mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
recover pre-commit and edit math expr in doc
This commit is contained in:
parent
830142ecfd
commit
46cd631e13
@ -88,12 +88,7 @@ repos:
|
||||
- mdformat-openmmlab
|
||||
- mdformat_frontmatter
|
||||
- linkify-it-py
|
||||
exclude: |
|
||||
(?x)^(
|
||||
configs/ |
|
||||
docs/zh_cn/user_guides/datasets.md |
|
||||
docs/en/user_guides/datasets.md
|
||||
)
|
||||
exclude: configs/
|
||||
- repo: https://gitee.com/openmmlab/mirrors-docformatter
|
||||
rev: v1.3.1
|
||||
hooks:
|
||||
|
@ -88,12 +88,7 @@ repos:
|
||||
- mdformat-openmmlab
|
||||
- mdformat_frontmatter
|
||||
- linkify-it-py
|
||||
exclude: |
|
||||
(?x)^(
|
||||
configs/ |
|
||||
docs/zh_cn/user_guides/datasets.md |
|
||||
docs/en/user_guides/datasets.md
|
||||
)
|
||||
exclude: configs/
|
||||
- repo: https://github.com/myint/docformatter
|
||||
rev: v1.3.1
|
||||
hooks:
|
||||
|
@ -82,7 +82,6 @@ Users can choose different abilities, different datasets and different evaluatio
|
||||
|
||||
For information on how to start an evaluation task and how to evaluate self-built datasets, please refer to the relevant documents.
|
||||
|
||||
|
||||
### Multiple Evaluations on the Dataset
|
||||
|
||||
In the dataset configuration, you can set the parameter `n` to perform multiple evaluations on the same dataset and return the average metrics, for example:
|
||||
@ -99,11 +98,15 @@ afqmc_datasets = [
|
||||
eval_cfg=afqmc_eval_cfg,
|
||||
),
|
||||
]
|
||||
|
||||
```
|
||||
> [!TIP]
|
||||
|
||||
> \[!TIP\]
|
||||
> Additionally, for binary evaluation metrics (such as accuracy, pass-rate, etc.), you can also set the parameter `k` in conjunction with `n` for [G-Pass@k](http://arxiv.org/abs/2412.13147) evaluation. The formula for G-Pass@k is:
|
||||
>
|
||||
> $$ \text{G-Pass@}k_\tau=E_{\text{Data}}\left[ \sum_{j=\lceil \tau \cdot k \rceil}^c \frac{{c \choose j} \cdot {n - c \choose k - j}}{{n \choose k}} \right], $$
|
||||
> ```{math}
|
||||
> \text{G-Pass@}k_\tau=E_{\text{Data}}\left[ \sum_{j=\lceil \tau \cdot k \rceil}^c \frac{{c \choose j} \cdot {n - c \choose k - j}}{{n \choose k}} \right],
|
||||
> ```
|
||||
>
|
||||
> where $n$ is the number of evaluations, and $c$ is the number of times that passed or were correct out of $n$ runs. An example configuration is as follows:
|
||||
|
||||
@ -118,4 +121,4 @@ aime2024_datasets = [
|
||||
...
|
||||
)
|
||||
]
|
||||
```
|
||||
```
|
||||
|
@ -100,10 +100,12 @@ afqmc_datasets = [
|
||||
]
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> 另外,对于二值评测指标(例如accuracy,pass-rate等),还可以通过设置参数`k`配合`n`进行[G-Pass@k](http://arxiv.org/abs/2412.13147)评测。G-Pass@k计算公式为:
|
||||
>
|
||||
> $$ \text{G-Pass@}k_\tau=E_{\text{Data}}\left[ \sum_{j=\lceil \tau \cdot k \rceil}^c \frac{{c \choose j} \cdot {n - c \choose k - j}}{{n \choose k}} \right], $$
|
||||
> \[!TIP\]
|
||||
> 另外,对于二值评测指标(例如accuracy,pass-rate等),还可以通过设置参数`k`配合`n`进行[G-Pass@k](http://arxiv.org/abs/2412.13147)评测。G-Pass@k计算公式为:
|
||||
>
|
||||
> ```{math}
|
||||
> \text{G-Pass@}k_\tau=E_{\text{Data}}\left[ \sum_{j=\lceil \tau \cdot k \rceil}^c \frac{{c \choose j} \cdot {n - c \choose k - j}}{{n \choose k}} \right],
|
||||
> ```
|
||||
>
|
||||
> 其中 $n$ 为评测次数, $c$ 为 $n$ 次运行中通过或正确的次数。配置例子如下:
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user