mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
PromptCBLUE:Life Science dataset
This commit is contained in:
parent
8c74e6a39e
commit
41df5e5604
64
opencompass/configs/datasets/PromptCBLUE/PromptCBLUE_gen.py
Normal file
64
opencompass/configs/datasets/PromptCBLUE/PromptCBLUE_gen.py
Normal file
@ -0,0 +1,64 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.openicl.icl_evaluator import AccEvaluator
|
||||||
|
from opencompass.utils.text_postprocessors import first_capital_postprocess
|
||||||
|
from opencompass.datasets import PromptCBLUEDataset
|
||||||
|
|
||||||
|
# 1. 子数据集名称
|
||||||
|
PromptCBLUE_lifescience_sets = [
|
||||||
|
'CHIP-CDN', 'CHIP-CTC', 'KUAKE-QIC', 'IMCS-V2-DAC',
|
||||||
|
'CHIP-STS', 'KUAKE-QQR', 'KUAKE-IR', 'KUAKE-QTR'
|
||||||
|
]
|
||||||
|
|
||||||
|
# 2. Reader 配置
|
||||||
|
reader_cfg = dict(
|
||||||
|
input_columns=['input', 'answer_choices', 'options_str'],
|
||||||
|
output_column='target',
|
||||||
|
train_split='dev',
|
||||||
|
)
|
||||||
|
|
||||||
|
# 3. Prompt 模板:末行固定 ANSWER: $LETTER
|
||||||
|
_HINT = 'Given the ICD-10 candidate terms below, choose the normalized term(s) matching the original diagnosis.'
|
||||||
|
|
||||||
|
query_template = f"""{_HINT}
|
||||||
|
|
||||||
|
Original diagnosis: {{input}}
|
||||||
|
|
||||||
|
Options:
|
||||||
|
{{options_str}}
|
||||||
|
|
||||||
|
The last line of your response must be exactly:
|
||||||
|
ANSWER: $LETTER
|
||||||
|
""".strip()
|
||||||
|
|
||||||
|
infer_cfg_common = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(round=[dict(role='HUMAN', prompt=query_template)]),
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer),
|
||||||
|
)
|
||||||
|
|
||||||
|
# 4. 评估配置:与 MMLU 同款
|
||||||
|
eval_cfg_common = dict(
|
||||||
|
evaluator=dict(type=AccEvaluator),
|
||||||
|
pred_postprocessor=dict(type=first_capital_postprocess),
|
||||||
|
)
|
||||||
|
|
||||||
|
# 5. 组装数据集配置
|
||||||
|
promptcblue_datasets = []
|
||||||
|
for ds_name in PromptCBLUE_lifescience_sets:
|
||||||
|
promptcblue_datasets.append(dict(
|
||||||
|
abbr=f'promptcblue_{ds_name.lower().replace("-", "_")}_norm',
|
||||||
|
type=PromptCBLUEDataset,
|
||||||
|
path='/fs-computility/ai4sData/shared/lifescience/tangcheng/LifeScience/opencompass_val/datasets/PromptCBLUE',
|
||||||
|
name=ds_name,
|
||||||
|
reader_cfg=reader_cfg,
|
||||||
|
infer_cfg=infer_cfg_common,
|
||||||
|
eval_cfg=eval_cfg_common,
|
||||||
|
))
|
||||||
|
|
||||||
|
# ★ OpenCompass 识别的出口变量
|
||||||
|
datasets = promptcblue_datasets
|
@ -0,0 +1,102 @@
|
|||||||
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
||||||
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
||||||
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
||||||
|
from opencompass.openicl.icl_evaluator import AccEvaluator
|
||||||
|
from opencompass.evaluator import GenericLLMEvaluator
|
||||||
|
from opencompass.datasets import generic_llmjudge_postprocess
|
||||||
|
from opencompass.datasets import PromptCBLUEDataset
|
||||||
|
|
||||||
|
PromptCBLUE_lifescience_sets = [
|
||||||
|
'CHIP-CDN', 'CHIP-CTC', 'KUAKE-QIC', 'IMCS-V2-DAC',
|
||||||
|
'CHIP-STS', 'KUAKE-QQR', 'KUAKE-IR', 'KUAKE-QTR'
|
||||||
|
]
|
||||||
|
# Query template (keep original)
|
||||||
|
QUERY_TEMPLATE = """
|
||||||
|
Given a medical diagnosis description and labeled ICD-10 candidate terms below, select the matching normalized term(s).
