wait here
# to slow down the request
self.wait()
continue
if raw_response.status_code == 200:
# msg = json.load(response.text)
# response
msg = response['choices'][0]['message']['content']
return msg
if raw_response.status_code == 403:
print('请求被拒绝 api_key错误')
continue
elif raw_response.status_code == 400:
print('请求失败,状态码:', raw_response)
time.sleep(1)
continue
elif raw_response.status_code == 429:
print('请求失败,状态码:', raw_response)
time.sleep(3)
continue
max_num_retries += 1
raise RuntimeError(raw_response)

View File

@ -1,3 +1,4 @@
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union
@ -56,6 +57,14 @@ class PanGu(BaseAPIModel):
self.project_name = project_name
self.model = path
token_response = self._get_token()
if token_response.status_code == 201:
self.token = token_response.headers['X-Subject-Token']
print('请求成功!')
else:
self.token = None
print('token生成失败')
def generate(
self,
inputs: List[str or PromptList],
@ -139,16 +148,18 @@ class PanGu(BaseAPIModel):
data = {'messages': messages, 'stream': False}
token_response = self._get_token()
if token_response.status_code == 201:
token = token_response.headers['X-Subject-Token']
print('请求成功!')
else:
msg = 'token生成失败'
print(msg)
return ''
# token_response = self._get_token()
# if token_response.status_code == 201:
# self.token = token_response.headers['X-Subject-Token']
# print('请求成功!')
# else:
# self.token = None
# print('token生成失败')
headers = {'Content-Type': 'application/json', 'X-Auth-Token': token}
headers = {
'Content-Type': 'application/json',
'X-Auth-Token': self.token
}
max_num_retries = 0
while max_num_retries < self.retry:
@ -175,7 +186,9 @@ class PanGu(BaseAPIModel):
if (raw_response.status_code != 200):
print(response['error_msg'])
return ''
# return ''
time.sleep(1)
continue
print(response)
max_num_retries += 1

View File

@ -127,9 +127,14 @@ class SenseTime(BaseAPIModel):
return msg
if (raw_response.status_code != 200):
print(raw_response.text)
time.sleep(1)
continue
if response['error']['code'] == 18:
# security issue
return 'error:unsafe'
else:
print(raw_response.text)
time.sleep(1)
continue
print(response)
max_num_retries += 1