recover pre-commit and edit math expr in doc

This commit is contained in:
jnanliu 2025-02-26 03:53:10 +00:00
parent 830142ecfd
commit 46cd631e13
4 changed files with 15 additions and 20 deletions

View File

@ -88,12 +88,7 @@ repos:
- mdformat-openmmlab
- mdformat_frontmatter
- linkify-it-py
exclude: |
(?x)^(
configs/ |
docs/zh_cn/user_guides/datasets.md |
docs/en/user_guides/datasets.md
)
exclude: configs/
- repo: https://gitee.com/openmmlab/mirrors-docformatter
rev: v1.3.1
hooks:

View File

@ -88,12 +88,7 @@ repos:
- mdformat-openmmlab
- mdformat_frontmatter
- linkify-it-py
exclude: |
(?x)^(
configs/ |
docs/zh_cn/user_guides/datasets.md |
docs/en/user_guides/datasets.md
)
exclude: configs/
- repo: https://github.com/myint/docformatter
rev: v1.3.1
hooks:

View File

@ -82,7 +82,6 @@ Users can choose different abilities, different datasets and different evaluatio
For information on how to start an evaluation task and how to evaluate self-built datasets, please refer to the relevant documents.
### Multiple Evaluations on the Dataset
In the dataset configuration, you can set the parameter `n` to perform multiple evaluations on the same dataset and return the average metrics, for example:
@ -99,11 +98,15 @@ afqmc_datasets = [
eval_cfg=afqmc_eval_cfg,
),
]
```
> [!TIP]
> \[!TIP\]
> Additionally, for binary evaluation metrics (such as accuracy, pass-rate, etc.), you can also set the parameter `k` in conjunction with `n` for [G-Pass@k](http://arxiv.org/abs/2412.13147) evaluation. The formula for G-Pass@k is:
>
> $$ \text{G-Pass@}k_\tau=E_{\text{Data}}\left[ \sum_{j=\lceil \tau \cdot k \rceil}^c \frac{{c \choose j} \cdot {n - c \choose k - j}}{{n \choose k}} \right], $$
> ```{math}
> \text{G-Pass@}k_\tau=E_{\text{Data}}\left[ \sum_{j=\lceil \tau \cdot k \rceil}^c \frac{{c \choose j} \cdot {n - c \choose k - j}}{{n \choose k}} \right],
> ```
>
> where $n$ is the number of evaluations, and $c$ is the number of times that passed or were correct out of $n$ runs. An example configuration is as follows:
@ -118,4 +121,4 @@ aime2024_datasets = [
...
)
]
```
```

View File

@ -100,10 +100,12 @@ afqmc_datasets = [
]
```
> [!TIP]
> 另外对于二值评测指标例如accuracypass-rate等还可以通过设置参数`k`配合`n`进行[G-Pass@k](http://arxiv.org/abs/2412.13147)评测。G-Pass@k计算公式为
>
> $$ \text{G-Pass@}k_\tau=E_{\text{Data}}\left[ \sum_{j=\lceil \tau \cdot k \rceil}^c \frac{{c \choose j} \cdot {n - c \choose k - j}}{{n \choose k}} \right], $$
> \[!TIP\]
> 另外对于二值评测指标例如accuracypass-rate等还可以通过设置参数`k`配合`n`进行[G-Pass@k](http://arxiv.org/abs/2412.13147)评测。G-Pass@k计算公式为
>
> ```{math}
> \text{G-Pass@}k_\tau=E_{\text{Data}}\left[ \sum_{j=\lceil \tau \cdot k \rceil}^c \frac{{c \choose j} \cdot {n - c \choose k - j}}{{n \choose k}} \right],
> ```
>
> 其中 $n$ 为评测次数, $c$ 为 $n$ 次运行中通过或正确的次数。配置例子如下: