Merge branch 'open-compass:main' into main

This commit is contained in:
bittersweet1999 2024-09-06 10:00:03 +08:00 committed by GitHub
commit 42404a52f1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
102 changed files with 2638 additions and 987 deletions

View File

@ -8,25 +8,29 @@ output_path = 'regression_result_daily'
chat_model_list = [
'baichuan2-7b-chat-hf', 'deepseek-7b-chat-hf', 'deepseek-moe-16b-chat-hf',
'gemma-2b-it-hf', 'gemma-7b-it-hf', 'internlm2_5-7b-chat-hf',
'internlm2_5-7b-chat-turbomind', 'internlm2-chat-1.8b-turbomind',
'internlm2-chat-1.8b-sft-turbomind', 'internlm2-chat-7b-turbomind',
'internlm2-chat-7b-sft-turbomind', 'internlm2_5-7b-chat-turbomind',
'llama-3-8b-instruct-hf', 'llama-3-8b-instruct-turbomind',
'mistral-7b-instruct-v0.2-hf', 'minicpm-2b-dpo-fp32-hf',
'deepseek-7b-chat-vllm', 'gemma-2b-it-hf', 'gemma-7b-it-hf',
'internlm2_5-7b-chat-hf', 'internlm2_5-7b-chat-turbomind',
'internlm2-chat-1.8b-turbomind', 'internlm2-chat-1.8b-sft-turbomind',
'internlm2-chat-7b-turbomind', 'internlm2-chat-7b-sft-turbomind',
'internlm2-chat-7b-vllm', 'llama-3-8b-instruct-hf',
'llama-3-8b-instruct-turbomind', 'mistral-7b-instruct-v0.2-hf',
'mistral-7b-instruct-v0.2-vllm', 'minicpm-2b-dpo-fp32-hf',
'minicpm-2b-sft-bf16-hf', 'minicpm-2b-sft-fp32-hf',
'phi-3-mini-4k-instruct-hf', 'qwen1.5-0.5b-chat-hf',
'qwen2-1.5b-instruct-turbomind', 'qwen2-7b-instruct-turbomind',
'yi-1.5-6b-chat-hf', 'yi-1.5-9b-chat-hf', 'lmdeploy-api-test'
'qwen1.5-0.5b-chat-vllm', 'yi-1.5-6b-chat-hf', 'yi-1.5-9b-chat-hf',
'lmdeploy-api-test'
]
base_model_list = [
'deepseek-moe-16b-base-hf', 'deepseek-7b-base-turbomind', 'gemma-2b-hf',
'gemma-7b-hf', 'internlm2-1.8b-turbomind', 'internlm2-7b-turbomind',
'internlm2_5-7b-turbomind', 'internlm2_5-7b-hf',
'internlm2-base-7b-turbomind', 'internlm2-base-7b-hf',
'llama-3-8b-turbomind', 'mistral-7b-v0.2-hf', 'qwen1.5-moe-a2.7b-hf',
'deepseek-moe-16b-base-hf', 'deepseek-7b-base-turbomind',
'deepseek-moe-16b-base-vllm', 'gemma-2b-hf', 'gemma-7b-hf',
'internlm2_5-7b-hf', 'internlm2-7b-hf', 'internlm2-base-7b-hf',
'internlm2_5-7b-turbomind', 'internlm2-1.8b-turbomind',
'internlm2-7b-turbomind', 'internlm2-base-7b-hf',
'internlm2-base-7b-turbomind', 'llama-3-8b-turbomind',
'mistral-7b-v0.2-hf', 'mistral-7b-v0.2-vllm', 'qwen1.5-moe-a2.7b-hf',
'qwen2-0.5b-hf', 'qwen2-1.5b-turbomind', 'qwen2-7b-turbomind',
'yi-1.5-6b-hf', 'yi-1.5-9b-hf'
'qwen1.5-0.5b-vllm', 'yi-1.5-6b-hf', 'yi-1.5-9b-hf'
]
dataset_list = ['gsm8k', 'race-middle', 'race-high']
@ -75,6 +79,8 @@ class TestBase:
for p2 in dataset_list])
def test_model_dataset_score(self, baseline_scores, result_scores, model,
dataset):
if model == 'mistral-7b-v0.2-vllm' and dataset == 'race-high':
return
base_score = baseline_scores.get(model).get(dataset)
result_score = result_scores.get(model).get(dataset)
assert_score(result_score, base_score)

View File

@ -18,6 +18,11 @@ deepseek-moe-16b-chat-hf:
race-middle: 62
race-high: 70
deepseek-7b-chat-vllm:
gsm8k: 63
race-middle: 74
race-high: 79
gemma-2b-it-hf:
gsm8k: 14
race-middle: 62
@ -58,6 +63,11 @@ internlm2-chat-7b-sft-turbomind:
race-middle: 91
race-high: 92
internlm2-chat-7b-vllm:
gsm8k: 63
race-middle: 90
race-high: 91
llama-3-8b-instruct-hf:
gsm8k: 77
race-middle: 85
@ -73,6 +83,11 @@ mistral-7b-instruct-v0.2-hf:
race-middle: 82
race-high: 78
mistral-7b-instruct-v0.2-vllm:
gsm8k: 49
race-middle: 81
race-high: 77
minicpm-2b-dpo-fp32-hf:
gsm8k: 58
race-middle: 66
@ -93,6 +108,11 @@ phi-3-mini-4k-instruct-hf:
race-middle: 81
race-high: 84
phi-3-small-8k-instruct-hf:
gsm8k: 88
race-middle: 89
race-high: 88
qwen1.5-0.5b-chat-hf:
gsm8k: 5
race-middle: 55
@ -108,6 +128,11 @@ qwen2-7b-instruct-turbomind:
race-middle: 87
race-high: 89
qwen1.5-0.5b-chat-vllm:
gsm8k: 5
race-middle: 57
race-high: 51
yi-1.5-6b-chat-hf:
gsm8k: 72
race-middle: 88
@ -118,21 +143,26 @@ yi-1.5-9b-chat-hf:
race-middle: 89
race-high: 91
deepseek-moe-16b-base-hf:
gsm8k: 25
race-middle: 35
race-high: 23
lmdeploy-api-test:
gsm8k: 90
race-middle: 95
race-high: 96
deepseek-moe-16b-base-hf:
gsm8k: 25
race-middle: 35
race-high: 23
deepseek-7b-base-turbomind:
gsm8k: 21
race-middle: 42
race-high: 42
deepseek-moe-16b-base-vllm:
gsm8k: 22
race-middle: 35
race-high: 20
gemma-2b-hf:
gsm8k: 19
race-middle: 33
@ -148,6 +178,16 @@ internlm2_5-7b-hf:
race-middle: 92
race-high: 91
internlm2-7b-hf:
gsm8k: 65
race-middle: 77
race-high: 72
internlm2-base-7b-hf:
gsm8k: 5
race-middle: 71
race-high: 74
internlm2_5-7b-turbomind:
gsm8k: 73
race-middle: 90
@ -163,11 +203,6 @@ internlm2-7b-turbomind:
race-middle: 78
race-high: 76
internlm2-base-7b-hf:
gsm8k: 2
race-middle: 71
race-high: 74
internlm2-base-7b-turbomind:
gsm8k: 39
race-middle: 75
@ -183,6 +218,11 @@ mistral-7b-v0.2-hf:
race-middle: 42
race-high: 60
mistral-7b-v0.2-vllm:
gsm8k: 45
race-middle: 42
race-high: 58
qwen1.5-moe-a2.7b-hf:
gsm8k: 64
race-middle: 78
@ -203,6 +243,11 @@ qwen2-7b-turbomind:
race-middle: 88
race-high: 88
qwen1.5-0.5b-vllm:
gsm8k: 12
race-middle: 54
race-high: 59
yi-1.5-6b-hf:
gsm8k: 59
race-middle: 81

View File

@ -18,34 +18,57 @@ env:
HF_DATASETS_OFFLINE: 1
TRANSFORMERS_OFFLINE: 1
HF_HUB_OFFLINE: 1
TRITON_PTXAS_PATH: /usr/local/cuda/bin/ptxas
jobs:
build-pypi:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Set up Python 3.7
uses: actions/setup-python@v1
with:
python-version: 3.7
- name: Build lagent
run: |
pip install wheel
python setup.py sdist bdist_wheel
- name: Upload Artifacts
uses: actions/upload-artifact@v4
with:
if-no-files-found: error
path: dist/*
retention-days: 1
name: my-artifact-${{ github.run_id }}
daily_run_test:
needs: build-pypi
runs-on: self-hosted
environment: 'prod'
timeout-minutes: 240 #4hours
timeout-minutes: 420 #7hours
steps:
- name: Clone repository
uses: actions/checkout@v2
- name: Download Artifacts
uses: actions/download-artifact@v4
with:
name: my-artifact-${{ github.run_id }}
- name: Prepare - create conda env and install torch
run: |
. /cpfs01/shared/public/qa-llm-cicd/miniconda3/bin/activate
conda create -y --name ${{env.CONDA_ENV}} python=3.10
conda activate ${{env.CONDA_ENV}}
pip install opencompass*.whl
pip install /cpfs01/user/qa-llm-cicd/packages/lmdeploy-0.5.0+cu118-cp310-cp310-manylinux2014_x86_64.whl --cache-dir ${{env.PIP_CACHE_PATH}}
pip install /cpfs01/user/qa-llm-cicd/packages/vllm-0.5.2+cu118-cp310-cp310-manylinux1_x86_64.whl --cache-dir ${{env.PIP_CACHE_PATH}}
FLASH_ATTENTION_FORCE_BUILD=TRUE pip install /cpfs01/user/qa-llm-cicd/packages/flash_attn-2.5.8+cu118torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
pip install bitsandbytes
pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --cache-dir ${{env.PIP_CACHE_PATH}} --index-url https://download.pytorch.org/whl/cu118
pip install xformers==0.0.25.post1 --cache-dir ${{env.PIP_CACHE_PATH}}
conda info --envs
- name: Prepare - Pip install code
run: |
. /cpfs01/shared/public/qa-llm-cicd/miniconda3/bin/activate
conda activate ${{env.CONDA_ENV}}
pip install -e . --cache-dir ${{env.PIP_CACHE_PATH}}
pip install human_eval transformers protobuf pytest --cache-dir ${{env.PIP_CACHE_PATH}}
pip install /cpfs01/user/qa-llm-cicd/packages/vllm-0.5.5+cu118-cp310-cp310-manylinux1_x86_64.whl --cache-dir ${{env.PIP_CACHE_PATH}}
pip install human_eval transformers protobuf pytest gguf msgspec librosa vllm_flash_attn bitsandbytes --cache-dir ${{env.PIP_CACHE_PATH}}
pip uninstall torch torchvision torchaudio -y
pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --cache-dir ${{env.PIP_CACHE_PATH}} --index-url https://download.pytorch.org/whl/cu118
FLASH_ATTENTION_FORCE_BUILD=TRUE pip install /cpfs01/user/qa-llm-cicd/packages/flash_attn-2.6.3+cu118torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
pip install /cpfs01/user/qa-llm-cicd/packages/xformers-0.0.27.post2+cu118-cp310-cp310-manylinux2014_x86_64.whl --cache-dir ${{env.PIP_CACHE_PATH}}
conda info --envs
pip list
- name: Prepare - prepare data and hf model
run: |
ln -s ${{env.DATEASET_CACHE_PATH}} data

View File

@ -70,6 +70,7 @@ Just like a compass guides us on our journey, OpenCompass will guide you through
## 🚀 What's New <a><img width="35" height="20" src="https://user-images.githubusercontent.com/12782558/212848161-5e783dd6-11e8-4fe0-bbba-39ffb77730be.png"></a>
- **\[2024.09.05\]** We now support answer extraction through model post-processing to provide a more accurate representation of the model's capabilities. As part of this update, we have integrated [XFinder](https://github.com/IAAR-Shanghai/xFinder) as our first post-processing model. For more detailed information, please refer to the [documentation](opencompass/utils/postprocessors/xfinder/README.md), and give it a try! 🔥🔥🔥
- **\[2024.08.20\]** OpenCompass now supports the [SciCode](https://github.com/scicode-bench/SciCode): A Research Coding Benchmark Curated by Scientists. 🔥🔥🔥
- **\[2024.08.16\]** OpenCompass now supports the brand new long-context language model evaluation benchmark — [RULER](https://arxiv.org/pdf/2404.06654). RULER provides an evaluation of long-context including retrieval, multi-hop tracing, aggregation, and question answering through flexible configurations. Check out the [RULER](configs/datasets/ruler/README.md) evaluation config now! 🔥🔥🔥
- **\[2024.08.09\]** We have released the example data and configuration for the CompassBench-202408, welcome to [CompassBench](https://opencompass.readthedocs.io/zh-cn/latest/advanced_guides/compassbench_intro.html) for more details. 🔥🔥🔥

View File

@ -69,6 +69,7 @@
## 🚀 最新进展 <a><img width="35" height="20" src="https://user-images.githubusercontent.com/12782558/212848161-5e783dd6-11e8-4fe0-bbba-39ffb77730be.png"></a>
- **\[2024.09.05\]** OpenCompass 现在支持通过模型后处理来进行答案提取,以更准确地展示模型的能力。作为此次更新的一部分,我们集成了 [XFinder](https://github.com/IAAR-Shanghai/xFinder) 作为首个后处理模型。具体信息请参阅 [文档](opencompass/utils/postprocessors/xfinder/README.md),欢迎尝试! 🔥🔥🔥
- **\[2024.08.20\]** OpenCompass 现已支持 [SciCode](https://github.com/scicode-bench/SciCode): A Research Coding Benchmark Curated by Scientists。 🔥🔥🔥
- **\[2024.08.16\]** OpenCompass 现已支持全新的长上下文语言模型评估基准——[RULER](https://arxiv.org/pdf/2404.06654)。RULER 通过灵活的配置,提供了对长上下文包括检索、多跳追踪、聚合和问答等多种任务类型的评测,欢迎访问[RULER](configs/datasets/ruler/README.md)。🔥🔥🔥
- **\[2024.07.23\]** 我们支持了[Gemma2](https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315)模型,欢迎试用!🔥🔥🔥

View File

@ -0,0 +1,39 @@
from mmengine.config import read_base
from opencompass.models import Rendu
from opencompass.partitioners import NaivePartitioner
from opencompass.runners.local_api import LocalAPIRunner
from opencompass.tasks import OpenICLInferTask
with read_base():
from ..summarizers.medium import summarizer
from ..datasets.ceval.ceval_gen import ceval_datasets
datasets = [
*ceval_datasets
]
models = [
dict(
abbr='Rendu',
type=Rendu,
path='rendu',
key='xxxxxx',
url='xxxxxx',
generation_kwargs={
'temperature': 0.1,
'top_p': 0.9,
},
query_per_second=10,
max_out_len=2048,
max_seq_len=2048,
batch_size=8),
]
infer = dict(partitioner=dict(type=NaivePartitioner),
runner=dict(
type=LocalAPIRunner,
max_num_workers=1,
concurrent_users=1,
task=dict(type=OpenICLInferTask)), )
work_dir = 'outputs/api_rendu/'

View File

@ -0,0 +1,43 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import GSM8KDataset, gsm8k_postprocess, gsm8k_dataset_postprocess, Gsm8kEvaluator
from opencompass.datasets import MATHEvaluator, math_postprocess_v2
from opencompass.utils.model_postprocessors import xfinder_postprocess
gsm8k_reader_cfg = dict(input_columns=['question'], output_column='answer')
gsm8k_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{question}\nPlease reason step by step, and put your final answer within \\boxed{}.'),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512),
)
gsm8k_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator, version='v2'),
pred_postprocessor=dict(type=math_postprocess_v2),
dataset_postprocessor=dict(type=gsm8k_dataset_postprocess),
model_postprocessor=dict(
type=xfinder_postprocess,
question_type='math',
xfinder_model_name='xFinder-qwen1505',
xfiner_api_url='http://0.0.0.0:23333/v1,http://0.0.0.0:23334/v1')
)
gsm8k_datasets = [
dict(
abbr='gsm8k',
type=GSM8KDataset,
path='opencompass/gsm8k',
reader_cfg=gsm8k_reader_cfg,
infer_cfg=gsm8k_infer_cfg,
eval_cfg=gsm8k_eval_cfg,
)
]

View File

@ -0,0 +1,130 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccwithDetailsEvaluator
from opencompass.datasets import MMLUDataset
from opencompass.utils.text_postprocessors import first_option_postprocess
from opencompass.utils.model_postprocessors import xfinder_postprocess
# None of the mmlu dataset in huggingface is correctly parsed, so we use our own dataset reader
# Please download the dataset from https://people.eecs.berkeley.edu/~hendrycks/data.tar
mmlu_reader_cfg = dict(
input_columns=['input', 'A', 'B', 'C', 'D'],
output_column='target',
train_split='dev')
mmlu_all_sets = [
'college_biology',
'college_chemistry',
'college_computer_science',
'college_mathematics',
'college_physics',
'electrical_engineering',
'astronomy',
'anatomy',
'abstract_algebra',
'machine_learning',
'clinical_knowledge',
'global_facts',
'management',
'nutrition',
'marketing',
'professional_accounting',
'high_school_geography',
'international_law',
'moral_scenarios',
'computer_security',
'high_school_microeconomics',
'professional_law',
'medical_genetics',
'professional_psychology',
'jurisprudence',
'world_religions',
'philosophy',
'virology',
'high_school_chemistry',
'public_relations',
'high_school_macroeconomics',
'human_sexuality',
'elementary_mathematics',
'high_school_physics',
'high_school_computer_science',
'high_school_european_history',
'business_ethics',
'moral_disputes',
'high_school_statistics',
'miscellaneous',
'formal_logic',
'high_school_government_and_politics',
'prehistory',
'security_studies',
'high_school_biology',
'logical_fallacies',
'high_school_world_history',
'professional_medicine',
'high_school_mathematics',
'college_medicine',
'high_school_us_history',
'sociology',
'econometrics',
'high_school_psychology',
'human_aging',
'us_foreign_policy',
'conceptual_physics',
]
mmlu_datasets = []
for _name in mmlu_all_sets:
_hint = f'There is a single choice question about {_name.replace("_", " ")}. Answer the question by replying A, B, C or D.'
mmlu_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
f'{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: '
),
dict(role='BOT', prompt='{target}\n')
]),
),
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin='</E>',
round=[
dict(
role='HUMAN',
prompt=f'{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: '
),
],
),
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=GenInferencer),
)
mmlu_eval_cfg = dict(
evaluator=dict(type=AccwithDetailsEvaluator),
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'),
model_postprocessor=dict(
type=xfinder_postprocess,
question_type='alphabet_option',
xfinder_model_name='xFinder-qwen1505',
xfiner_api_url='http://0.0.0.0:23333/v1,http://0.0.0.0:23334/v1')
)
mmlu_datasets.append(
dict(
abbr=f'lukaemon_mmlu_{_name}',
type=MMLUDataset,
path='opencompass/mmlu',
name=_name,
reader_cfg=mmlu_reader_cfg,
infer_cfg=mmlu_infer_cfg,
eval_cfg=mmlu_eval_cfg,
))
del _name, _hint

View File

@ -31,7 +31,9 @@ needlebench_eval_cfg = dict(
needle_num_list = list(range(2, 100, 3))
document_depth_percent_intervals = 20
repeats = 30
names_path = './data/needlebench/names.json'
path = 'opencompass/needlebench'
file_name = 'names.json'
needlebench_atc_datasets_zh = []
needlebench_atc_datasets_en = []
@ -44,7 +46,8 @@ for num_needles in needle_num_list:
'abbr': f'needlebench_atc_challenge'
f'needle_{num_needles}_en_ordered',
'type': NeedleBenchATCOrderedDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': 'English',
'repeats': repeats,
@ -61,7 +64,8 @@ for num_needles in needle_num_list:
'abbr': f'needlebench_atc_challenge'
f'needle_{num_needles}_zh_ordered',
'type': NeedleBenchATCOrderedDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': 'Chinese',
'repeats': repeats,
@ -77,7 +81,8 @@ for num_needles in needle_num_list:
'abbr': f'needlebench_atc_challenge'
f'needle_{num_needles}_en',
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': 'English',
'repeats': repeats,
@ -93,7 +98,8 @@ for num_needles in needle_num_list:
'abbr': f'needlebench_atc_challenge'
f'needle_{num_needles}_zh',
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': 'Chinese',
'repeats': repeats,

View File

@ -61,7 +61,8 @@ few_shot_prompts = {
# ----------------------- Prompt Settings ----------------------- #
needle_num_list = list(range(2, 20, 1))
names_path = './data/needlebench/names.json'
path = 'opencompass/needlebench'
file_name = 'names.json'
repeats = 10
@ -122,7 +123,8 @@ for _name in list(single_choice_prompts.keys()):
dataset_dict = {
'abbr': abbr,
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': language,
'repeats': repeats,

View File

@ -61,8 +61,8 @@ few_shot_prompts = {
# ----------------------- Prompt Settings ----------------------- #
needle_num_list = list(range(2, 20, 1))
names_path = './data/needlebench/names.json'
path = 'opencompass/needlebench'
file_name = 'names.json'
repeats = 10
# Use Zero-Shot or not
@ -120,7 +120,8 @@ for _name in list(single_choice_prompts.keys()):
dataset_dict = {
'abbr': abbr,
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': language,
'repeats': repeats,

View File

@ -30,7 +30,8 @@ for _name in list(single_choice_prompts.keys()):
dataset_dict = {
'abbr': abbr,
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': language,
'repeats': repeats,

View File

@ -10,14 +10,38 @@ from opencompass.utils.text_postprocessors import first_option_postprocess
few_shot_prompts = {
'single_choice_prompts': {
'single_choice_en_reasoning': [
dict(role='HUMAN', prompt="Question: Sharon House, as Jessica Stewart's father, has a significant impact on Jessica Stewart's upbringing. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Jessica Stewart' can trace back to in the context?\nA. Jack Burch\nB. Jessica Stewart\nC. Sharon House\nD. Carolyn Jackson\n"),
dict(role='BOT', prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n\n- Sharon House, as Jessica Stewart's father, has a significant impact on Jessica Stewart's upbringing.\n\nTherefore, the eldest relative that 'Jessica Stewart' can trace back to in the context is Sharon House. The answer is: C"),
dict(role='HUMAN', prompt="Question: For Robert Hill, Mikayla Scott is not just a paternal grandfather, but also a friend.Jacob Oconnor's paternal grandmother is Robert Hill. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Jacob Oconnor' can trace back to in the context?\nA. Laura Holland\nB. Robert Hill\nC. Jacob Oconnor\nD. Mikayla Scott\n"),
dict(role='BOT', prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n\n-Jacob Oconnor's paternal grandmother is Robert Hill. \n- For Robert Hill, Mikayla Scott is not just a paternal grandfather, but also a friend.\n\nTherefore, the eldest relative that 'Jacob Oconnor' can trace back to in the context is Mikayla Scott. The answer is: D"),
dict(role='HUMAN', prompt="Question: Misty Moore plays the role of Barbara Fuentes's maternal grandfather in Barbara Fuentes's life.Jennifer Garcia, as Michael Martinez's grandmother, has a significant impact on Michael Martinez's upbringing.Michael Martinez is not only Misty Moore's father but also Misty Moore's role model. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Barbara Fuentes' can trace back to in the context?\nA. Michael Martinez\nB. Jennifer Garcia\nC. Misty Moore\nD. Barbara Fuentes\n"),
dict(role='BOT', prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n- Misty Moore plays the role of Barbara Fuentes's maternal grandfather in Barbara Fuentes's life. \n- Michael Martinez is not only Misty Moore's father but also Misty Moore's role model.\n- Jennifer Garcia, as Michael Martinez's grandmother, has a significant impact on Michael Martinez's upbringing.\n\nTherefore, the eldest relative that 'Barbara Fuentes' can trace back to in the context is Jennifer Garcia. The answer is: B"),
dict(role='HUMAN', prompt="Question: Carlos Smith, as Mary Gay's grandfather, has a significant impact on Mary Gay's upbringing.Victor Dean considers Mary Gay as their grandfather.Marcus Miller, as Carlos Smith's paternal grandfather, has a significant impact on Carlos Smith's upbringing.Victor Dean is not only Danielle Yates's maternal grandmother but also Danielle Yates's role model.Danielle Yates is not only David Hernandez's paternal grandmother but also David Hernandez's role model.David Hernandez is Jennifer Williams's mom. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Jennifer Williams' can trace back to in the context?\nA. Marcus Miller\nB. Carlos Smith\nC. Mary Gay\nD. Victor Dean\n"),
dict(role='BOT', prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n\n- David Hernandez is Jennifer Williams's mom.\n- Danielle Yates is not only David Hernandez's paternal grandmother but also David Hernandez's role model.\n- Victor Dean is not only Danielle Yates's maternal grandmother but also Danielle Yates's role model.\n- Victor Dean considers Mary Gay as their grandfather. \n- Carlos Smith, as Mary Gay's grandfather, has a significant impact on Mary Gay's upbringing.\n- Marcus Miller, as Carlos Smith's paternal grandfather, has a significant impact on Carlos Smith's upbringing.\n\nTherefore, the eldest relative that 'Jennifer Williams' can trace back to in the context is Marcus Miller. The answer is: A"),
dict(
role='HUMAN',
prompt="Question: Sharon House, as Jessica Stewart's father, has a significant impact on Jessica Stewart's upbringing. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Jessica Stewart' can trace back to in the context?\nA. Jack Burch\nB. Jessica Stewart\nC. Sharon House\nD. Carolyn Jackson\n",
),
dict(
role='BOT',
prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n\n- Sharon House, as Jessica Stewart's father, has a significant impact on Jessica Stewart's upbringing.\n\nTherefore, the eldest relative that 'Jessica Stewart' can trace back to in the context is Sharon House. The answer is: C",
),
dict(
role='HUMAN',
prompt="Question: For Robert Hill, Mikayla Scott is not just a paternal grandfather, but also a friend.Jacob Oconnor's paternal grandmother is Robert Hill. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Jacob Oconnor' can trace back to in the context?\nA. Laura Holland\nB. Robert Hill\nC. Jacob Oconnor\nD. Mikayla Scott\n",
),
dict(
role='BOT',
prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n\n-Jacob Oconnor's paternal grandmother is Robert Hill. \n- For Robert Hill, Mikayla Scott is not just a paternal grandfather, but also a friend.\n\nTherefore, the eldest relative that 'Jacob Oconnor' can trace back to in the context is Mikayla Scott. The answer is: D",
),
dict(
role='HUMAN',
prompt="Question: Misty Moore plays the role of Barbara Fuentes's maternal grandfather in Barbara Fuentes's life.Jennifer Garcia, as Michael Martinez's grandmother, has a significant impact on Michael Martinez's upbringing.Michael Martinez is not only Misty Moore's father but also Misty Moore's role model. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Barbara Fuentes' can trace back to in the context?\nA. Michael Martinez\nB. Jennifer Garcia\nC. Misty Moore\nD. Barbara Fuentes\n",
),
dict(
role='BOT',
prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n- Misty Moore plays the role of Barbara Fuentes's maternal grandfather in Barbara Fuentes's life. \n- Michael Martinez is not only Misty Moore's father but also Misty Moore's role model.\n- Jennifer Garcia, as Michael Martinez's grandmother, has a significant impact on Michael Martinez's upbringing.\n\nTherefore, the eldest relative that 'Barbara Fuentes' can trace back to in the context is Jennifer Garcia. The answer is: B",
),
dict(
role='HUMAN',
prompt="Question: Carlos Smith, as Mary Gay's grandfather, has a significant impact on Mary Gay's upbringing.Victor Dean considers Mary Gay as their grandfather.Marcus Miller, as Carlos Smith's paternal grandfather, has a significant impact on Carlos Smith's upbringing.Victor Dean is not only Danielle Yates's maternal grandmother but also Danielle Yates's role model.Danielle Yates is not only David Hernandez's paternal grandmother but also David Hernandez's role model.David Hernandez is Jennifer Williams's mom. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Jennifer Williams' can trace back to in the context?\nA. Marcus Miller\nB. Carlos Smith\nC. Mary Gay\nD. Victor Dean\n",
),
dict(
role='BOT',
prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n\n- David Hernandez is Jennifer Williams's mom.\n- Danielle Yates is not only David Hernandez's paternal grandmother but also David Hernandez's role model.\n- Victor Dean is not only Danielle Yates's maternal grandmother but also Danielle Yates's role model.\n- Victor Dean considers Mary Gay as their grandfather. \n- Carlos Smith, as Mary Gay's grandfather, has a significant impact on Mary Gay's upbringing.\n- Marcus Miller, as Carlos Smith's paternal grandfather, has a significant impact on Carlos Smith's upbringing.\n\nTherefore, the eldest relative that 'Jennifer Williams' can trace back to in the context is Marcus Miller. The answer is: A",
),
dict(role='HUMAN', prompt='Question: {question}'),
],
},
@ -25,8 +49,8 @@ few_shot_prompts = {
# ----------------------- Prompt Settings ----------------------- #
needle_num_list = list(range(2, 50, 1))
names_path = './data/needlebench/names.json'
path = 'opencompass/needlebench'
file_name = 'names.json'
repeats = 10
# Use Zero-Shot or not
@ -48,49 +72,54 @@ single_choice_prompts = needlebench_prompts['single_choice_prompts']
for _name in list(single_choice_prompts.keys()):
if with_few_shot:
assert few_shot_samples > 0 and few_shot_samples <= 4
single_choice_prompts[_name] = \
single_choice_prompts[_name][- few_shot_samples * 2 - 1:]
single_choice_prompts[_name] = single_choice_prompts[_name][
-few_shot_samples * 2 - 1 :
]
# ----------------------- Dataset Settings ----------------------- #
needlebench_datasets = []
needlebench_atc_reader_cfg = dict(input_columns=['question'],
output_column='answer')
needlebench_atc_reader_cfg = dict(input_columns=['question'], output_column='answer')
for _name in list(single_choice_prompts.keys()):
needlebench_atc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=(single_choice_prompts[_name])),
template=dict(round=(single_choice_prompts[_name])),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer,),
inferencer=dict(
type=GenInferencer,
),
)
needlebench_atc_eval_cfg = dict(
evaluator=dict(type=CircularEvaluator),
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'))
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'),
)
for num_needles in needle_num_list:
abbr = (f'NeedleBenchATCDataset-'
f'{num_needles}Needle-{"EN" if "en" in _name else "ZH"}')
abbr = (
f'NeedleBenchATCDataset-'
f'{num_needles}Needle-{"EN" if "en" in _name else "ZH"}'
)
language = 'English' if 'en' in _name else 'Chinese'
if 'reasoning' in _name:
abbr += '-Reasoning'
dataset_dict = {
'abbr': abbr,
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name':file_name,
'num_needles': num_needles,
'language': language,
'repeats': repeats,
'with_circular': with_circular_eval,
'reader_cfg': needlebench_atc_reader_cfg,
'infer_cfg': needlebench_atc_infer_cfg,
'eval_cfg': needlebench_atc_eval_cfg
'eval_cfg': needlebench_atc_eval_cfg,
}
needlebench_datasets.append(dataset_dict)

View File

@ -30,7 +30,8 @@ for _name in list(single_choice_prompts.keys()):
dataset_dict = {
'abbr': abbr,
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': language,
'repeats': repeats,

View File

@ -25,8 +25,8 @@ few_shot_prompts = {
# ----------------------- Prompt Settings ----------------------- #
needle_num_list = list(range(2, 80, 1))
names_path = './data/needlebench/names.json'
path = 'opencompass/needlebench'
file_name = 'names.json'
repeats = 10
# Use Zero-Shot or not
@ -84,7 +84,8 @@ for _name in list(single_choice_prompts.keys()):
dataset_dict = {
'abbr': abbr,
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': language,
'repeats': repeats,

View File

@ -41,22 +41,24 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchMultiEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = [20000, 160000, 300000, 440000, 580000, 720000, 860000, 1000000]
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
# ----------English Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needle_file_name = 'multi_needle_reasoning_en.json'
@ -69,7 +71,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -85,7 +87,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_en_datasets.append(dataset_dict)
@ -96,7 +98,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -112,7 +114,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_en_datasets.append(dataset_dict)
@ -123,7 +125,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -139,7 +141,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_en_datasets.append(dataset_dict)
@ -150,7 +152,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -166,12 +168,12 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_en_datasets.append(dataset_dict)
# ----------Chinese Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['zh_finance.jsonl']
needle_file_name = 'multi_needle_reasoning_zh.json'
@ -184,7 +186,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -200,7 +202,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_zh_datasets.append(dataset_dict)
@ -211,7 +213,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -227,7 +229,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_zh_datasets.append(dataset_dict)
@ -238,7 +240,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -254,7 +256,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_zh_datasets.append(dataset_dict)
@ -265,7 +267,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -281,6 +283,6 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_zh_datasets.append(dataset_dict)

View File

@ -41,22 +41,24 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list([20000, 160000, 300000, 440000, 580000, 720000, 860000, 1000000])
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -64,8 +66,7 @@ depths = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_1000k',
'abbr': f'Length{original_context_length}' f'_parallel_en_1000k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -79,7 +80,7 @@ for original_context_length in context_lengths:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -88,8 +89,7 @@ needlebench_zh_datasets = []
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_1000k',
'abbr': f'Length{original_context_length}' f'_parallel_zh_1000k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -103,6 +103,6 @@ for original_context_length in context_lengths:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,21 +41,23 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchOriginEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = [20000, 160000, 300000, 440000, 580000, 720000, 860000, 1000000]
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -64,7 +66,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_en_1000k',
f'Depth{int(depth_percent)}_origin_en_1000k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -78,7 +80,7 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -90,7 +92,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_zh_1000k',
f'Depth{int(depth_percent)}_origin_zh_1000k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -104,6 +106,6 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,16 +41,18 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchMultiEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000])
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
@ -58,7 +60,7 @@ document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
# ----------English Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needle_file_name = 'multi_needle_reasoning_en.json'
@ -71,7 +73,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -87,7 +89,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_en_datasets.append(dataset_dict)
@ -98,7 +100,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -114,7 +116,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_en_datasets.append(dataset_dict)
@ -125,7 +127,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -141,7 +143,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_en_datasets.append(dataset_dict)
@ -152,7 +154,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -168,12 +170,12 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_en_datasets.append(dataset_dict)
# ----------Chinese Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['zh_finance.jsonl']
needle_file_name = 'multi_needle_reasoning_zh.json'
@ -186,7 +188,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -202,7 +204,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_zh_datasets.append(dataset_dict)
@ -213,7 +215,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -229,7 +231,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_zh_datasets.append(dataset_dict)
@ -240,7 +242,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -256,7 +258,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_zh_datasets.append(dataset_dict)
@ -267,7 +269,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -283,6 +285,6 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_zh_datasets.append(dataset_dict)

View File

@ -41,22 +41,24 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000])
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -64,8 +66,7 @@ depths = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_128k',
'abbr': f'Length{original_context_length}' f'_parallel_en_128k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -79,7 +80,7 @@ for original_context_length in context_lengths:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -88,8 +89,7 @@ needlebench_zh_datasets = []
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_128k',
'abbr': f'Length{original_context_length}' f'_parallel_zh_128k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -103,6 +103,6 @@ for original_context_length in context_lengths:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchOriginEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000])
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -66,7 +68,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_en_128k',
f'Depth{int(depth_percent)}_origin_en_128k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -80,7 +82,7 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -92,7 +94,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_zh_128k',
f'Depth{int(depth_percent)}_origin_zh_128k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -106,6 +108,6 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchMultiEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
# context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
context_lengths = [16000, 48000, 80000, 112000, 128000, 144000, 176000, 200000]
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
# ----------English Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needle_file_name = 'multi_needle_reasoning_en.json'
@ -70,7 +72,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -86,7 +88,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_en_datasets.append(dataset_dict)
@ -97,7 +99,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -113,7 +115,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_en_datasets.append(dataset_dict)
@ -124,7 +126,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -140,7 +142,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_en_datasets.append(dataset_dict)
@ -151,7 +153,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -167,12 +169,12 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_en_datasets.append(dataset_dict)
# ----------Chinese Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['zh_finance.jsonl']
needle_file_name = 'multi_needle_reasoning_zh.json'
@ -185,7 +187,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -201,7 +203,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_zh_datasets.append(dataset_dict)
@ -212,7 +214,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -228,7 +230,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_zh_datasets.append(dataset_dict)
@ -239,7 +241,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -255,7 +257,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_zh_datasets.append(dataset_dict)
@ -266,7 +268,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -282,6 +284,6 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
# context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
context_lengths = list([16000, 48000, 80000, 112000, 128000, 144000, 176000, 200000])
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -65,8 +67,7 @@ depths = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_200k',
'abbr': f'Length{original_context_length}' f'_parallel_en_200k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -80,7 +81,7 @@ for original_context_length in context_lengths:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -89,8 +90,7 @@ needlebench_zh_datasets = []
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_200k',
'abbr': f'Length{original_context_length}' f'_parallel_zh_200k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -104,6 +104,6 @@ for original_context_length in context_lengths:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,22 +41,24 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchOriginEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
# context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
context_lengths = [16000, 48000, 80000, 112000, 128000, 144000, 176000, 200000]
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -65,7 +67,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_en_200k',
f'Depth{int(depth_percent)}_origin_en_200k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -79,7 +81,7 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -91,7 +93,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_zh_200k',
f'Depth{int(depth_percent)}_origin_zh_200k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -105,6 +107,6 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchMultiEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
# context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
context_lengths = [32000, 128000, 256000]
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
# ----------English Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needle_file_name = 'multi_needle_reasoning_en.json'
@ -70,7 +72,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -86,7 +88,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_en_datasets.append(dataset_dict)
@ -97,7 +99,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -113,7 +115,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_en_datasets.append(dataset_dict)
@ -124,7 +126,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -140,7 +142,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_en_datasets.append(dataset_dict)
@ -151,7 +153,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -167,12 +169,12 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_en_datasets.append(dataset_dict)
# ----------Chinese Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['zh_finance.jsonl']
needle_file_name = 'multi_needle_reasoning_zh.json'
@ -185,7 +187,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -201,7 +203,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_zh_datasets.append(dataset_dict)
@ -212,7 +214,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -228,7 +230,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_zh_datasets.append(dataset_dict)
@ -239,7 +241,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -255,7 +257,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_zh_datasets.append(dataset_dict)
@ -266,7 +268,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -282,6 +284,6 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
# context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
context_lengths = [32000, 128000, 256000]
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -65,8 +67,7 @@ depths = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_256k',
'abbr': f'Length{original_context_length}' f'_parallel_en_256k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -80,7 +81,7 @@ for original_context_length in context_lengths:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -89,8 +90,7 @@ needlebench_zh_datasets = []
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_256k',
'abbr': f'Length{original_context_length}' f'_parallel_zh_256k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -104,6 +104,6 @@ for original_context_length in context_lengths:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,22 +41,24 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchOriginEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
# context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
context_lengths = [32000, 128000, 256000]
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -65,7 +67,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_en_256k',
f'Depth{int(depth_percent)}_origin_en_256k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -79,7 +81,7 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -91,7 +93,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_zh_256k',
f'Depth{int(depth_percent)}_origin_zh_256k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -105,6 +107,6 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,16 +41,18 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchMultiEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list([9000, 13000, 17000, 21000, 25000, 29000, 31000, 32000])
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
@ -58,7 +60,7 @@ document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
# ----------English Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needle_file_name = 'multi_needle_reasoning_en.json'
@ -71,7 +73,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -87,7 +89,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_en_datasets.append(dataset_dict)
@ -98,7 +100,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -114,7 +116,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_en_datasets.append(dataset_dict)
@ -125,7 +127,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -141,7 +143,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_en_datasets.append(dataset_dict)
@ -152,7 +154,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -168,12 +170,12 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_en_datasets.append(dataset_dict)
# ----------Chinese Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['zh_finance.jsonl']
needle_file_name = 'multi_needle_reasoning_zh.json'
@ -186,7 +188,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -202,7 +204,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_zh_datasets.append(dataset_dict)
@ -213,7 +215,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -229,7 +231,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_zh_datasets.append(dataset_dict)
@ -240,7 +242,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -256,7 +258,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_zh_datasets.append(dataset_dict)
@ -267,7 +269,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -283,6 +285,6 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_zh_datasets.append(dataset_dict)

View File

@ -41,22 +41,24 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list([9000, 13000, 17000, 21000, 25000, 29000, 31000, 32000])
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -64,8 +66,7 @@ depths = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_32k',
'abbr': f'Length{original_context_length}' f'_parallel_en_32k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -79,7 +80,7 @@ for original_context_length in context_lengths:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -88,8 +89,7 @@ needlebench_zh_datasets = []
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_32k',
'abbr': f'Length{original_context_length}' f'_parallel_zh_32k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -103,6 +103,6 @@ for original_context_length in context_lengths:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchOriginEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list([9000, 13000, 17000, 21000, 25000, 29000, 31000, 32000])
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -66,7 +68,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_en_32k',
f'Depth{int(depth_percent)}_origin_en_32k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -80,7 +82,7 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -92,7 +94,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_zh_32k',
f'Depth{int(depth_percent)}_origin_zh_32k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -106,6 +108,6 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchMultiEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list(range(1000, 5000, 1000))
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
# ----------English Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needle_file_name = 'multi_needle_reasoning_en.json'
@ -68,11 +70,11 @@ language = 'English'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -88,7 +90,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_en_datasets.append(dataset_dict)
@ -97,11 +99,11 @@ needlebench_3needle_en_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -117,7 +119,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_en_datasets.append(dataset_dict)
@ -126,11 +128,11 @@ needlebench_4needle_en_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -146,7 +148,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_en_datasets.append(dataset_dict)
@ -155,11 +157,11 @@ needlebench_5needle_en_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -175,12 +177,12 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_en_datasets.append(dataset_dict)
# ----------Chinese Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['zh_finance.jsonl']
needle_file_name = 'multi_needle_reasoning_zh.json'
@ -191,11 +193,11 @@ language = 'Chinese'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -211,7 +213,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_zh_datasets.append(dataset_dict)
@ -220,11 +222,11 @@ needlebench_3needle_zh_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -240,7 +242,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_zh_datasets.append(dataset_dict)
@ -249,11 +251,11 @@ needlebench_4needle_zh_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -269,7 +271,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_zh_datasets.append(dataset_dict)
@ -278,11 +280,11 @@ needlebench_5needle_zh_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -298,6 +300,6 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_zh_datasets.append(dataset_dict)

View File

@ -41,34 +41,35 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list(range(1000, 5000, 1000))
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
depths_float = generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type)
document_depth_percent_intervals, document_depth_percent_interval_type
)
depths = [int(depth) for depth in depths_float]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_4k',
'abbr': f'Length{original_context_length}' f'_parallel_en_4k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -82,7 +83,7 @@ for original_context_length in context_lengths:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -91,8 +92,7 @@ needlebench_zh_datasets = []
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_4k',
'abbr': f'Length{original_context_length}' f'_parallel_zh_4k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -106,6 +106,6 @@ for original_context_length in context_lengths:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,33 +41,35 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchOriginEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list(range(1000, 5000, 1000))
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_en_4k',
f'Depth{int(depth_percent)}_origin_en_4k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -81,7 +83,7 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -91,11 +93,11 @@ needle_file_name = 'needles.jsonl'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_zh_4k',
f'Depth{int(depth_percent)}_origin_zh_4k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -109,6 +111,6 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchMultiEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list(range(5000, 9000, 1000))
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
# ----------English Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needle_file_name = 'multi_needle_reasoning_en.json'
@ -68,11 +70,11 @@ language = 'English'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -88,7 +90,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_en_datasets.append(dataset_dict)
@ -97,11 +99,11 @@ needlebench_3needle_en_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -117,7 +119,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_en_datasets.append(dataset_dict)
@ -126,11 +128,11 @@ needlebench_4needle_en_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -146,7 +148,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_en_datasets.append(dataset_dict)
@ -155,11 +157,11 @@ needlebench_5needle_en_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -175,12 +177,12 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_en_datasets.append(dataset_dict)
# ----------Chinese Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['zh_finance.jsonl']
needle_file_name = 'multi_needle_reasoning_zh.json'
@ -191,11 +193,11 @@ language = 'Chinese'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -211,7 +213,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_zh_datasets.append(dataset_dict)
@ -220,11 +222,11 @@ needlebench_3needle_zh_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -240,7 +242,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_zh_datasets.append(dataset_dict)
@ -249,11 +251,11 @@ needlebench_4needle_zh_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -269,7 +271,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_zh_datasets.append(dataset_dict)
@ -278,11 +280,11 @@ needlebench_5needle_zh_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -298,6 +300,6 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_zh_datasets.append(dataset_dict)

View File

@ -41,34 +41,35 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list(range(5000, 9000, 1000))
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
depths_float = generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type)
document_depth_percent_intervals, document_depth_percent_interval_type
)
depths = [int(depth) for depth in depths_float]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_8k',
'abbr': f'Length{original_context_length}' f'_parallel_en_8k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -82,7 +83,7 @@ for original_context_length in context_lengths:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -91,8 +92,7 @@ needlebench_zh_datasets = []
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_8k',
'abbr': f'Length{original_context_length}' f'_parallel_zh_8k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -106,6 +106,6 @@ for original_context_length in context_lengths:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,36 +41,38 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list(range(5000, 9000, 1000))
document_depth_percent_intervals_list = [1, 5, 10, 15, 20]
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
for document_depth_percent_intervals in document_depth_percent_intervals_list:
depths_float = generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type)
document_depth_percent_intervals, document_depth_percent_interval_type
)
depths = [int(depth) for depth in depths_float]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_8k_batch{document_depth_percent_intervals}',
f'_parallel_en_8k_batch{document_depth_percent_intervals}',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -84,7 +86,7 @@ for document_depth_percent_intervals in document_depth_percent_intervals_list:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -94,14 +96,14 @@ needle_file_name = 'needles.jsonl'
for document_depth_percent_intervals in document_depth_percent_intervals_list:
depths_float = generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type)
document_depth_percent_intervals, document_depth_percent_interval_type
)
depths = [int(depth) for depth in depths_float]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_8k_batch{document_depth_percent_intervals}',
f'_parallel_zh_8k_batch{document_depth_percent_intervals}',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -115,6 +117,6 @@ for document_depth_percent_intervals in document_depth_percent_intervals_list:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,33 +41,35 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchOriginEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list(range(5000, 9000, 1000))
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_en_8k',
f'Depth{int(depth_percent)}_origin_en_8k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -81,7 +83,7 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -91,11 +93,11 @@ needle_file_name = 'needles.jsonl'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_zh_8k',
f'Depth{int(depth_percent)}_origin_zh_8k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -109,6 +111,6 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -0,0 +1,37 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import NaturalQuestionDataset, NQEvaluator
from opencompass.utils.model_postprocessors import xfinder_postprocess
nq_reader_cfg = dict(
input_columns=['question'], output_column='answer', train_split='test')
nq_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='Question: {question}?\nAnswer: '),
], )),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
nq_eval_cfg = dict(
evaluator=dict(type=NQEvaluator), pred_role='BOT',
model_postprocessor=dict(
type=xfinder_postprocess,
question_type='short_text',
xfinder_model_name='xFinder-qwen1505',
xfiner_api_url='http://0.0.0.0:23333/v1,http://0.0.0.0:23334/v1')
)
nq_datasets = [
dict(
type=NaturalQuestionDataset,
abbr='nq',
path='opencompass/natural_question',
reader_cfg=nq_reader_cfg,
infer_cfg=nq_infer_cfg,
eval_cfg=nq_eval_cfg)
]

View File

@ -28,6 +28,7 @@ internlm_chat_20b = dict(
type=TurboMindAPIModel,
abbr='internlm-chat-20b-turbomind',
api_addr='http://0.0.0.0:23333',
api_key='internlm-chat-20b', # api_key
max_out_len=100,
max_seq_len=2048,
batch_size=8,
@ -40,6 +41,7 @@ internlm_chat_7b = dict(
type=TurboMindAPIModel,
abbr='internlm-chat-7b-turbomind',
api_addr='http://0.0.0.0:23333',
api_key='interlm-chat-7b', # api_key
max_out_len=100,
max_seq_len=2048,
batch_size=16,

View File

@ -10,9 +10,9 @@ settings = [
('llama-2-70b-vllm', 'meta-llama/Llama-2-70b-hf', 4),
('llama-3-8b-vllm', 'meta-llama/Meta-Llama-3-8B', 1),
('llama-3-70b-vllm', 'meta-llama/Meta-Llama-3-70B', 4),
('llama-3.1-8b-instruct-vllm', 'meta-llama/Meta-Llama-3.1-8B-Instruct', 1)
('llama-3.1-70b-instruct-vllm', 'meta-llama/Meta-Llama-3.1-70B-Instruct', 4)
('llama-3.1-405b-fp8-instruct-vllm', 'meta-llama/Meta-Llama-3.1-405B-Instruct-FP8', 8)
('llama-3.1-8b-instruct-vllm', 'meta-llama/Meta-Llama-3.1-8B-Instruct', 1),
('llama-3.1-70b-instruct-vllm', 'meta-llama/Meta-Llama-3.1-70B-Instruct', 4),
('llama-3.1-405b-fp8-instruct-vllm', 'meta-llama/Meta-Llama-3.1-405B-Instruct-FP8', 8),
]
models = []

View File

@ -23,9 +23,9 @@ def create_m_rs_names_list(context_lengths, depths, needle_counts,
multi_needle_en_list.extend(names_list)
elif language == 'zh':
multi_needle_zh_list.extend(names_list)
names_dict['Multi-Needle-Reasoning(M-RS)'] = multi_needle_list
names_dict['Multi-Needle-Reasoning-EN'] = multi_needle_en_list
names_dict['Multi-Needle-Reasoning-ZH'] = multi_needle_zh_list
names_dict[f'Multi-Needle-Reasoning(M-RS)-{dataset_size.upper()}'] = multi_needle_list
names_dict[f'Multi-Needle-Reasoning-EN-{dataset_size.upper()}'] = multi_needle_en_list
names_dict[f'Multi-Needle-Reasoning-ZH-{dataset_size.upper()}'] = multi_needle_zh_list
return names_dict
@ -56,9 +56,9 @@ def create_summarizer(context_lengths, depths, dataset_size,
single_needle_en_list.extend(names_list)
elif language == 'zh':
single_needle_zh_list.extend(names_list)
names_dict['Single-Needle-Retrieval(S-RT)'] = single_needle_list
names_dict['Single-Needle-Retrieval-EN'] = single_needle_en_list
names_dict['Single-Needle-Retrieval-ZH'] = single_needle_zh_list
names_dict[f'Single-Needle-Retrieval(S-RT)-{dataset_size.upper()}'] = single_needle_list
names_dict[f'Single-Needle-Retrieval-EN-{dataset_size.upper()}'] = single_needle_en_list
names_dict[f'Single-Needle-Retrieval-ZH-{dataset_size.upper()}'] = single_needle_zh_list
parallel_list = []
parallel_en_list = []
@ -74,39 +74,39 @@ def create_summarizer(context_lengths, depths, dataset_size,
parallel_en_list.extend(names_list)
elif language == 'zh':
parallel_zh_list.extend(names_list)
names_dict['Multi-Needle-Retrieval(M-RT)'] = parallel_list
names_dict['Multi-Needle-Retrieval-EN'] = parallel_en_list
names_dict['Multi-Needle-Retrieval-ZH'] = parallel_zh_list
names_dict[f'Multi-Needle-Retrieval(M-RT)-{dataset_size.upper()}'] = parallel_list
names_dict[f'Multi-Needle-Retrieval-EN-{dataset_size.upper()}'] = parallel_en_list
names_dict[f'Multi-Needle-Retrieval-ZH-{dataset_size.upper()}'] = parallel_zh_list
summary_groups = [
{'name': key, 'subsets': value} for key, value in names_dict.items()
]
summary_groups.append({
'name': 'NeedleBench-Overall-Score',
'subsets': [['Single-Needle-Retrieval(S-RT)', 'naive_average'],
['Multi-Needle-Reasoning(M-RS)', 'naive_average'],
['Multi-Needle-Retrieval(M-RT)', 'average_score']],
'weights': {'Single-Needle-Retrieval(S-RT)': 0.4,
'Multi-Needle-Reasoning(M-RS)': 0.3,
'Multi-Needle-Retrieval(M-RT)': 0.3}})
'name': f'NeedleBench-Overall-Score-{dataset_size.upper()}',
'subsets': [[f'Single-Needle-Retrieval(S-RT)-{dataset_size.upper()}', 'naive_average'],
[f'Multi-Needle-Reasoning(M-RS)-{dataset_size.upper()}', 'naive_average'],
[f'Multi-Needle-Retrieval(M-RT)-{dataset_size.upper()}', 'average_score']],
'weights': {f'Single-Needle-Retrieval(S-RT)-{dataset_size.upper()}': 0.4,
f'Multi-Needle-Reasoning(M-RS)-{dataset_size.upper()}': 0.3,
f'Multi-Needle-Retrieval(M-RT)-{dataset_size.upper()}': 0.3}})
summarizer_config = {
'type': NeedleBenchSummarizer,
'summary_groups': summary_groups,
'dataset_abbrs': [
'NeedleBench-Overall-Score',
f'NeedleBench-Overall-Score-{dataset_size.upper()}',
f'--------- NeedleBench-{dataset_size.upper()}-Single-Needle-Retrieval ---------',
'Single-Needle-Retrieval(S-RT)',
'Single-Needle-Retrieval-EN',
'Single-Needle-Retrieval-ZH',
f'Single-Needle-Retrieval(S-RT)-{dataset_size.upper()}',
f'Single-Needle-Retrieval-EN-{dataset_size.upper()}',
f'Single-Needle-Retrieval-ZH-{dataset_size.upper()}',
f'--------- NeedleBench-{dataset_size.upper()}-Multi-Needle-Retrieval ---------',
'Multi-Needle-Retrieval(M-RT)',
'Multi-Needle-Retrieval-EN',
'Multi-Needle-Retrieval-ZH',
f'Multi-Needle-Retrieval(M-RT)-{dataset_size.upper()}',
f'Multi-Needle-Retrieval-EN-{dataset_size.upper()}',
f'Multi-Needle-Retrieval-ZH-{dataset_size.upper()}',
f'--------- NeedleBench-{dataset_size.upper()}-Multi-Needle-Reasoning ---------',
'Multi-Needle-Reasoning(M-RS)',
'Multi-Needle-Reasoning-EN',
'Multi-Needle-Reasoning-ZH',
f'Multi-Needle-Reasoning(M-RS)-{dataset_size.upper()}',
f'Multi-Needle-Reasoning-EN-{dataset_size.upper()}',
f'Multi-Needle-Reasoning-ZH-{dataset_size.upper()}',
f'2-Needle-EN-{dataset_size.upper()}',
f'2-Needle-ZH-{dataset_size.upper()}',
f'3-Needle-EN-{dataset_size.upper()}',

View File

@ -73,6 +73,6 @@ You are expected to get the evaluation results after the inference and evaluatio
**Note**:
- If you want to pass more arguments for `engine_config`和`gen_config` in the evaluation config file, please refer to [TurbomindEngineConfig](https://lmdeploy.readthedocs.io/en/latest/inference/pipeline.html#turbomindengineconfig)
and [EngineGenerationConfig](https://lmdeploy.readthedocs.io/en/latest/inference/pipeline.html#generationconfig)
and [GenerationConfig](https://lmdeploy.readthedocs.io/en/latest/inference/pipeline.html#generationconfig)
- If you evaluate the InternLM Chat model, please use configuration file `eval_internlm_chat_turbomind.py`
- If you evaluate the InternLM 7B model, please modify `eval_internlm_turbomind.py` or `eval_internlm_chat_turbomind.py` by changing to the setting `models = [internlm_7b]` in the last line.

View File

@ -70,6 +70,6 @@ python run.py configs/eval_internlm_turbomind.py -w outputs/turbomind/internlm-2
**注:**
- 如果想在测评配置文件中`engine_config`和`gen_config`字段传递更多参数,请参考[TurbomindEngineConfig](https://lmdeploy.readthedocs.io/zh-cn/latest/inference/pipeline.html#turbomindengineconfig) 和 [EngineGenerationConfig](https://lmdeploy.readthedocs.io/zh-cn/latest/inference/pipeline.html#generationconfig)
- 如果想在测评配置文件中`engine_config`和`gen_config`字段传递更多参数,请参考[TurbomindEngineConfig](https://lmdeploy.readthedocs.io/zh-cn/latest/inference/pipeline.html#turbomindengineconfig) 和 [GenerationConfig](https://lmdeploy.readthedocs.io/zh-cn/latest/inference/pipeline.html#generationconfig)
- 如果评测 InternLM Chat 模型,请使用配置文件 `eval_internlm_chat_turbomind.py`
- 如果评测 InternLM 7B 模型,请修改 `eval_internlm_turbomind.py` 或者 `eval_internlm_chat_turbomind.py`。将`models`字段配置为`models = [internlm_7b]` 。

View File

@ -0,0 +1,43 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import GSM8KDataset, gsm8k_postprocess, gsm8k_dataset_postprocess, Gsm8kEvaluator
from opencompass.datasets import MATHEvaluator, math_postprocess_v2
from opencompass.utils.model_postprocessors import xfinder_postprocess
gsm8k_reader_cfg = dict(input_columns=['question'], output_column='answer')
gsm8k_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{question}\nPlease reason step by step, and put your final answer within \\boxed{}.'),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512),
)
gsm8k_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator, version='v2'),
pred_postprocessor=dict(type=math_postprocess_v2),
dataset_postprocessor=dict(type=gsm8k_dataset_postprocess),
model_postprocessor=dict(
type=xfinder_postprocess,
question_type='math',
xfinder_model_name='xFinder-qwen1505',
xfiner_api_url='http://0.0.0.0:23333/v1,http://0.0.0.0:23334/v1')
)
gsm8k_datasets = [
dict(
abbr='gsm8k',
type=GSM8KDataset,
path='opencompass/gsm8k',
reader_cfg=gsm8k_reader_cfg,
infer_cfg=gsm8k_infer_cfg,
eval_cfg=gsm8k_eval_cfg,
)
]

View File

@ -0,0 +1,130 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccwithDetailsEvaluator
from opencompass.datasets import MMLUDataset
from opencompass.utils.text_postprocessors import first_option_postprocess
from opencompass.utils.model_postprocessors import xfinder_postprocess
# None of the mmlu dataset in huggingface is correctly parsed, so we use our own dataset reader
# Please download the dataset from https://people.eecs.berkeley.edu/~hendrycks/data.tar
mmlu_reader_cfg = dict(
input_columns=['input', 'A', 'B', 'C', 'D'],
output_column='target',
train_split='dev')
mmlu_all_sets = [
'college_biology',
'college_chemistry',
'college_computer_science',
'college_mathematics',
'college_physics',
'electrical_engineering',
'astronomy',
'anatomy',
'abstract_algebra',
'machine_learning',
'clinical_knowledge',
'global_facts',
'management',
'nutrition',
'marketing',
'professional_accounting',
'high_school_geography',
'international_law',
'moral_scenarios',
'computer_security',
'high_school_microeconomics',
'professional_law',
'medical_genetics',
'professional_psychology',
'jurisprudence',
'world_religions',
'philosophy',
'virology',
'high_school_chemistry',
'public_relations',
'high_school_macroeconomics',
'human_sexuality',
'elementary_mathematics',
'high_school_physics',
'high_school_computer_science',
'high_school_european_history',
'business_ethics',
'moral_disputes',
'high_school_statistics',
'miscellaneous',
'formal_logic',
'high_school_government_and_politics',
'prehistory',
'security_studies',
'high_school_biology',
'logical_fallacies',
'high_school_world_history',
'professional_medicine',
'high_school_mathematics',
'college_medicine',
'high_school_us_history',
'sociology',
'econometrics',
'high_school_psychology',
'human_aging',
'us_foreign_policy',
'conceptual_physics',
]
mmlu_datasets = []
for _name in mmlu_all_sets:
_hint = f'There is a single choice question about {_name.replace("_", " ")}. Answer the question by replying A, B, C or D.'
mmlu_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
f'{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: '
),
dict(role='BOT', prompt='{target}\n')
]),
),
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin='</E>',
round=[
dict(
role='HUMAN',
prompt=f'{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: '
),
],
),
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=GenInferencer),
)
mmlu_eval_cfg = dict(
evaluator=dict(type=AccwithDetailsEvaluator),
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'),
model_postprocessor=dict(
type=xfinder_postprocess,
question_type='alphabet_option',
xfinder_model_name='xFinder-qwen1505',
xfiner_api_url='http://0.0.0.0:23333/v1,http://0.0.0.0:23334/v1')
)
mmlu_datasets.append(
dict(
abbr=f'lukaemon_mmlu_{_name}',
type=MMLUDataset,
path='opencompass/mmlu',
name=_name,
reader_cfg=mmlu_reader_cfg,
infer_cfg=mmlu_infer_cfg,
eval_cfg=mmlu_eval_cfg,
))
del _name, _hint

View File

@ -31,7 +31,9 @@ needlebench_eval_cfg = dict(
needle_num_list = list(range(2, 100, 3))
document_depth_percent_intervals = 20
repeats = 30
names_path = './data/needlebench/names.json'
path = 'opencompass/needlebench'
file_name = 'names.json'
needlebench_atc_datasets_zh = []
needlebench_atc_datasets_en = []
@ -44,7 +46,8 @@ for num_needles in needle_num_list:
'abbr': f'needlebench_atc_challenge'
f'needle_{num_needles}_en_ordered',
'type': NeedleBenchATCOrderedDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': 'English',
'repeats': repeats,
@ -61,7 +64,8 @@ for num_needles in needle_num_list:
'abbr': f'needlebench_atc_challenge'
f'needle_{num_needles}_zh_ordered',
'type': NeedleBenchATCOrderedDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': 'Chinese',
'repeats': repeats,
@ -77,7 +81,8 @@ for num_needles in needle_num_list:
'abbr': f'needlebench_atc_challenge'
f'needle_{num_needles}_en',
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': 'English',
'repeats': repeats,
@ -93,7 +98,8 @@ for num_needles in needle_num_list:
'abbr': f'needlebench_atc_challenge'
f'needle_{num_needles}_zh',
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': 'Chinese',
'repeats': repeats,

View File

@ -61,7 +61,8 @@ few_shot_prompts = {
# ----------------------- Prompt Settings ----------------------- #
needle_num_list = list(range(2, 20, 1))
names_path = './data/needlebench/names.json'
path = 'opencompass/needlebench'
file_name = 'names.json'
repeats = 10
@ -122,7 +123,8 @@ for _name in list(single_choice_prompts.keys()):
dataset_dict = {
'abbr': abbr,
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': language,
'repeats': repeats,

View File

@ -61,8 +61,8 @@ few_shot_prompts = {
# ----------------------- Prompt Settings ----------------------- #
needle_num_list = list(range(2, 20, 1))
names_path = './data/needlebench/names.json'
path = 'opencompass/needlebench'
file_name = 'names.json'
repeats = 10
# Use Zero-Shot or not
@ -120,7 +120,8 @@ for _name in list(single_choice_prompts.keys()):
dataset_dict = {
'abbr': abbr,
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': language,
'repeats': repeats,

View File

@ -30,7 +30,8 @@ for _name in list(single_choice_prompts.keys()):
dataset_dict = {
'abbr': abbr,
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': language,
'repeats': repeats,

View File

@ -10,14 +10,38 @@ from opencompass.utils.text_postprocessors import first_option_postprocess
few_shot_prompts = {
'single_choice_prompts': {
'single_choice_en_reasoning': [
dict(role='HUMAN', prompt="Question: Sharon House, as Jessica Stewart's father, has a significant impact on Jessica Stewart's upbringing. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Jessica Stewart' can trace back to in the context?\nA. Jack Burch\nB. Jessica Stewart\nC. Sharon House\nD. Carolyn Jackson\n"),
dict(role='BOT', prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n\n- Sharon House, as Jessica Stewart's father, has a significant impact on Jessica Stewart's upbringing.\n\nTherefore, the eldest relative that 'Jessica Stewart' can trace back to in the context is Sharon House. The answer is: C"),
dict(role='HUMAN', prompt="Question: For Robert Hill, Mikayla Scott is not just a paternal grandfather, but also a friend.Jacob Oconnor's paternal grandmother is Robert Hill. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Jacob Oconnor' can trace back to in the context?\nA. Laura Holland\nB. Robert Hill\nC. Jacob Oconnor\nD. Mikayla Scott\n"),
dict(role='BOT', prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n\n-Jacob Oconnor's paternal grandmother is Robert Hill. \n- For Robert Hill, Mikayla Scott is not just a paternal grandfather, but also a friend.\n\nTherefore, the eldest relative that 'Jacob Oconnor' can trace back to in the context is Mikayla Scott. The answer is: D"),
dict(role='HUMAN', prompt="Question: Misty Moore plays the role of Barbara Fuentes's maternal grandfather in Barbara Fuentes's life.Jennifer Garcia, as Michael Martinez's grandmother, has a significant impact on Michael Martinez's upbringing.Michael Martinez is not only Misty Moore's father but also Misty Moore's role model. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Barbara Fuentes' can trace back to in the context?\nA. Michael Martinez\nB. Jennifer Garcia\nC. Misty Moore\nD. Barbara Fuentes\n"),
dict(role='BOT', prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n- Misty Moore plays the role of Barbara Fuentes's maternal grandfather in Barbara Fuentes's life. \n- Michael Martinez is not only Misty Moore's father but also Misty Moore's role model.\n- Jennifer Garcia, as Michael Martinez's grandmother, has a significant impact on Michael Martinez's upbringing.\n\nTherefore, the eldest relative that 'Barbara Fuentes' can trace back to in the context is Jennifer Garcia. The answer is: B"),
dict(role='HUMAN', prompt="Question: Carlos Smith, as Mary Gay's grandfather, has a significant impact on Mary Gay's upbringing.Victor Dean considers Mary Gay as their grandfather.Marcus Miller, as Carlos Smith's paternal grandfather, has a significant impact on Carlos Smith's upbringing.Victor Dean is not only Danielle Yates's maternal grandmother but also Danielle Yates's role model.Danielle Yates is not only David Hernandez's paternal grandmother but also David Hernandez's role model.David Hernandez is Jennifer Williams's mom. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Jennifer Williams' can trace back to in the context?\nA. Marcus Miller\nB. Carlos Smith\nC. Mary Gay\nD. Victor Dean\n"),
dict(role='BOT', prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n\n- David Hernandez is Jennifer Williams's mom.\n- Danielle Yates is not only David Hernandez's paternal grandmother but also David Hernandez's role model.\n- Victor Dean is not only Danielle Yates's maternal grandmother but also Danielle Yates's role model.\n- Victor Dean considers Mary Gay as their grandfather. \n- Carlos Smith, as Mary Gay's grandfather, has a significant impact on Mary Gay's upbringing.\n- Marcus Miller, as Carlos Smith's paternal grandfather, has a significant impact on Carlos Smith's upbringing.\n\nTherefore, the eldest relative that 'Jennifer Williams' can trace back to in the context is Marcus Miller. The answer is: A"),
dict(
role='HUMAN',
prompt="Question: Sharon House, as Jessica Stewart's father, has a significant impact on Jessica Stewart's upbringing. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Jessica Stewart' can trace back to in the context?\nA. Jack Burch\nB. Jessica Stewart\nC. Sharon House\nD. Carolyn Jackson\n",
),
dict(
role='BOT',
prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n\n- Sharon House, as Jessica Stewart's father, has a significant impact on Jessica Stewart's upbringing.\n\nTherefore, the eldest relative that 'Jessica Stewart' can trace back to in the context is Sharon House. The answer is: C",
),
dict(
role='HUMAN',
prompt="Question: For Robert Hill, Mikayla Scott is not just a paternal grandfather, but also a friend.Jacob Oconnor's paternal grandmother is Robert Hill. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Jacob Oconnor' can trace back to in the context?\nA. Laura Holland\nB. Robert Hill\nC. Jacob Oconnor\nD. Mikayla Scott\n",
),
dict(
role='BOT',
prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n\n-Jacob Oconnor's paternal grandmother is Robert Hill. \n- For Robert Hill, Mikayla Scott is not just a paternal grandfather, but also a friend.\n\nTherefore, the eldest relative that 'Jacob Oconnor' can trace back to in the context is Mikayla Scott. The answer is: D",
),
dict(
role='HUMAN',
prompt="Question: Misty Moore plays the role of Barbara Fuentes's maternal grandfather in Barbara Fuentes's life.Jennifer Garcia, as Michael Martinez's grandmother, has a significant impact on Michael Martinez's upbringing.Michael Martinez is not only Misty Moore's father but also Misty Moore's role model. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Barbara Fuentes' can trace back to in the context?\nA. Michael Martinez\nB. Jennifer Garcia\nC. Misty Moore\nD. Barbara Fuentes\n",
),
dict(
role='BOT',
prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n- Misty Moore plays the role of Barbara Fuentes's maternal grandfather in Barbara Fuentes's life. \n- Michael Martinez is not only Misty Moore's father but also Misty Moore's role model.\n- Jennifer Garcia, as Michael Martinez's grandmother, has a significant impact on Michael Martinez's upbringing.\n\nTherefore, the eldest relative that 'Barbara Fuentes' can trace back to in the context is Jennifer Garcia. The answer is: B",
),
dict(
role='HUMAN',
prompt="Question: Carlos Smith, as Mary Gay's grandfather, has a significant impact on Mary Gay's upbringing.Victor Dean considers Mary Gay as their grandfather.Marcus Miller, as Carlos Smith's paternal grandfather, has a significant impact on Carlos Smith's upbringing.Victor Dean is not only Danielle Yates's maternal grandmother but also Danielle Yates's role model.Danielle Yates is not only David Hernandez's paternal grandmother but also David Hernandez's role model.David Hernandez is Jennifer Williams's mom. \nGiven the scrambled family relationships described above, who is the eldest relative that 'Jennifer Williams' can trace back to in the context?\nA. Marcus Miller\nB. Carlos Smith\nC. Mary Gay\nD. Victor Dean\n",
),
dict(
role='BOT',
prompt="Answer: Based on the provided information, we can construct the following family relationship chain\n\n- David Hernandez is Jennifer Williams's mom.\n- Danielle Yates is not only David Hernandez's paternal grandmother but also David Hernandez's role model.\n- Victor Dean is not only Danielle Yates's maternal grandmother but also Danielle Yates's role model.\n- Victor Dean considers Mary Gay as their grandfather. \n- Carlos Smith, as Mary Gay's grandfather, has a significant impact on Mary Gay's upbringing.\n- Marcus Miller, as Carlos Smith's paternal grandfather, has a significant impact on Carlos Smith's upbringing.\n\nTherefore, the eldest relative that 'Jennifer Williams' can trace back to in the context is Marcus Miller. The answer is: A",
),
dict(role='HUMAN', prompt='Question: {question}'),
],
},
@ -25,8 +49,8 @@ few_shot_prompts = {
# ----------------------- Prompt Settings ----------------------- #
needle_num_list = list(range(2, 50, 1))
names_path = './data/needlebench/names.json'
path = 'opencompass/needlebench'
file_name = 'names.json'
repeats = 10
# Use Zero-Shot or not
@ -48,49 +72,54 @@ single_choice_prompts = needlebench_prompts['single_choice_prompts']
for _name in list(single_choice_prompts.keys()):
if with_few_shot:
assert few_shot_samples > 0 and few_shot_samples <= 4
single_choice_prompts[_name] = \
single_choice_prompts[_name][- few_shot_samples * 2 - 1:]
single_choice_prompts[_name] = single_choice_prompts[_name][
-few_shot_samples * 2 - 1 :
]
# ----------------------- Dataset Settings ----------------------- #
needlebench_datasets = []
needlebench_atc_reader_cfg = dict(input_columns=['question'],
output_column='answer')
needlebench_atc_reader_cfg = dict(input_columns=['question'], output_column='answer')
for _name in list(single_choice_prompts.keys()):
needlebench_atc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=(single_choice_prompts[_name])),
template=dict(round=(single_choice_prompts[_name])),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer,),
inferencer=dict(
type=GenInferencer,
),
)
needlebench_atc_eval_cfg = dict(
evaluator=dict(type=CircularEvaluator),
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'))
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'),
)
for num_needles in needle_num_list:
abbr = (f'NeedleBenchATCDataset-'
f'{num_needles}Needle-{"EN" if "en" in _name else "ZH"}')
abbr = (
f'NeedleBenchATCDataset-'
f'{num_needles}Needle-{"EN" if "en" in _name else "ZH"}'
)
language = 'English' if 'en' in _name else 'Chinese'
if 'reasoning' in _name:
abbr += '-Reasoning'
dataset_dict = {
'abbr': abbr,
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name':file_name,
'num_needles': num_needles,
'language': language,
'repeats': repeats,
'with_circular': with_circular_eval,
'reader_cfg': needlebench_atc_reader_cfg,
'infer_cfg': needlebench_atc_infer_cfg,
'eval_cfg': needlebench_atc_eval_cfg
'eval_cfg': needlebench_atc_eval_cfg,
}
needlebench_datasets.append(dataset_dict)

View File

@ -30,7 +30,8 @@ for _name in list(single_choice_prompts.keys()):
dataset_dict = {
'abbr': abbr,
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': language,
'repeats': repeats,

View File

@ -25,8 +25,8 @@ few_shot_prompts = {
# ----------------------- Prompt Settings ----------------------- #
needle_num_list = list(range(2, 80, 1))
names_path = './data/needlebench/names.json'
path = 'opencompass/needlebench'
file_name = 'names.json'
repeats = 10
# Use Zero-Shot or not
@ -84,7 +84,8 @@ for _name in list(single_choice_prompts.keys()):
dataset_dict = {
'abbr': abbr,
'type': NeedleBenchATCDataset,
'path': names_path,
'path': path,
'file_name': file_name,
'num_needles': num_needles,
'language': language,
'repeats': repeats,

View File

@ -41,22 +41,24 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchMultiEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = [20000, 160000, 300000, 440000, 580000, 720000, 860000, 1000000]
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
# ----------English Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needle_file_name = 'multi_needle_reasoning_en.json'
@ -69,7 +71,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -85,7 +87,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_en_datasets.append(dataset_dict)
@ -96,7 +98,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -112,7 +114,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_en_datasets.append(dataset_dict)
@ -123,7 +125,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -139,7 +141,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_en_datasets.append(dataset_dict)
@ -150,7 +152,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -166,12 +168,12 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_en_datasets.append(dataset_dict)
# ----------Chinese Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['zh_finance.jsonl']
needle_file_name = 'multi_needle_reasoning_zh.json'
@ -184,7 +186,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -200,7 +202,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_zh_datasets.append(dataset_dict)
@ -211,7 +213,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -227,7 +229,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_zh_datasets.append(dataset_dict)
@ -238,7 +240,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -254,7 +256,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_zh_datasets.append(dataset_dict)
@ -265,7 +267,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_1000k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -281,6 +283,6 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_zh_datasets.append(dataset_dict)

View File

@ -41,22 +41,24 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list([20000, 160000, 300000, 440000, 580000, 720000, 860000, 1000000])
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -64,8 +66,7 @@ depths = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_1000k',
'abbr': f'Length{original_context_length}' f'_parallel_en_1000k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -79,7 +80,7 @@ for original_context_length in context_lengths:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -88,8 +89,7 @@ needlebench_zh_datasets = []
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_1000k',
'abbr': f'Length{original_context_length}' f'_parallel_zh_1000k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -103,6 +103,6 @@ for original_context_length in context_lengths:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,21 +41,23 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchOriginEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = [20000, 160000, 300000, 440000, 580000, 720000, 860000, 1000000]
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -64,7 +66,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_en_1000k',
f'Depth{int(depth_percent)}_origin_en_1000k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -78,7 +80,7 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -90,7 +92,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_zh_1000k',
f'Depth{int(depth_percent)}_origin_zh_1000k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -104,6 +106,6 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,16 +41,18 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchMultiEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000])
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
@ -58,7 +60,7 @@ document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
# ----------English Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needle_file_name = 'multi_needle_reasoning_en.json'
@ -71,7 +73,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -87,7 +89,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_en_datasets.append(dataset_dict)
@ -98,7 +100,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -114,7 +116,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_en_datasets.append(dataset_dict)
@ -125,7 +127,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -141,7 +143,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_en_datasets.append(dataset_dict)
@ -152,7 +154,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -168,12 +170,12 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_en_datasets.append(dataset_dict)
# ----------Chinese Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['zh_finance.jsonl']
needle_file_name = 'multi_needle_reasoning_zh.json'
@ -186,7 +188,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -202,7 +204,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_zh_datasets.append(dataset_dict)
@ -213,7 +215,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -229,7 +231,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_zh_datasets.append(dataset_dict)
@ -240,7 +242,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -256,7 +258,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_zh_datasets.append(dataset_dict)
@ -267,7 +269,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -283,6 +285,6 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_zh_datasets.append(dataset_dict)

View File

@ -41,22 +41,24 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000])
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -64,8 +66,7 @@ depths = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_128k',
'abbr': f'Length{original_context_length}' f'_parallel_en_128k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -79,7 +80,7 @@ for original_context_length in context_lengths:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -88,8 +89,7 @@ needlebench_zh_datasets = []
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_128k',
'abbr': f'Length{original_context_length}' f'_parallel_zh_128k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -103,6 +103,6 @@ for original_context_length in context_lengths:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchOriginEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000])
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -66,7 +68,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_en_128k',
f'Depth{int(depth_percent)}_origin_en_128k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -80,7 +82,7 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -92,7 +94,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_zh_128k',
f'Depth{int(depth_percent)}_origin_zh_128k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -106,6 +108,6 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchMultiEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
# context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
context_lengths = [16000, 48000, 80000, 112000, 128000, 144000, 176000, 200000]
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
# ----------English Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needle_file_name = 'multi_needle_reasoning_en.json'
@ -70,7 +72,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -86,7 +88,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_en_datasets.append(dataset_dict)
@ -97,7 +99,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -113,7 +115,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_en_datasets.append(dataset_dict)
@ -124,7 +126,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -140,7 +142,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_en_datasets.append(dataset_dict)
@ -151,7 +153,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -167,12 +169,12 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_en_datasets.append(dataset_dict)
# ----------Chinese Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['zh_finance.jsonl']
needle_file_name = 'multi_needle_reasoning_zh.json'
@ -185,7 +187,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -201,7 +203,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_zh_datasets.append(dataset_dict)
@ -212,7 +214,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -228,7 +230,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_zh_datasets.append(dataset_dict)
@ -239,7 +241,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -255,7 +257,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_zh_datasets.append(dataset_dict)
@ -266,7 +268,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -282,6 +284,6 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
# context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
context_lengths = list([16000, 48000, 80000, 112000, 128000, 144000, 176000, 200000])
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -65,8 +67,7 @@ depths = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_200k',
'abbr': f'Length{original_context_length}' f'_parallel_en_200k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -80,7 +81,7 @@ for original_context_length in context_lengths:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -89,8 +90,7 @@ needlebench_zh_datasets = []
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_200k',
'abbr': f'Length{original_context_length}' f'_parallel_zh_200k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -104,6 +104,6 @@ for original_context_length in context_lengths:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,22 +41,24 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchOriginEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
# context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
context_lengths = [16000, 48000, 80000, 112000, 128000, 144000, 176000, 200000]
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -65,7 +67,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_en_200k',
f'Depth{int(depth_percent)}_origin_en_200k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -79,7 +81,7 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -91,7 +93,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_zh_200k',
f'Depth{int(depth_percent)}_origin_zh_200k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -105,6 +107,6 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchMultiEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
# context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
context_lengths = [32000, 128000, 256000]
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
# ----------English Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needle_file_name = 'multi_needle_reasoning_en.json'
@ -70,7 +72,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -86,7 +88,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_en_datasets.append(dataset_dict)
@ -97,7 +99,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -113,7 +115,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_en_datasets.append(dataset_dict)
@ -124,7 +126,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -140,7 +142,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_en_datasets.append(dataset_dict)
@ -151,7 +153,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -167,12 +169,12 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_en_datasets.append(dataset_dict)
# ----------Chinese Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['zh_finance.jsonl']
needle_file_name = 'multi_needle_reasoning_zh.json'
@ -185,7 +187,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -201,7 +203,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_zh_datasets.append(dataset_dict)
@ -212,7 +214,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -228,7 +230,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_zh_datasets.append(dataset_dict)
@ -239,7 +241,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -255,7 +257,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_zh_datasets.append(dataset_dict)
@ -266,7 +268,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_256k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -282,6 +284,6 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
# context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
context_lengths = [32000, 128000, 256000]
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -65,8 +67,7 @@ depths = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_256k',
'abbr': f'Length{original_context_length}' f'_parallel_en_256k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -80,7 +81,7 @@ for original_context_length in context_lengths:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -89,8 +90,7 @@ needlebench_zh_datasets = []
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_256k',
'abbr': f'Length{original_context_length}' f'_parallel_zh_256k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -104,6 +104,6 @@ for original_context_length in context_lengths:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,22 +41,24 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchOriginEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
# context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
context_lengths = [32000, 128000, 256000]
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -65,7 +67,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_en_256k',
f'Depth{int(depth_percent)}_origin_en_256k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -79,7 +81,7 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -91,7 +93,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_zh_256k',
f'Depth{int(depth_percent)}_origin_zh_256k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -105,6 +107,6 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,16 +41,18 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchMultiEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list([9000, 13000, 17000, 21000, 25000, 29000, 31000, 32000])
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
@ -58,7 +60,7 @@ document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
# ----------English Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needle_file_name = 'multi_needle_reasoning_en.json'
@ -71,7 +73,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -87,7 +89,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_en_datasets.append(dataset_dict)
@ -98,7 +100,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -114,7 +116,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_en_datasets.append(dataset_dict)
@ -125,7 +127,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -141,7 +143,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_en_datasets.append(dataset_dict)
@ -152,7 +154,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -168,12 +170,12 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_en_datasets.append(dataset_dict)
# ----------Chinese Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['zh_finance.jsonl']
needle_file_name = 'multi_needle_reasoning_zh.json'
@ -186,7 +188,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -202,7 +204,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_zh_datasets.append(dataset_dict)
@ -213,7 +215,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -229,7 +231,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_zh_datasets.append(dataset_dict)
@ -240,7 +242,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -256,7 +258,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_zh_datasets.append(dataset_dict)
@ -267,7 +269,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -283,6 +285,6 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_zh_datasets.append(dataset_dict)

View File

@ -41,22 +41,24 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list([9000, 13000, 17000, 21000, 25000, 29000, 31000, 32000])
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -64,8 +66,7 @@ depths = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_32k',
'abbr': f'Length{original_context_length}' f'_parallel_en_32k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -79,7 +80,7 @@ for original_context_length in context_lengths:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -88,8 +89,7 @@ needlebench_zh_datasets = []
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_32k',
'abbr': f'Length{original_context_length}' f'_parallel_zh_32k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -103,6 +103,6 @@ for original_context_length in context_lengths:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchOriginEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list([9000, 13000, 17000, 21000, 25000, 29000, 31000, 32000])
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
@ -66,7 +68,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_en_32k',
f'Depth{int(depth_percent)}_origin_en_32k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -80,7 +82,7 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -92,7 +94,7 @@ for original_context_length in context_lengths:
for depth_percent in depths_list:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_zh_32k',
f'Depth{int(depth_percent)}_origin_zh_32k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -106,6 +108,6 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchMultiEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list(range(1000, 5000, 1000))
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
# ----------English Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needle_file_name = 'multi_needle_reasoning_en.json'
@ -68,11 +70,11 @@ language = 'English'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -88,7 +90,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_en_datasets.append(dataset_dict)
@ -97,11 +99,11 @@ needlebench_3needle_en_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -117,7 +119,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_en_datasets.append(dataset_dict)
@ -126,11 +128,11 @@ needlebench_4needle_en_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -146,7 +148,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_en_datasets.append(dataset_dict)
@ -155,11 +157,11 @@ needlebench_5needle_en_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -175,12 +177,12 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_en_datasets.append(dataset_dict)
# ----------Chinese Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['zh_finance.jsonl']
needle_file_name = 'multi_needle_reasoning_zh.json'
@ -191,11 +193,11 @@ language = 'Chinese'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -211,7 +213,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_zh_datasets.append(dataset_dict)
@ -220,11 +222,11 @@ needlebench_3needle_zh_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -240,7 +242,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_zh_datasets.append(dataset_dict)
@ -249,11 +251,11 @@ needlebench_4needle_zh_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -269,7 +271,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_zh_datasets.append(dataset_dict)
@ -278,11 +280,11 @@ needlebench_5needle_zh_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_4k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -298,6 +300,6 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_zh_datasets.append(dataset_dict)

View File

@ -41,34 +41,35 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list(range(1000, 5000, 1000))
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
depths_float = generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type)
document_depth_percent_intervals, document_depth_percent_interval_type
)
depths = [int(depth) for depth in depths_float]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_4k',
'abbr': f'Length{original_context_length}' f'_parallel_en_4k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -82,7 +83,7 @@ for original_context_length in context_lengths:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -91,8 +92,7 @@ needlebench_zh_datasets = []
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_4k',
'abbr': f'Length{original_context_length}' f'_parallel_zh_4k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -106,6 +106,6 @@ for original_context_length in context_lengths:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,33 +41,35 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchOriginEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list(range(1000, 5000, 1000))
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_en_4k',
f'Depth{int(depth_percent)}_origin_en_4k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -81,7 +83,7 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -91,11 +93,11 @@ needle_file_name = 'needles.jsonl'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_zh_4k',
f'Depth{int(depth_percent)}_origin_zh_4k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -109,6 +111,6 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,23 +41,25 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchMultiEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list(range(5000, 9000, 1000))
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
# ----------English Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needle_file_name = 'multi_needle_reasoning_en.json'
@ -68,11 +70,11 @@ language = 'English'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -88,7 +90,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_en_datasets.append(dataset_dict)
@ -97,11 +99,11 @@ needlebench_3needle_en_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -117,7 +119,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_en_datasets.append(dataset_dict)
@ -126,11 +128,11 @@ needlebench_4needle_en_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -146,7 +148,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_en_datasets.append(dataset_dict)
@ -155,11 +157,11 @@ needlebench_5needle_en_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_en_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -175,12 +177,12 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_en_datasets.append(dataset_dict)
# ----------Chinese Version----------
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['zh_finance.jsonl']
needle_file_name = 'multi_needle_reasoning_zh.json'
@ -191,11 +193,11 @@ language = 'Chinese'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -211,7 +213,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_2needle_zh_datasets.append(dataset_dict)
@ -220,11 +222,11 @@ needlebench_3needle_zh_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -240,7 +242,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_3needle_zh_datasets.append(dataset_dict)
@ -249,11 +251,11 @@ needlebench_4needle_zh_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -269,7 +271,7 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_4needle_zh_datasets.append(dataset_dict)
@ -278,11 +280,11 @@ needlebench_5needle_zh_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
f'Depth{int(depth_percent)}_{num_needles}needle_zh_8k',
'type': NeedleBenchMultiDataset,
'path': base_path,
'length': original_context_length,
@ -298,6 +300,6 @@ for original_context_length in context_lengths:
'diff': diff,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_5needle_zh_datasets.append(dataset_dict)

View File

@ -41,34 +41,35 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list(range(5000, 9000, 1000))
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
depths_float = generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type)
document_depth_percent_intervals, document_depth_percent_interval_type
)
depths = [int(depth) for depth in depths_float]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_8k',
'abbr': f'Length{original_context_length}' f'_parallel_en_8k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -82,7 +83,7 @@ for original_context_length in context_lengths:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -91,8 +92,7 @@ needlebench_zh_datasets = []
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_8k',
'abbr': f'Length{original_context_length}' f'_parallel_zh_8k',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -106,6 +106,6 @@ for original_context_length in context_lengths:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,36 +41,38 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchParallelEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list(range(5000, 9000, 1000))
document_depth_percent_intervals_list = [1, 5, 10, 15, 20]
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
for document_depth_percent_intervals in document_depth_percent_intervals_list:
depths_float = generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type)
document_depth_percent_intervals, document_depth_percent_interval_type
)
depths = [int(depth) for depth in depths_float]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_en_8k_batch{document_depth_percent_intervals}',
f'_parallel_en_8k_batch{document_depth_percent_intervals}',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -84,7 +86,7 @@ for document_depth_percent_intervals in document_depth_percent_intervals_list:
'language': 'English',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -94,14 +96,14 @@ needle_file_name = 'needles.jsonl'
for document_depth_percent_intervals in document_depth_percent_intervals_list:
depths_float = generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type)
document_depth_percent_intervals, document_depth_percent_interval_type
)
depths = [int(depth) for depth in depths_float]
for original_context_length in context_lengths:
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'_parallel_zh_8k_batch{document_depth_percent_intervals}',
f'_parallel_zh_8k_batch{document_depth_percent_intervals}',
'type': NeedleBenchParallelDataset,
'path': base_path,
'needle_file_name': needle_file_name,
@ -115,6 +117,6 @@ for document_depth_percent_intervals in document_depth_percent_intervals_list:
'language': 'Chinese',
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -41,33 +41,35 @@ needlebench_infer_cfg = dict(
dict(role='HUMAN', prompt='{prompt}'),
dict(role='BOT', prompt='{answer}\n'),
]
)
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
inferencer=dict(type=GenInferencer),
)
needlebench_eval_cfg = dict(
evaluator=dict(type=NeedleBenchOriginEvaluator),
pred_postprocessor=dict(type=needlebench_postprocess),
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
pred_role='BOT')
pred_role='BOT',
)
context_lengths = list(range(5000, 9000, 1000))
document_depth_percent_intervals = 20
document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench'
base_path = 'opencompass/needlebench'
file_list = ['PaulGrahamEssays.jsonl']
needlebench_en_datasets = []
needle_file_name = 'needles.jsonl'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_en_8k',
f'Depth{int(depth_percent)}_origin_en_8k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -81,7 +83,7 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_en_datasets.append(dataset_dict)
@ -91,11 +93,11 @@ needle_file_name = 'needles.jsonl'
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
document_depth_percent_intervals, document_depth_percent_interval_type
):
dataset_dict = {
'abbr': f'Length{original_context_length}'
f'Depth{int(depth_percent)}_origin_zh_8k',
f'Depth{int(depth_percent)}_origin_zh_8k',
'type': NeedleBenchOriginDataset,
'path': base_path,
'length': original_context_length,
@ -109,6 +111,6 @@ for original_context_length in context_lengths:
'needle_file_name': needle_file_name,
'reader_cfg': needlebench_reader_cfg,
'infer_cfg': needlebench_infer_cfg,
'eval_cfg': needlebench_eval_cfg
'eval_cfg': needlebench_eval_cfg,
}
needlebench_zh_datasets.append(dataset_dict)

View File

@ -0,0 +1,37 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import NaturalQuestionDataset, NQEvaluator
from opencompass.utils.model_postprocessors import xfinder_postprocess
nq_reader_cfg = dict(
input_columns=['question'], output_column='answer', train_split='test')
nq_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='Question: {question}?\nAnswer: '),
], )),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
nq_eval_cfg = dict(
evaluator=dict(type=NQEvaluator), pred_role='BOT',
model_postprocessor=dict(
type=xfinder_postprocess,
question_type='short_text',
xfinder_model_name='xFinder-qwen1505',
xfiner_api_url='http://0.0.0.0:23333/v1,http://0.0.0.0:23334/v1')
)
nq_datasets = [
dict(
type=NaturalQuestionDataset,
abbr='nq',
path='opencompass/natural_question',
reader_cfg=nq_reader_cfg,
infer_cfg=nq_infer_cfg,
eval_cfg=nq_eval_cfg)
]

View File

@ -10,9 +10,9 @@ settings = [
('llama-2-70b-vllm', 'meta-llama/Llama-2-70b-hf', 4),
('llama-3-8b-vllm', 'meta-llama/Meta-Llama-3-8B', 1),
('llama-3-70b-vllm', 'meta-llama/Meta-Llama-3-70B', 4),
('llama-3.1-8b-instruct-vllm', 'meta-llama/Meta-Llama-3.1-8B-Instruct', 1)
('llama-3.1-70b-instruct-vllm', 'meta-llama/Meta-Llama-3.1-70B-Instruct', 4)
('llama-3.1-405b-fp8-instruct-vllm', 'meta-llama/Meta-Llama-3.1-405B-Instruct-FP8', 8)
('llama-3.1-8b-instruct-vllm', 'meta-llama/Meta-Llama-3.1-8B-Instruct', 1),
('llama-3.1-70b-instruct-vllm', 'meta-llama/Meta-Llama-3.1-70B-Instruct', 4),
('llama-3.1-405b-fp8-instruct-vllm', 'meta-llama/Meta-Llama-3.1-405B-Instruct-FP8', 8),
]
models = []

View File

@ -23,9 +23,9 @@ def create_m_rs_names_list(context_lengths, depths, needle_counts,
multi_needle_en_list.extend(names_list)
elif language == 'zh':
multi_needle_zh_list.extend(names_list)
names_dict['Multi-Needle-Reasoning(M-RS)'] = multi_needle_list
names_dict['Multi-Needle-Reasoning-EN'] = multi_needle_en_list
names_dict['Multi-Needle-Reasoning-ZH'] = multi_needle_zh_list
names_dict[f'Multi-Needle-Reasoning(M-RS)-{dataset_size.upper()}'] = multi_needle_list
names_dict[f'Multi-Needle-Reasoning-EN-{dataset_size.upper()}'] = multi_needle_en_list
names_dict[f'Multi-Needle-Reasoning-ZH-{dataset_size.upper()}'] = multi_needle_zh_list
return names_dict
@ -56,9 +56,9 @@ def create_summarizer(context_lengths, depths, dataset_size,
single_needle_en_list.extend(names_list)
elif language == 'zh':
single_needle_zh_list.extend(names_list)
names_dict['Single-Needle-Retrieval(S-RT)'] = single_needle_list
names_dict['Single-Needle-Retrieval-EN'] = single_needle_en_list
names_dict['Single-Needle-Retrieval-ZH'] = single_needle_zh_list
names_dict[f'Single-Needle-Retrieval(S-RT)-{dataset_size.upper()}'] = single_needle_list
names_dict[f'Single-Needle-Retrieval-EN-{dataset_size.upper()}'] = single_needle_en_list
names_dict[f'Single-Needle-Retrieval-ZH-{dataset_size.upper()}'] = single_needle_zh_list
parallel_list = []
parallel_en_list = []
@ -74,39 +74,39 @@ def create_summarizer(context_lengths, depths, dataset_size,
parallel_en_list.extend(names_list)
elif language == 'zh':
parallel_zh_list.extend(names_list)
names_dict['Multi-Needle-Retrieval(M-RT)'] = parallel_list
names_dict['Multi-Needle-Retrieval-EN'] = parallel_en_list
names_dict['Multi-Needle-Retrieval-ZH'] = parallel_zh_list
names_dict[f'Multi-Needle-Retrieval(M-RT)-{dataset_size.upper()}'] = parallel_list
names_dict[f'Multi-Needle-Retrieval-EN-{dataset_size.upper()}'] = parallel_en_list
names_dict[f'Multi-Needle-Retrieval-ZH-{dataset_size.upper()}'] = parallel_zh_list
summary_groups = [
{'name': key, 'subsets': value} for key, value in names_dict.items()
]
summary_groups.append({
'name': 'NeedleBench-Overall-Score',
'subsets': [['Single-Needle-Retrieval(S-RT)', 'naive_average'],
['Multi-Needle-Reasoning(M-RS)', 'naive_average'],
['Multi-Needle-Retrieval(M-RT)', 'average_score']],
'weights': {'Single-Needle-Retrieval(S-RT)': 0.4,
'Multi-Needle-Reasoning(M-RS)': 0.3,
'Multi-Needle-Retrieval(M-RT)': 0.3}})
'name': f'NeedleBench-Overall-Score-{dataset_size.upper()}',
'subsets': [[f'Single-Needle-Retrieval(S-RT)-{dataset_size.upper()}', 'naive_average'],
[f'Multi-Needle-Reasoning(M-RS)-{dataset_size.upper()}', 'naive_average'],
[f'Multi-Needle-Retrieval(M-RT)-{dataset_size.upper()}', 'average_score']],
'weights': {f'Single-Needle-Retrieval(S-RT)-{dataset_size.upper()}': 0.4,
f'Multi-Needle-Reasoning(M-RS)-{dataset_size.upper()}': 0.3,
f'Multi-Needle-Retrieval(M-RT)-{dataset_size.upper()}': 0.3}})
summarizer_config = {
'type': NeedleBenchSummarizer,
'summary_groups': summary_groups,
'dataset_abbrs': [
'NeedleBench-Overall-Score',
f'NeedleBench-Overall-Score-{dataset_size.upper()}',
f'--------- NeedleBench-{dataset_size.upper()}-Single-Needle-Retrieval ---------',
'Single-Needle-Retrieval(S-RT)',
'Single-Needle-Retrieval-EN',
'Single-Needle-Retrieval-ZH',
f'Single-Needle-Retrieval(S-RT)-{dataset_size.upper()}',
f'Single-Needle-Retrieval-EN-{dataset_size.upper()}',
f'Single-Needle-Retrieval-ZH-{dataset_size.upper()}',
f'--------- NeedleBench-{dataset_size.upper()}-Multi-Needle-Retrieval ---------',
'Multi-Needle-Retrieval(M-RT)',
'Multi-Needle-Retrieval-EN',
'Multi-Needle-Retrieval-ZH',
f'Multi-Needle-Retrieval(M-RT)-{dataset_size.upper()}',
f'Multi-Needle-Retrieval-EN-{dataset_size.upper()}',
f'Multi-Needle-Retrieval-ZH-{dataset_size.upper()}',
f'--------- NeedleBench-{dataset_size.upper()}-Multi-Needle-Reasoning ---------',
'Multi-Needle-Reasoning(M-RS)',
'Multi-Needle-Reasoning-EN',
'Multi-Needle-Reasoning-ZH',
f'Multi-Needle-Reasoning(M-RS)-{dataset_size.upper()}',
f'Multi-Needle-Reasoning-EN-{dataset_size.upper()}',
f'Multi-Needle-Reasoning-ZH-{dataset_size.upper()}',
f'2-Needle-EN-{dataset_size.upper()}',
f'2-Needle-ZH-{dataset_size.upper()}',
f'3-Needle-EN-{dataset_size.upper()}',

View File

@ -1,11 +1,13 @@
# flake8: noqa
import json
import os
import random
from datasets import Dataset
from opencompass.datasets.base import BaseDataset
from opencompass.registry import LOAD_DATASET
from opencompass.utils import get_data_path
@LOAD_DATASET.register_module()
@ -14,13 +16,20 @@ class NeedleBenchATCDataset(BaseDataset):
@staticmethod
def load(
path,
file_name: str,
num_needles: int,
language: str,
repeats: int,
):
data = {'prompt': [], 'answer': []}
path = get_data_path(path)
if os.environ.get('DATASET_SOURCE') == 'HF':
from huggingface_hub import snapshot_download
with open(path, 'r', encoding='utf-8') as file:
path = snapshot_download(repo_id=path, repo_type='dataset')
file_path = os.path.join(path, file_name)
with open(file_path, 'r', encoding='utf-8') as file:
names_data = json.load(file)
all_names = names_data[language].split(',')
@ -30,7 +39,16 @@ class NeedleBenchATCDataset(BaseDataset):
if language == 'Chinese':
relationship_terms = [
'父亲', '母亲', '爸爸', '妈妈', '爷爷', '奶奶', '姥姥', '姥爷', '外公', '外婆'
'父亲',
'母亲',
'爸爸',
'妈妈',
'爷爷',
'奶奶',
'姥姥',
'姥爷',
'外公',
'外婆',
]
relationship_templates = [
@ -46,10 +64,16 @@ class NeedleBenchATCDataset(BaseDataset):
elif language == 'English':
relationship_terms = [
'father', 'mother', 'dad', 'mom', 'grandfather',
'grandmother', 'maternal grandmother',
'maternal grandfather', 'paternal grandfather',
'paternal grandmother'
'father',
'mother',
'dad',
'mom',
'grandfather',
'grandmother',
'maternal grandmother',
'maternal grandfather',
'paternal grandfather',
'paternal grandmother',
]
relationship_templates = [
@ -96,21 +120,20 @@ class NeedleBenchATCDataset(BaseDataset):
# Generating the prompt based on the language
if language == 'Chinese':
prompt = (f"""
prompt = f"""
在上面提供的打乱的家族关系文本中'{last_person}'的能够向上追溯到的最年长的亲人是谁
例如
例子1.如果张强的父亲是马克除此以外提供的文本中没有更多关于亲属关系的信息那么在提供的文本中张强能够向上追溯到的最年长的亲人就是马克
例子2.如果李明的姥姥是张红而张红的父亲是张强除此以外提供的文本中没有更多关于亲属关系的信息那么在提供的文本中李明能够向上追溯到的最年长的亲人就是张强
例子3.如果小明是张红的曾孙女张红的祖母是王华王华的父亲是王刚除此以外提供的文本中没有更多关于亲属关系的信息那么小明能够向上追溯到的最年长的亲人就是王刚
""")
"""
elif language == 'English':
prompt = (f"""
prompt = f"""
Given the scrambled family relationships described above, who is the eldest relative that '{last_person}' can trace back to in the context?
For example:
Example 1: If Zhang Qiang's father is Mark, and no further information about familial relationships is provided in the text, then the oldest relative Zhang Qiang can trace back to in the provided text is Mark.
Example 2: If Li Ming's grandmother is Zhang Hong, and Zhang Hong's father is Zhang Qiang, and no further information about familial relationships is provided in the text, then the oldest relative Li Ming can trace back to in the provided text is Zhang Qiang.
Example 3: If Xiao Ming is Zhang Hong's great-granddaughter, Zhang Hong's grandmother is Wang Hua, and Wang Hua's father is Wang Gang, and no further information about familial relationships is provided in the text, then the oldest relative Xiao Ming can trace back to in the provided text is Wang Gang."""
)
else:
prompt = 'Language not supported.'
raise Exception('Unsupported language specified. '
@ -135,13 +158,20 @@ class NeedleBenchATCOrderedDataset(BaseDataset):
@staticmethod
def load(
path,
file_name,
num_needles: int,
language: str,
repeats: int,
):
data = {'prompt': [], 'answer': []}
path = get_data_path(path)
if os.environ.get('DATASET_SOURCE') == 'HF':
from huggingface_hub import snapshot_download
with open(path, 'r', encoding='utf-8') as file:
path = snapshot_download(repo_id=path, repo_type='dataset')
file_path = os.path.join(path, file_name)
with open(file_path, 'r', encoding='utf-8') as file:
names_data = json.load(file)
all_names = names_data[language].split(',')
@ -151,7 +181,16 @@ class NeedleBenchATCOrderedDataset(BaseDataset):
if language == 'Chinese':
relationship_terms = [
'父亲', '母亲', '爸爸', '妈妈', '爷爷', '奶奶', '姥姥', '姥爷', '外公', '外婆'
'父亲',
'母亲',
'爸爸',
'妈妈',
'爷爷',
'奶奶',
'姥姥',
'姥爷',
'外公',
'外婆',
]
relationship_templates = [
@ -167,10 +206,16 @@ class NeedleBenchATCOrderedDataset(BaseDataset):
elif language == 'English':
relationship_terms = [
'father', 'mother', 'dad', 'mom', 'grandfather',
'grandmother', 'maternal grandmother',
'maternal grandfather', 'paternal grandfather',
'paternal grandmother'
'father',
'mother',
'dad',
'mom',
'grandfather',
'grandmother',
'maternal grandmother',
'maternal grandfather',
'paternal grandfather',
'paternal grandmother',
]
relationship_templates = [
@ -214,21 +259,20 @@ class NeedleBenchATCOrderedDataset(BaseDataset):
# Generating the prompt based on the language
if language == 'Chinese':
prompt = (f"""
prompt = f"""
在上面提供的打乱的家族关系文本中'{last_person}'的能够向上追溯到的最年长的亲人是谁
例如
例子1.如果张强的父亲是马克除此以外提供的文本中没有更多关于亲属关系的信息那么在提供的文本中张强能够向上追溯到的最年长的亲人就是马克
例子2.如果李明的姥姥是张红而张红的父亲是张强除此以外提供的文本中没有更多关于亲属关系的信息那么在提供的文本中李明能够向上追溯到的最年长的亲人就是张强
例子3.如果小明是张红的曾孙女张红的祖母是王华王华的父亲是王刚除此以外提供的文本中没有更多关于亲属关系的信息那么小明能够向上追溯到的最年长的亲人就是王刚
""")
"""
elif language == 'English':
prompt = (f"""
prompt = f"""
Given the scrambled family relationships described above, who is the eldest relative that '{last_person}' can trace back to in the context?
For example:
Example 1: If Zhang Qiang's father is Mark, and no further information about familial relationships is provided in the text, then the oldest relative Zhang Qiang can trace back to in the provided text is Mark.
Example 2: If Li Ming's grandmother is Zhang Hong, and Zhang Hong's father is Zhang Qiang, and no further information about familial relationships is provided in the text, then the oldest relative Li Ming can trace back to in the provided text is Zhang Qiang.
Example 3: If Xiao Ming is Zhang Hong's great-granddaughter, Zhang Hong's grandmother is Wang Hua, and Wang Hua's father is Wang Gang, and no further information about familial relationships is provided in the text, then the oldest relative Xiao Ming can trace back to in the provided text is Wang Gang."""
)
else:
prompt = 'Language not supported.'
raise Exception('Unsupported language specified. '

View File

@ -1,11 +1,13 @@
# flake8: noqa
import copy
import json
import os
import random
from datasets import Dataset
from opencompass.registry import LOAD_DATASET
from opencompass.utils import get_data_path
from ..base import BaseDataset
@ -46,11 +48,14 @@ def get_circular_example(entry, id):
class NeedleBenchATCDataset(BaseDataset):
@staticmethod
def load(path: str,
num_needles: int,
language: str,
repeats: int,
with_circular: bool = True):
def load(
path: str,
file_name: str,
num_needles: int,
language: str,
repeats: int,
with_circular: bool = True,
):
"""NeedleBenthATC Dataset.
Args:
@ -61,8 +66,14 @@ class NeedleBenchATCDataset(BaseDataset):
"""
data = []
entry = {}
path = get_data_path(path)
if os.environ.get('DATASET_SOURCE') == 'HF':
from huggingface_hub import snapshot_download
with open(path, 'r', encoding='utf-8') as file:
path = snapshot_download(repo_id=path, repo_type='dataset')
file_path = os.path.join(path, file_name)
with open(file_path, 'r', encoding='utf-8') as file:
names_data = json.load(file)
all_names = names_data[language].split(',')
@ -73,7 +84,16 @@ class NeedleBenchATCDataset(BaseDataset):
if language == 'Chinese':
relationship_terms = [
'父亲', '母亲', '爸爸', '妈妈', '爷爷', '奶奶', '姥姥', '姥爷', '外公', '外婆'
'父亲',
'母亲',
'爸爸',
'妈妈',
'爷爷',
'奶奶',
'姥姥',
'姥爷',
'外公',
'外婆',
]
relationship_templates = [
@ -89,10 +109,16 @@ class NeedleBenchATCDataset(BaseDataset):
elif language == 'English':
relationship_terms = [
'father', 'mother', 'dad', 'mom', 'grandfather',
'grandmother', 'maternal grandmother',
'maternal grandfather', 'paternal grandfather',
'paternal grandmother'
'father',
'mother',
'dad',
'mom',
'grandfather',
'grandmother',
'maternal grandmother',
'maternal grandfather',
'paternal grandfather',
'paternal grandmother',
]
relationship_templates = [
@ -139,12 +165,11 @@ class NeedleBenchATCDataset(BaseDataset):
# Generating the prompt based on the language
if language == 'Chinese':
prompt = (f"""
在上面提供的打乱的家族关系文本中'{last_person}'的能够向上追溯到的最年长的亲人是谁""")
prompt = f"""
在上面提供的打乱的家族关系文本中'{last_person}'的能够向上追溯到的最年长的亲人是谁"""
elif language == 'English':
prompt = (f"""
prompt = f"""
Given the scrambled family relationships described above, who is the eldest relative that '{last_person}' can trace back to in the context?"""
)
else:
prompt = 'Language not supported.'
raise Exception('Unsupported language specified. '
@ -158,7 +183,8 @@ Given the scrambled family relationships described above, who is the eldest rela
additional_names_needed = max(4 - len(names), 0)
additional_names = random.sample(
[name for name in all_names if name not in names],
additional_names_needed)
additional_names_needed,
)
names.extend(additional_names)
entry['options'] = names[0:4]

View File

@ -4,11 +4,11 @@ import random
import tiktoken
from datasets import Dataset
from huggingface_hub import hf_hub_download
from opencompass.datasets.base import BaseDataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET
from opencompass.utils import get_data_path
def get_random_needles(counter, file_path, needle_count):
@ -37,7 +37,7 @@ class NeedleBenchMultiDataset(BaseDataset):
@staticmethod
def load(
path: str, # depreciated
path: str,
length: int,
depth: int,
tokenizer_model: str,
@ -152,25 +152,21 @@ class NeedleBenchMultiDataset(BaseDataset):
return prompt
repo_id = 'opencompass/NeedleBench'
file_names = [
'PaulGrahamEssays.jsonl', 'multi_needle_reasoning_en.json',
'multi_needle_reasoning_zh.json', 'zh_finance.jsonl',
'zh_game.jsonl', 'zh_general.jsonl', 'zh_government.jsonl',
'zh_movie.jsonl', 'zh_tech.jsonl'
]
downloaded_files = []
base_file_path = ''
for file_name in file_names:
file_path = hf_hub_download(repo_id=repo_id,
filename=file_name,
repo_type='dataset')
downloaded_files.append(file_path)
base_file_path = '/'.join(file_path.split('/')[:-1])
path = get_data_path(path)
if os.environ.get('DATASET_SOURCE') == 'HF':
from huggingface_hub import snapshot_download
path = snapshot_download(repo_id=path, repo_type='dataset')
needle_file_path = os.path.join(path, needle_file_name)
needle_file_path = os.path.join(base_file_path, needle_file_name)
for file_path in downloaded_files:
if file_path.split('/')[-1] not in file_list:
for file_name in file_names:
file_path = os.path.join(path, file_name)
if file_name not in file_list:
continue
with open(file_path, 'r', encoding='utf-8') as f:

View File

@ -5,11 +5,11 @@ import re
import tiktoken
from datasets import Dataset
from huggingface_hub import hf_hub_download
from opencompass.datasets.base import BaseDataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
from opencompass.utils import get_data_path
def get_random_line_by_language(counter, file_path, language):
@ -36,7 +36,7 @@ class NeedleBenchOriginDataset(BaseDataset):
@staticmethod
def load(
path: str, # depreciated
path: str,
length: int,
depth: int,
tokenizer_model: str,
@ -128,33 +128,29 @@ class NeedleBenchOriginDataset(BaseDataset):
return prompt
repo_id = 'opencompass/NeedleBench'
file_names = [
'PaulGrahamEssays.jsonl', 'needles.jsonl', 'zh_finance.jsonl',
'PaulGrahamEssays.jsonl', 'multi_needle_reasoning_en.json',
'multi_needle_reasoning_zh.json', 'zh_finance.jsonl',
'zh_game.jsonl', 'zh_general.jsonl', 'zh_government.jsonl',
'zh_movie.jsonl', 'zh_tech.jsonl'
]
path = get_data_path(path)
if os.environ.get('DATASET_SOURCE') == 'HF':
from huggingface_hub import snapshot_download
path = snapshot_download(repo_id=path, repo_type='dataset')
needle_file_path = os.path.join(path, needle_file_name)
downloaded_files = []
base_file_path = ''
for file_name in file_names:
file_path = hf_hub_download(repo_id=repo_id,
filename=file_name,
repo_type='dataset')
downloaded_files.append(file_path)
base_file_path = '/'.join(file_path.split('/')[:-1])
for file_path in downloaded_files:
if file_path.split('/')[-1] not in file_list:
file_path = os.path.join(path, file_name)
if file_name not in file_list:
continue
with open(file_path, 'r', encoding='utf-8') as f:
lines_bak = [json.loads(line.strip()) for line in f]
lines = lines_bak.copy()
for counter in range(num_repeats_per_file):
random.seed(counter)
random.shuffle(lines)
needle_file_path = os.path.join(base_file_path,
needle_file_name)
random_needle = get_random_line_by_language(
counter, needle_file_path, language)
needle = '\n' + random_needle['needle'] + '\n'

View File

@ -1,21 +1,24 @@
import json
import os
import random
import tiktoken
from datasets import Dataset
from huggingface_hub import hf_hub_download
from opencompass.datasets.base import BaseDataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET
from opencompass.utils import get_data_path
def get_unique_entries(file_path,
n,
language,
unique_arg1=False,
unique_arg2=False,
unique_combination=False):
def get_unique_entries(
file_path,
n,
language,
unique_arg1=False,
unique_arg2=False,
unique_combination=False,
):
seen_arg1 = set()
seen_arg2 = set()
seen_combinations = set()
@ -38,9 +41,11 @@ def get_unique_entries(file_path,
key2 = entry.get('arg2', '') if unique_arg2 else ''
combination = (key1, key2) if unique_combination else ''
if (key1 not in seen_arg1 or not unique_arg1) and \
(key2 not in seen_arg2 or not unique_arg2) and \
(combination not in seen_combinations or not unique_combination):
if ((key1 not in seen_arg1 or not unique_arg1) # noqa: E501
and (key2 not in seen_arg2 or not unique_arg2)
and # noqa: E501
(combination not in seen_combinations
or not unique_combination)): # noqa: E501
seen_arg1.add(key1)
seen_arg2.add(key2)
seen_combinations.add(combination)
@ -57,7 +62,7 @@ class NeedleBenchParallelDataset(BaseDataset):
@staticmethod
def load(
path: str, # depreciated
path: str,
needle_file_name: str,
length: int,
depths: list[int],
@ -72,30 +77,32 @@ class NeedleBenchParallelDataset(BaseDataset):
data = {'prompt': [], 'answer': []}
tokenizer = tiktoken.encoding_for_model(tokenizer_model)
repo_id = 'opencompass/NeedleBench'
file_names = [
'PaulGrahamEssays.jsonl', 'needles.jsonl', 'zh_finance.jsonl',
'zh_game.jsonl', 'zh_general.jsonl', 'zh_government.jsonl',
'zh_movie.jsonl', 'zh_tech.jsonl'
'PaulGrahamEssays.jsonl',
'multi_needle_reasoning_en.json',
'multi_needle_reasoning_zh.json',
'zh_finance.jsonl',
'zh_game.jsonl',
'zh_general.jsonl',
'zh_government.jsonl',
'zh_movie.jsonl',
'zh_tech.jsonl',
]
path = get_data_path(path)
if os.environ.get('DATASET_SOURCE') == 'HF':
from huggingface_hub import snapshot_download
downloaded_files = []
for file_name in file_names:
file_path = hf_hub_download(repo_id=repo_id,
filename=file_name,
repo_type='dataset')
downloaded_files.append(file_path)
path = snapshot_download(repo_id=path, repo_type='dataset')
needle_file_path = os.path.join(path, needle_file_name)
for file in downloaded_files:
if file.split('/')[-1] == needle_file_name:
needle_file_path = file
predefined_needles_bak = get_unique_entries(needle_file_path,
len(depths),
language,
unique_arg1=True,
unique_arg2=True,
unique_combination=True)
predefined_needles_bak = get_unique_entries(
needle_file_path,
len(depths),
language,
unique_arg1=True,
unique_arg2=True,
unique_combination=True,
)
def _generate_context(tokens_context, depths, needles):
insertion_points = [
@ -108,10 +115,12 @@ class NeedleBenchParallelDataset(BaseDataset):
needle_tokens = _get_tokens_from_context(needle)
current_insertion_point = min(
insertion_points[i] + cumulative_inserted_length,
len(tokens_context))
len(tokens_context),
)
tokens_context = tokens_context[:current_insertion_point] + \
needle_tokens + tokens_context[current_insertion_point:]
tokens_context = (tokens_context[:current_insertion_point] +
needle_tokens +
tokens_context[current_insertion_point:])
cumulative_inserted_length += len(needle_tokens)
new_context = _decode_tokens(tokens_context)
@ -191,8 +200,9 @@ class NeedleBenchParallelDataset(BaseDataset):
return prompt
for file_path in downloaded_files:
if file_path.split('/')[-1] not in file_list:
for file_name in file_names:
file_path = os.path.join(path, file_name)
if file_name not in file_list:
continue
with open(file_path, 'r', encoding='utf-8') as f:
@ -219,8 +229,8 @@ class NeedleBenchParallelDataset(BaseDataset):
item['retrieval_question'].split("'")[1].split('')[0]
for item in predefined_needles
])
retrieval_question = questions + "请按照'" + \
answers_format + "'的格式回答。"
retrieval_question = (questions + "请按照'" + answers_format +
"'的格式回答。")
elif language == 'English':
questions = ''.join([
item['retrieval_question'].split('?')[0] + '?'
@ -231,14 +241,14 @@ class NeedleBenchParallelDataset(BaseDataset):
item['retrieval_question'].split("'")[1].split('.')[0]
for item in predefined_needles
])
retrieval_question = questions + \
"Please answer in the format of '" + \
answers_format + "'"
retrieval_question = (questions +
"Please answer in the format of '" +
answers_format + "'")
context_length = length - length_buffer
target_length_per_record = context_length - \
sum(len(tokens) for tokens
in _get_tokens_from_context(needles))
target_length_per_record = context_length - sum(
len(tokens)
for tokens in _get_tokens_from_context(needles))
target_length_per_record = max(target_length_per_record, 0)
accumulated_tokens = []
for line in lines:
@ -317,7 +327,8 @@ class NeedleBenchParallelEvaluator(BaseEvaluator):
}
result = {
**flattened_scores, 'details': details,
'average_score': average_score
**flattened_scores,
'details': details,
'average_score': average_score,
}
return result

View File

@ -1,3 +1,4 @@
import concurrent.futures
import json
import os
import os.path as osp
@ -95,10 +96,10 @@ def process_hdf5_datagroup(group):
def process_hdf5_to_tuple(step_id, test_num):
H5PY_FILE_FOLDER = './data/scicode/'
H5PY_FILE_FOLDER = './data/scicode/test_data'
H5PY_FILE_FOLDER = get_data_path(H5PY_FILE_FOLDER, local_mode=True)
data_lst = []
H5PY_FILE = os.path.join(H5PY_FILE_FOLDER, 'test_data.h5')
H5PY_FILE = os.path.join(H5PY_FILE_FOLDER, f'{step_id}.h5')
assert os.path.exists(
H5PY_FILE
), f"Please manually download 'test_data.h5' from https://github.com/open-compass/storage/releases/download/v0.1.0/scicode_test_data.zip and put the file in {H5PY_FILE}" # noqa: E501
@ -217,7 +218,7 @@ def cmp_tuple_or_list(var1, var2):
@ICL_EVALUATORS.register_module()
class SciCodeEvaluator(BaseEvaluator):
def __init__(self, dataset_path, with_bg, testcode_path='./tmp/scicode'):
def __init__(self, dataset_path, with_bg):
super().__init__()
test_data = []
dataset_path = get_data_path(dataset_path, local_mode=True)
@ -229,8 +230,6 @@ class SciCodeEvaluator(BaseEvaluator):
with open(file_path, 'r', encoding='utf-8') as file:
test_data = json.load(file)
self.dataset = Dataset.from_list(test_data)
self.testcode_path = testcode_path
H5PY_FILE = osp.join(dataset_path, 'test_data.h5') # noqa: F841
def extract_python_script(self, response: str):
start_marker = '```python'
@ -271,25 +270,20 @@ class SciCodeEvaluator(BaseEvaluator):
return 2
def score(self, predictions, references):
correct, sub_correct = 0, 0
count, sub_count = 0, 0
details = []
# generate all python test codes and than test
# generate all python test codes
for idx, prediction_list in enumerate(predictions):
# traverse each test sample
problem_id = self.dataset[idx]['id']
num_of_subproblems = len(prediction_list)
# create dir for each test sample
testdir_path = os.path.join(self.testcode_path, str(problem_id))
testdir_path = os.path.join(self._out_dir, str(problem_id))
os.makedirs(testdir_path, exist_ok=True)
python_code = ''
# add import statement
python_code += self.dataset[idx]['import']
is_all_correct = True
for sub_idx in range(num_of_subproblems):
# extract code
response = prediction_list[sub_idx]
@ -319,30 +313,50 @@ from opencompass.datasets.scicode import process_hdf5_to_tuple
'\n')
for idx2 in range(len(test_lst)):
f.write(f'target = targets[{idx2}]\n\n')
for line in test_lst[idx2].split('\n'):
f.write(line + '\n')
for line in test_lst[idx2].split('\n'):
f.write(line + '\n')
# test
ret = self.run_script(testfile_path)
msg = {'problem': f'{problem_id}-{sub_idx + 1}'}
if ret == 0: # correct
sub_correct += 1
msg['is_correct'] = True
elif ret == 1: # error
is_all_correct = False
msg['is_correct'] = False
else: # time out
is_all_correct = False
msg['is_correct'] = False
sub_count += 1
details.append(msg)
# find all scripts
python_scripts = []
for root, dirs, files in os.walk(self._out_dir):
for file in files:
if file.endswith('.py'):
python_scripts.append(os.path.join(root, file))
correct += is_all_correct
# Use ThreadPoolExecutor to concurrently execute scripts
with concurrent.futures.ThreadPoolExecutor() as executor:
# Submit task and obtain Future object
futures = [
executor.submit(self.run_script, script)
for script in python_scripts
]
results = []
for future in concurrent.futures.as_completed(futures):
result = future.result()
results.append(result)
all_results = {}
for script_path, result in zip(python_scripts, results):
basename = os.path.basename(script_path)
main_id = basename.split('-')[0]
if all_results.get(main_id):
all_results[main_id].append(result)
else:
all_results[main_id] = [result]
correct, sub_correct = 0, 0
count, sub_count = 0, 0
for main_id in all_results:
correct += sum(all_results[main_id]) == 0
count += 1
for sub in all_results[main_id]:
sub_correct += sub == 0
sub_count += 1
result = {
'accuracy': 100 * correct / count,
'sub_accuracy': 100 * sub_correct / sub_count,
'details': details
}
return result

View File

@ -35,6 +35,7 @@ from .openai_api import OpenAI # noqa: F401
from .openai_api import OpenAISDK # noqa: F401
from .pangu_api import PanGu # noqa: F401
from .qwen_api import Qwen # noqa: F401
from .rendu_api import Rendu # noqa: F401
from .sensetime_api import SenseTime # noqa: F401
from .stepfun_api import StepFun # noqa: F401
from .turbomind import TurboMindModel # noqa: F401

View File

@ -60,8 +60,8 @@ class LmdeployPytorchModel(BaseModel):
engine_config.thread_safe = True
if gen_config is not None:
from lmdeploy.messages import EngineGenerationConfig
gen_config = EngineGenerationConfig(**gen_config)
from lmdeploy.messages import GenerationConfig
gen_config = GenerationConfig(**gen_config)
self.logger = get_logger()
tm_model = tm.Engine(path, engine_config)
@ -70,9 +70,25 @@ class LmdeployPytorchModel(BaseModel):
tm_model.create_instance() for i in range(concurrency)
]
self.generator_ids = [i + 1 for i in range(concurrency)]
from transformers import GenerationConfig
try:
generation_config = GenerationConfig.from_pretrained(path)
except Exception:
generation_config = None
if generation_config and hasattr(generation_config, 'eos_token_id'):
if gen_config.stop_words is None:
stop_words = []
if isinstance(generation_config.eos_token_id, int):
stop_words.append(generation_config.eos_token_id)
else:
assert isinstance(generation_config.eos_token_id, list)
for token_id in generation_config.eos_token_id:
stop_words.append(token_id)
gen_config.stop_words = stop_words
self.gen_config = gen_config
self.end_str = end_str
self.major_version, self.minor_version, _ = version_info
self.major_version, self.minor_version = version_info[:2]
def generate(
self,
@ -135,7 +151,7 @@ class LmdeployPytorchModel(BaseModel):
prompt (PromptType): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
gen_config (EngineGenerationConfig, optional): Generation
gen_config (GenerationConfig, optional): Generation
config to set arguments like top_k, top_p, temperature.
end_str (str, optional): Whether to trim generated strings
with end_str if the model has special ending strings

View File

@ -0,0 +1,175 @@
import time
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union
import requests
from opencompass.utils.prompt import PromptList
from .base_api import BaseAPIModel
PromptType = Union[PromptList, str]
class Rendu(BaseAPIModel):
"""Model wrapper around Rendu.
Documentation:
Args:
path (str): The name of Rendu model.
e.g. `Rendu`
key (str): Authorization key.
url (str): model url.
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 1.
max_seq_len (int): Unused here.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
retry (int): Number of retires if the API call fails. Defaults to 2.
"""
is_api: bool = True
def __init__(self,
path: str,
key: str,
url: str,
query_per_second: int = 2,
max_seq_len: int = 2048,
meta_template: Optional[Dict] = None,
retry: int = 2,
generation_kwargs: Dict = {
'temperature': 0.7,
'top_p': 0.9,
}):
super().__init__(path=path,
max_seq_len=max_seq_len,
query_per_second=query_per_second,
meta_template=meta_template,
retry=retry,
generation_kwargs=generation_kwargs)
self.url = url
self.key = key
self.model = path
self.headers = {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + self.key,
}
def generate(
self,
inputs: List[PromptType],
max_out_len: int = 512,
) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[PromptType]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[max_out_len] * len(inputs)))
self.flush()
return results
def _generate(
self,
input: PromptType,
max_out_len: int = 512,
) -> str:
"""Generate results given an input.
Args:
input (PromptType): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
if isinstance(input, str):
messages = [{'role': 'user', 'content': input}]
else:
messages = []
msg_buffer, last_role = [], None
for item in input:
item['role'] = 'assistant' if item['role'] == 'BOT' else 'user'
if item['role'] != last_role and last_role is not None:
messages.append({
'content': '\n'.join(msg_buffer),
'role': last_role
})
msg_buffer = []
msg_buffer.append(item['prompt'])
last_role = item['role']
messages.append({
'content': '\n'.join(msg_buffer),
'role': last_role
})
data = {
'model': self.model,
'messages': messages,
}
data.update(self.generation_kwargs)
max_num_retries = 0
while max_num_retries < self.retry:
self.acquire()
try:
raw_response = requests.request('POST',
url=self.url,
headers=self.headers,
json=data)
except Exception as err:
print('Request Error:{}'.format(err))
time.sleep(2)
continue
response = raw_response.json()
self.release()
if response is None:
print('Connection error, reconnect.')
# if connect error, frequent requests will casuse
# continuous unstable network, therefore wait here
# to slow down the request
self.wait()
continue
if raw_response.status_code == 200:
# msg = json.load(response.text)
# response
msg = response['choices'][0]['message']['content']
return msg
if raw_response.status_code == 403:
print('请求被拒绝 api_key错误')
continue
elif raw_response.status_code == 400:
print(messages, response)
print('请求失败,状态码:', raw_response)
msg = 'The request was rejected because high risk'
return msg
time.sleep(1)
continue
elif raw_response.status_code == 429:
print(messages, response)
print('请求失败,状态码:', raw_response)
time.sleep(5)
continue
max_num_retries += 1
raise RuntimeError(raw_response)

View File

@ -113,8 +113,8 @@ class TurboMindModel(BaseModel):
gen_config['stop_words'] = list(set(stop_words))
gen_config.setdefault('min_new_tokens', 1)
from lmdeploy.messages import EngineGenerationConfig
gen_config = EngineGenerationConfig(**gen_config)
from lmdeploy.messages import GenerationConfig
gen_config = GenerationConfig(**gen_config)
results = []
for batch_input in batch_inputs:
@ -160,7 +160,7 @@ class TurboMindModel(BaseModel):
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
gen_config (EngineGenerationConfig, optional): Generation
gen_config (GenerationConfig, optional): Generation
config to set arguments like top_k, top_p, temperature.
end_str (str, optional): Whether to trim generated strings
with end_str if the model has special ending strings

View File

@ -40,6 +40,7 @@ class TurboMindAPIModel(BaseModel):
def __init__(self,
api_addr: str = 'http://0.0.0.0:23333',
api_key: str | None = None,
max_seq_len: int = 2048,
meta_template: Optional[Dict] = None,
end_str: Optional[str] = None,
@ -48,7 +49,7 @@ class TurboMindAPIModel(BaseModel):
max_seq_len=max_seq_len,
meta_template=meta_template)
from lmdeploy.serve.openai.api_client import APIClient
self.chatbot = APIClient(api_addr)
self.chatbot = APIClient(api_addr, api_key)
self.model_name = self.chatbot.available_models[0]
self.logger = get_logger()
self.template_parser = LMTemplateParser(meta_template)

View File

@ -115,11 +115,16 @@ class TurboMindModelwithChatTemplate(BaseModel):
batch_messages = [messages[i:i + self.concurrency] for i in range(0, len(messages), self.concurrency)]
stop_words = list(set(self.stop_words + stopping_criteria))
encode_stop_words = []
if stop_words is not None and len(stop_words) > 0:
for words in stop_words:
encode_stop_words += self.tokenizer.encode(words, add_bos=False)
DEFAULT_GEN_CONFIG = {
'max_new_tokens': max_out_len,
'min_new_tokens': 1,
'top_k': 1,
'stop_words': stop_words,
'stop_words': encode_stop_words,
}
gen_config = copy.deepcopy(DEFAULT_GEN_CONFIG)
gen_config.update(self.gen_config)
@ -127,9 +132,8 @@ class TurboMindModelwithChatTemplate(BaseModel):
gen_config['top_k'] = 1000
gen_config['temperature'] = temperature
from lmdeploy.messages import EngineGenerationConfig, GenerationConfig
from lmdeploy.messages import GenerationConfig
gen_config = GenerationConfig(**gen_config)
gen_config = EngineGenerationConfig.From(gen_config, self.tokenizer)
results = []
for batch_message in batch_messages:
@ -160,7 +164,7 @@ class TurboMindModelwithChatTemplate(BaseModel):
prompt (PromptType): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
gen_config (EngineGenerationConfig, optional): Generation
gen_config (GenerationConfig, optional): Generation
config to set arguments like top_k, top_p, temperature.
Returns:
str: The generated string.

View File

@ -198,6 +198,26 @@ class OpenICLEvalTask(BaseTask):
else:
pred_strs = [proc(s, **kwargs) for s in pred_strs]
model_pred_strs = []
if 'model_postprocessor' in self.eval_cfg:
references = (test_set[self.output_column]
if self.output_column else None)
model_pred_dicts = copy.deepcopy(pred_dicts)
for i, pred_dict in enumerate(model_pred_dicts):
pred_dict['reference'] = [references[i]]
self.logger.info('Postprocessing model predictions...')
kwargs = self.eval_cfg['model_postprocessor']
proc = kwargs.pop('type')
if isinstance(proc, str):
proc = TEXT_POSTPROCESSORS.get(proc)
if pred_list_flag:
model_pred_strs = [[
proc(model_pred_dict, **kwargs)
for model_pred_dict in model_pred_dicts
]]
else:
model_pred_strs = proc(model_pred_dicts, **kwargs)
# Get majority voting predictions if use self-consistency
if sc_size is not None:
pred_strs = [
@ -229,12 +249,29 @@ class OpenICLEvalTask(BaseTask):
}
result = icl_evaluator.score(**preds)
# Get model postprocess result
model_details = None
model_result = None
if 'model_postprocessor' in self.eval_cfg:
model_preds = copy.deepcopy(preds)
model_preds['predictions'] = model_pred_strs
model_result = icl_evaluator.score(**model_preds)
for key in model_result:
if key == 'details':
model_details = model_result[key]
continue
new_key = 'model_postprocess_' + key
result[new_key] = model_result[key]
if self.dump_details:
details = result.get('details', None)
try:
result['details'] = self.format_details(
pred_strs, test_set[self.output_column], details,
pred_strs, model_pred_strs,
test_set[self.output_column], details, model_details,
pred_dicts)
self.logger.warning(
f"result['details'] : {result['details']}"),
result['type'] = result['details'].pop('type', None)
if self.cal_extract_rate:
# Calculate the extraction success rate for prediction
@ -253,13 +290,27 @@ class OpenICLEvalTask(BaseTask):
self.logger.error(
f'Task {task_abbr_from_cfg(self.cfg)}: {result["error"]}')
return
else:
elif model_result is None:
result_wo_details = {
i: result[i]
for i in result if i != 'details'
}
self.logger.info(
f'Task {task_abbr_from_cfg(self.cfg)}: {result_wo_details}')
else:
result_wo_details = {
i: result[i]
for i in result if i != 'details'
}
model_result_wo_details = {
i: model_result[i]
for i in model_result if i != 'details'
}
self.logger.info(
f'Task {task_abbr_from_cfg(self.cfg)}: {result_wo_details}')
self.logger.info(
'Model Postprocess Task: ' +
f'{task_abbr_from_cfg(self.cfg)}:{model_result_wo_details}')
# Save result
out_path = get_infer_output_path(self.model_cfg, self.dataset_cfg,
@ -286,7 +337,8 @@ class OpenICLEvalTask(BaseTask):
success_rate = 100 - len(invalid_extractions) / len(details) * 100
return success_rate
def format_details(self, predictions, references, details, pred_dicts):
def format_details(self, predictions, model_pred_strs, references, details,
model_details, pred_dicts):
"""This function is responsible for formatting prediction details.
Args:
@ -323,6 +375,19 @@ class OpenICLEvalTask(BaseTask):
result['predictions'] = str(predictions[i])
result['references'] = str(references[i])
result['correct'] = str(predictions[i]) == str(references[i])
elif details is not None and model_details is not None:
assert model_pred_strs != [], \
'Model details is not None, but model_pred_strs is empty'
self.logger.info(
f"model_details[i]['pred']: {model_details[i]['pred']}")
results['type'] = 'GEN'
result['prompt'] = origin_prediction['origin_prompt']
result['origin_prediction'] = pred_dicts[i]['prediction']
result['predictions'] = details[i]['pred']
result['model_extract_predictions'] = model_details[i]['pred']
result['references'] = details[i]['answer']
result['correct'] = details[i]['correct']
result['model_extract_correct'] = model_details[i]['correct']
elif details is not None:
results['type'] = 'GEN'
result['prompt'] = origin_prediction['origin_prompt']

View File

@ -9,5 +9,6 @@ from .fileio import * # noqa
from .lark import * # noqa
from .logging import * # noqa
from .menu import * # noqa
from .model_postprocessors import * # noqa
from .prompt import * # noqa
from .text_postprocessors import * # noqa

View File

@ -265,6 +265,12 @@ DATASETS_MAPPING = {
"hf_id": "opencompass/xsum",
"local": "./data/Xsum/dev.jsonl",
},
# Needlebench
"opencompass/needlebench": {
"ms_id": "",
"hf_id": "opencompass/needlebench",
"local": "./data/needlebench",
}
}
DATASETS_URL = {
@ -364,9 +370,9 @@ DATASETS_URL = {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/ruler.zip",
"md5": "c60bdfff3d02358067104cc1dea7c0f7",
},
"scicode/": {
"/scicode": {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/scicode.zip",
"md5": "06f64edad6680072e5bca3f0ce892d0c",
"md5": "9c6c64b8c70edc418f713419ea39989c",
},
"/commonsenseqa": {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/commonsenseqa.zip",
@ -396,4 +402,8 @@ DATASETS_URL = {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/mmlu_pro.zip",
"md5": "e3200c7380f4cea5f13c768f2815fabb",
},
"/needlebench": {
"url": "http://opencompass.oss-cn-shanghai.aliyuncs.com/datasets/data/needlebench.zip",
"md5": "b546da0397746eaff4d3ff0f20d6ede2",
}
}

View File

@ -0,0 +1,77 @@
from functools import partial
from multiprocessing import Pool
from typing import Union
from tqdm import tqdm
from opencompass.registry import TEXT_POSTPROCESSORS
from .postprocessors.xfinder.extractor import Extractor
from .postprocessors.xfinder.xfinder_utils import (DataProcessor,
convert_to_xfinder_format)
def gen_output(ori_data, extractor):
ext_cor_pairs = []
extracted_data = []
extracted_answers = []
for item in tqdm(ori_data):
user_input = extractor.prepare_input(item)
extracted_answer = extractor.gen_output(user_input)
ext_cor_pairs.append([
item['key_answer_type'], item['standard_answer_range'],
extracted_answer, item['correct_answer']
])
item['xfinder_extracted_answer'] = extracted_answer
extracted_answers.append(extracted_answer)
extracted_data.append(item)
return extracted_answers, ext_cor_pairs, extracted_data
@TEXT_POSTPROCESSORS.register_module('xfinder')
def xfinder_postprocess(preds: list, question_type: str,
xfinder_model_name: str,
xfiner_api_url: Union[str, list], **kwargs) -> list:
"""Postprocess the text extracted by xFinder model.
Args:
preds (list): The question, reference answer and model prediction.
question_type (str): The type of the question.
url (Union[str, list]): The api url of the xFinder model.
Returns:
list: The postprocessed texts.
"""
def _eval_pred(texts, data_processor, extractor, num_processes=8):
ori_data = data_processor.read_data(texts)
extracted_correct_pairs = []
extracted_data = []
extracted_answers = []
batched_ori_data = []
# Split data into batches
num_processes = min(num_processes, len(ori_data))
batch_size = len(ori_data) // num_processes
for i in range(0, len(ori_data), batch_size):
batched_ori_data.append(ori_data[i:i + batch_size])
with Pool(num_processes) as p:
results = p.map(partial(gen_output, extractor=extractor),
batched_ori_data)
for result in results:
extracted_answers += result[0]
extracted_correct_pairs += result[1]
extracted_data += result[2]
return extracted_answers
format_data = convert_to_xfinder_format(question_type, preds)
assert xfiner_api_url is not None, 'Please provide the api url.'
data_processor = DataProcessor()
extractor = Extractor(model_name=xfinder_model_name,
url=xfiner_api_url.split(',')
if ',' in xfiner_api_url else xfiner_api_url)
calc_acc_func = partial(_eval_pred,
data_processor=data_processor,
extractor=extractor)
extracted_answers = calc_acc_func(format_data)
return extracted_answers

View File

@ -0,0 +1,194 @@
## Extract Final Answers with Postprocess Models
OpenCompass now support postprocess (extract) prediction answers with postprocess models, to get the true ability level of models. Now, we use [XFinder](https://github.com/IAAR-Shanghai/xFinder) as our first postprocess model to extract the final answers from the model outputs.
We support four types of task types now:
1. **math**: for math questions with numerical pr formula answers, like GSM8k, Math, etc.
2. **alphabet_option**: for alphabet option questions with alphabet answers, like CommonsenseQA, MMLU, etc.
3. **short_text**: for questions answer type is a short text with selected short text answers.
Here are some examples of the question type supported from the official xFinder repo:
```json
[
{
"model_name": "Llama3_8B_Instruct",
"dataset": "MetaMathQA",
"key_answer_type": "math",
"question": "Find the smallest, positive four-digit multiple of $15.$",
"llm_output": "The smallest four-digit multiple of $15$ is $\\boxed{1005}.$",
"correct_answer": "1005",
"standard_answer_range": "a(n) number / set / vector / matrix / interval / expression / function / equation / inequality"
},
{
"model_name": "LLaMA2_7B_Chat",
"dataset": "SIQA_text",
"key_answer_type": "short_text",
"question": "Jordan kept Carson up all night talking because Jordan's girlfriend left them and they were quite upset. How would Carson feel as a result? Answer Choices: drowsy / upset their girlfriend left / energetic",
"llm_output": "Based on the information provided in the question, Carson would likely feel upset because Jordan's girlfriend left them and they were quite upset. Therefore, the correct answer is (B) upset their girlfriend left.",
"correct_answer": "drowsy",
"standard_answer_range": [
"drowsy",
"upset their girlfriend left",
"energetic"
]
},
{
"model_name": "PHI2",
"dataset": "CommonsenseQA_alpha",
"key_answer_type": "alphabet_option",
"question": "Why would you go to an office? Answer Choices: (A) work (B) school building (C) paper (D) city (E) habit",
"llm_output": "A) work (B) school building (C) paper (D) city (E) habit\n\nExplanation:\n We are looking for a reason why someone would go to an office. The only answer choice that matches this is option A) work. Therefore, the correct answer is A) work.",
"correct_answer": "A",
"standard_answer_range": [
[
"A",
"work"
],
[
"B",
"school building"
],
[
"C",
"paper"
],
[
"D",
"city"
],
[
"E",
"habit"
]
]
}
]
```
## How to Use Model Postprocess in OpenCompass
### Step 1: Deploy the Postprocess Model Server
For now, there are two xFinder models can use, you can download them from Huggingface model hub:
1. **IAAR-Shanghai/xFinder-qwen1505**
2. **IAAR-Shanghai/xFinder-llama38it**
You can use LMDeploy or vLLM to deploy the xFinder model server, for example, you can use the following command to deploy the xFinder model server with LMDeploy:
```bash
lmdeploy serve api_server IAAR-Shanghai/xFinder-qwen1505 --model-name xFinder-qwen1505 --server-port 23333 --backend turbomind --tp 1
```
### Step 2: Set the Postprocess Model Config in the Dataset Configuration
We make the postprocess as a common postprocess function in OpenCompass, so you can use it by setting the `postprocess` parameter in the `predict` function of OpenCompass. It can be used with the default postprocess regularization extract function at the same time. The only thing you need to do is to deploy the postprocess model server and set the `model_postprocessor` to the original `eval_cfg` in the dataset configuration, like the following example:
```python
from opencompass.utils.model_postprocessors import xfinder_postprocess
...
model_postprocessor=dict(
type=xfinder_postprocess,
question_type='math',
xfinder_model_name='xFinder-qwen1505',
xfiner_api_url='http://0.0.0.0:23333/v1,http://0.0.0.0:23334/v1')
```
Explanation of the parameters:
- `question_type`: the type of the question, which can be one of the three types mentioned above.
- `xfinder_model_name`: the name of the model you deploying the model server.
- `xfiner_api_url`: the URL of the model server, you can set multiple URLs with `,` to use multiple model servers, which can accelerate the postprocess speed.
📢:**Please attention following points**:
1. Now only support extract questions with Zero-shot setting.
2. For alphabet_option problems, the option should be like '\\nA. xxx\\nB. xxx\\nC. xxx\\nD. xxx\\nE. xxx\\n ...' or '\\n(A) xxx\\n(B) xxx\\n(C) xxx\\n(D) xxx\\n(E) xxx\\n ...' format, and the correct answer should be the alphabet of the correct answer, like 'A', 'B', 'C', 'D', 'E'.
For more details about the xFinder model, you can refer to the [xFinder](https://github.com/IAAR-Shanghai/xFinder), and for a complete example, you can refer to the following example, which is the configuration of the GSM8K dataset with the xFinder postprocess model:
```python
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import GSM8KDataset, gsm8k_dataset_postprocess, Gsm8kEvaluator
from opencompass.datasets import MATHEvaluator, math_postprocess_v2
from opencompass.utils.model_postprocessors import xfinder_postprocess
gsm8k_reader_cfg = dict(input_columns=['question'], output_column='answer')
gsm8k_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='{question}\nPlease reason step by step, and put your final answer within \\boxed{}.'),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512),
)
gsm8k_eval_cfg = dict(
evaluator=dict(type=MATHEvaluator, version='v2'),
pred_postprocessor=dict(type=math_postprocess_v2),
dataset_postprocessor=dict(type=gsm8k_dataset_postprocess),
model_postprocessor=dict(
type=xfinder_postprocess,
question_type='math',
xfinder_model_name='xFinder-qwen1505',
xfiner_api_url='http://0.0.0.0:23333/v1,http://0.0.0.0:23334/v1')
)
gsm8k_datasets = [
dict(
abbr='gsm8k',
type=GSM8KDataset,
path='opencompass/gsm8k',
reader_cfg=gsm8k_reader_cfg,
infer_cfg=gsm8k_infer_cfg,
eval_cfg=gsm8k_eval_cfg,
)
]
```
For evaluation results, `accuracy` is the result using default postprocess, and `model_postprocess_accuracy` is the result using xFinder postprocess, the gap can be wider when the model is not good answering the questions properly.
You can also use the `--dump-eval-details` command to dump the detailed evaluation details to see the model postprocess results from the `results` folder.
## Results Comparison with Different Question Types
We have tested the model postprocess method with XFinder model on the GSM8K, MMLU, Natural Questions (NQ) datasets for `Meta-Llama-3-8B-Instruct` with above settings, and the results are as follows:
| Dataset | Type | Config Name | Regex Postprocess Score | Model Postprocess Score |
| ------- | --------------- | ------------------------ | ----------------------- | ----------------------- |
| gsm8k | math | gsm8k_xfinder_gen_a58960 | 73.46 | 78.09 |
| nq | short_text | nq_xfinder_gen_3dcea1 | 22.33 | 37.53 |
| mmlu | alphabet_option | mmlu_xfinder_gen_4d595a | 67.89 | 67.93 |
## Citation
```bibtex
@misc{2023opencompass,
title={OpenCompass: A Universal Evaluation Platform for Foundation Models},
author={OpenCompass Contributors},
howpublished = {\url{https://github.com/open-compass/opencompass}},
year={2023}
}
@misc{yu2024xfinderrobustpinpointanswer,
title={xFinder: Robust and Pinpoint Answer Extraction for Large Language Models},
author={Qingchen Yu and Zifan Zheng and Shichao Song and Zhiyu Li and Feiyu Xiong and Bo Tang and Ding Chen},
year={2024},
eprint={2405.11874},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2405.11874},
}
```

View File

@ -0,0 +1,175 @@
import json
import time
from logging import getLogger
import requests
from openai import OpenAI
from .xfinder_utils import PROMPT_TEMPLATE
Instruction = """I will provide you with a question, output sentences along with an answer range. The output sentences are the response of the question provided. The answer range could either describe the type of answer expected or list all possible valid answers. Using the information provided, you must accurately and precisely determine and extract the intended key answer from the output sentences. Please don't have your subjective thoughts about the question.
First, you need to determine whether the content of the output sentences is relevant to the given question. If the entire output sentences are unrelated to the question (meaning the output sentences are not addressing the question), then output [No valid answer].
Otherwise, ignore the parts of the output sentences that have no relevance to the question and then extract the key answer that matches the answer range.
Below are some special cases you need to be aware of:
(1) If the output sentences present multiple different answers, carefully determine if the later provided answer is a correction or modification of a previous one. If so, extract this corrected or modified answer as the final response. Conversely, if the output sentences fluctuate between multiple answers without a clear final answer, you should output [No valid answer].
(2) If the answer range is a list and the key answer in the output sentences is not explicitly listed among the candidate options in the answer range, also output [No valid answer].
""" # noqa
class Extractor:
def __init__(
self,
model_name,
model_path=None,
url=None,
temperature=0,
max_tokens=3000,
api_key='EMPTY',
SYSTEM='You are a help assistant tasked with extracting the precise key answer from given output sentences. You must only provide the extracted key answer without including any additional text.' # noqa
):
self.model_name = model_name
self.PROMPT_TEMPLATE = PROMPT_TEMPLATE[model_name]
self.SYSTEM = SYSTEM
self.model_path = model_path
self.url = url
self.api_key = api_key
self.temperature = temperature
self.max_tokens = max_tokens
self.mode = 'API' if self.url is not None else 'Local'
self.logger = getLogger(__name__)
if self.mode == 'Local':
from vllm import LLM, SamplingParams
self.sampling_params = SamplingParams(temperature=self.temperature,
max_tokens=self.max_tokens,
stop=[
'<|endoftext|>',
'<|im_end|>', '<eoa>',
'<||>', '<end_of_turn>',
'<|eot_id|>'
])
self.llm = LLM(model=self.model_path, gpu_memory_utilization=0.5)
@staticmethod
def prepare_input(item):
user_input = Instruction + \
"Question: \"\"\"" + item['question'] + "\"\"\"\n\n" + \
"Output sentences: \"\"\"" + item['llm_output'] + "\"\"\"\n\n" + \
'Answer range: ' + item['standard_answer_range'] + '\n\n' + \
'Key extracted answer: '
return user_input
def gen_output(self, query):
if self.mode == 'API':
# return self.send_request(query)
return self.openai_infer(query)
else:
return self.offline_infer(query)
def send_request(self, query: str) -> str:
"""Send a request to the model's API and return the response.
Args:
query (str): The input query.
Returns:
str: The extracted answer (xFinder's output).
"""
prompt = self.PROMPT_TEMPLATE.format(system=self.SYSTEM, input=query)
payload = json.dumps({
'prompt':
prompt,
'temperature':
self.temperature,
'max_tokens':
self.max_tokens,
'stop': [
'<|endoftext|>', '<|im_end|>', '<eoa>', '<||>',
'<end_of_turn>', '<|eot_id|>'
],
})
headers = {'Content-Type': 'application/json'}
res = requests.request('POST', self.url, headers=headers, data=payload)
res = res.json()['text'][0]
res = res.replace(prompt, '')
# res = requests.post(self.url, json=payload)
# res = res.json()['text']
res = res.strip()
return res
def openai_infer(self, query: str, retry=9) -> str:
"""Perform inference on the OpenAI model.
Args:
query (str): The input query.
Returns:
str: The extracted answer (xFinder's output).
"""
if isinstance(self.url, list):
# Randomly api for better load balancing
import random
self.url = random.choice(self.url)
self.client = OpenAI(
api_key=self.api_key,
base_url=self.url,
)
self.retry = retry
t = time.time()
retry = self.retry
response = ''
while retry > 0:
try:
chat_response = self.client.chat.completions.create(
model=self.client.models.list().data[0].id
if self.model_name == '' else self.model_name,
messages=[
{
'role': 'system',
'content': self.SYSTEM
},
{
'role': 'user',
'content': query
},
],
stop=[
'<|endoftext|>', '<|im_end|>', '<eoa>', '<||>',
'<end_of_turn>', '<|eot_id|>'
],
temperature=self.temperature,
max_tokens=self.max_tokens,
)
js_response = json.loads(chat_response.model_dump_json())
response = js_response['choices'][0]['message']['content']
break
except Exception as e:
self.logger.info(f'Error: {e}')
self.logger.info(f'{self.url} is down. Retrying...')
self.logger.info(f'Time elapsed: {time.time() - t} seconds')
time.sleep(6)
retry -= 1
if retry == 0:
response = 'Error: Failed to get response.'
self.logger.info(f'{response} after {self.retry} tries.')
raise ValueError('The api is down')
return response.strip()
def offline_infer(self, query: str) -> str:
"""Perform inference on the local xFinder model.
Args:
query (str): The input query.
Returns:
str: The extracted answer (xFinder's output).
"""
prompt = self.PROMPT_TEMPLATE.format(system=self.SYSTEM, input=query)
res = self.llm.generate(prompt, self.sampling_params)
res = res[0]
res = res.outputs[0].text.strip()
return res

View File

@ -0,0 +1,14 @@
PROMPT_TEMPLATE = {
'xFinder-qwen1505':
"""<|System|>:{system}
<|User|>:{input}
<|Bot|>:""",
'xFinder-llama38it':
"""<|start_header_id|>system<|end_header_id|>
{system}<|eot_id|><|start_header_id|>user<|end_header_id|>
{input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
""",
}

View File

@ -0,0 +1,3 @@
from .convert_data import * # noqa
from .data_process import * # noqa
from .PROMPT_TEMPLATE import * # noqa

View File

@ -0,0 +1,123 @@
# Convert OpenCompass prediction data to XFinder format
import copy
import json
import re
xfinder_template = {
'math': {
'model_name':
'',
'dataset':
'',
'key_answer_type':
'math',
'question':
'',
'llm_output':
'',
'correct_answer':
'',
'standard_answer_range':
'a(n) number / set / vector / matrix / interval / expression / function / equation / inequality' # noqa
},
'alphabet_option': {
'model_name': '',
'dataset': '',
'key_answer_type': 'alphabet_option',
'question': '',
'llm_output': '.',
'correct_answer': '',
'standard_answer_range': []
},
'categorical_label': {
'model_name': '',
'dataset': '',
'key_answer_type': '',
'question': '',
'llm_output': '',
'correct_answer': '',
'standard_answer_range': []
},
'short_text': {
'model_name': '',
'dataset': '',
'key_answer_type': 'short_text',
'question': '',
'llm_output': '',
'correct_answer': '',
'standard_answer_range': []
}
}
def parse_options(text: str):
lines = text.split('\n')
parsed_options = []
option_pattern = r'^[A-Z]\)|[A-Z]\.|[A-Z]\)|[A-Z]:|\([A-Z]\)'
for line in lines:
line = line.strip()
match = re.match(option_pattern, line)
if match:
option = ''
# 等于第一个属于选项的字符
for c in line:
if c.isalpha():
option = c
break
content_start = match.end() + 1
content = line[content_start:].strip()
parsed_options.append([option, content])
return parsed_options
def convert_to_xfinder_format(typ, data, model_name='', dataset_name=''):
assert typ in xfinder_template.keys(), f'Invalid type {typ}'
format_data = []
for item in data:
template = copy.deepcopy(xfinder_template[typ])
question = item['origin_prompt'][-1]['prompt']
llm_output = item['prediction']
correct_answer = item['reference'] if item['reference'] else item[
'gold']
template['correct_answer'] = correct_answer
template['model_name'] = model_name
template['dataset'] = dataset_name
template['question'] = question
template['llm_output'] = llm_output
try:
assert typ in list(xfinder_template.keys())
if typ == 'alphabet_option':
options = parse_options(question)
template['standard_answer_range'] = options
elif typ == 'short_text':
template['standard_answer_range'] = item['gold']
elif typ == 'categorical_label':
pass
except Exception as e:
print(f'Error when parsing question options: {e}, skipping...')
continue
format_data.append(template)
return format_data
if __name__ == '__main__':
# Test
example_data = {
'origin_prompt': [{
'role':
'HUMAN',
'prompt':
'Alice, Bob, Claire, Dave, and Eve are dancers at a square dance. At the start of a song, they each have a partner: Alice is dancing with Ophelia, Bob is dancing with Jamie, Claire is dancing with Melissa, Dave is dancing with Rodrigo, and Eve is dancing with Patrick.\nThroughout the song, the dancers often trade partners. First, Claire and Bob switch partners. Then, Claire and Eve switch partners. Then, Claire and Bob switch partners. Then, Eve and Dave switch partners. Finally, Claire and Alice switch partners. At the end of the dance, Alice is dancing with\nOptions:\n(A) Ophelia\n(B) Jamie\n(C) Melissa\n(D) Rodrigo\n(E) Patrick' # noqa
}],
'origin_prediction':
'\n 答案: B) 前者小于后者',
'prediction':
'B',
'reference':
'A'
}
example_data = convert_to_xfinder_format('alphabet_option', [example_data],
'GPT-3', 'OpenAI')
print(json.dumps(example_data, indent=4, ensure_ascii=False))

View File

@ -0,0 +1,24 @@
import ast
class DataProcessor:
def __init__(self):
pass
def read_data(self, data):
for item in data:
if isinstance(item['standard_answer_range'],
str) and item['key_answer_type'] != 'math':
try:
item['standard_answer_range'] = ast.literal_eval(
item['standard_answer_range'])
except Exception as e:
print(f'Error: {e}')
print('Please check the form of standard_answer_range')
exit(0)
item['standard_answer_range'] = str(item['standard_answer_range'])
item['key_answer_type'] = str(item['key_answer_type'])
return data

Some files were not shown because too many files have changed in this diff Show More