|
||||||
|
Original diagnosis: {input}
|
||||||
|
|
||||||
|
Options:
|
||||||
|
{options_str}
|
||||||
|
|
||||||
|
The last line of your response must be exactly in the format:
|
||||||
|
ANSWER: <LETTER(S)>
|
||||||
|
""".strip()
|
||||||
|
|
||||||
|
# Grader template (keep original)
|
||||||
|
GRADER_TEMPLATE = """
|
||||||
|
As an expert evaluator, judge whether the candidate's answer matches the gold standard below.
|
||||||
|
Return 'A' for CORRECT or 'B' for INCORRECT, with no additional text.
|
||||||
|
|
||||||
|
Original diagnosis: {input}
|
||||||
|
|
||||||
|
Options:
|
||||||
|
{options_str}
|
||||||
|
|
||||||
|
Gold answer: {target}
|
||||||
|
|
||||||
|
Candidate answer: {prediction}
|
||||||
|
""".strip()
|
||||||
|
|
||||||
|
# Common reader config
|
||||||
|
reader_cfg = dict(
|
||||||
|
input_columns=['input', 'answer_choices', 'options_str'],
|
||||||
|
output_column='target',
|
||||||
|
train_split='dev'
|
||||||
|
)
|
||||||
|
|
||||||
|
# Assemble LLM evaluation datasets
|
||||||
|
promptcblue_llm_datasets = []
|
||||||
|
for name in PromptCBLUE_lifescience_sets:
|
||||||
|
infer_cfg = dict(
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(round=[
|
||||||
|
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
|
||||||
|
]),
|
||||||
|
),
|
||||||
|
retriever=dict(type=ZeroRetriever),
|
||||||
|
inferencer=dict(type=GenInferencer),
|
||||||
|
)
|
||||||
|
|
||||||
|
eval_cfg = dict(
|
||||||
|
evaluator=dict(
|
||||||
|
type=GenericLLMEvaluator,
|
||||||
|
prompt_template=dict(
|
||||||
|
type=PromptTemplate,
|
||||||
|
template=dict(
|
||||||
|
begin=[
|
||||||
|
dict(
|
||||||
|
role='SYSTEM',
|
||||||
|
fallback_role='HUMAN',
|
||||||
|
prompt='You are an expert judge for medical term normalization tasks.',
|
||||||
|
)
|
||||||
|
],
|
||||||
|
round=[
|
||||||
|
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
),
|
||||||
|
dataset_cfg=dict(
|
||||||
|
type=PromptCBLUEDataset,
|
||||||
|
path='/fs-computility/ai4sData/shared/lifescience/tangcheng/LifeScience/opencompass_val/datasets/PromptCBLUE',
|
||||||
|
name=name,
|
||||||
|
reader_cfg=reader_cfg,
|
||||||
|
),
|
||||||
|
judge_cfg=dict(),
|
||||||
|
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
|
||||||
|
),
|
||||||
|
pred_role='BOT',
|
||||||
|
)
|
||||||
|
|
||||||
|
promptcblue_llm_datasets.append(
|
||||||
|
dict(
|
||||||
|
abbr=f"promptcblue_{name.lower().replace('-', '_')}_norm_llm",
|
||||||
|
type=PromptCBLUEDataset,
|
||||||
|
path='/fs-computility/ai4sData/shared/lifescience/tangcheng/LifeScience/opencompass_val/datasets/PromptCBLUE',
|
||||||
|
name=name,
|
||||||
|
reader_cfg=reader_cfg,
|
||||||
|
infer_cfg=infer_cfg,
|
||||||
|
eval_cfg=eval_cfg,
|
||||||
|
mode='singlescore',
|
||||||
|
)
|
||||||
|
)
|
0
opencompass/configs/datasets/PromptCBLUE/README.md
Normal file
0
opencompass/configs/datasets/PromptCBLUE/README.md
Normal file
61
opencompass/datasets/PromptCBLUE.py
Normal file
61
opencompass/datasets/PromptCBLUE.py
Normal file
@ -0,0 +1,61 @@
|
|||||||
|
import json
|
||||||
|
import os.path as osp
|
||||||
|
|
||||||
|
from datasets import Dataset, DatasetDict
|
||||||
|
|
||||||
|
from opencompass.registry import LOAD_DATASET
|
||||||
|
from opencompass.utils import get_data_path
|
||||||
|
|
||||||
|
from .base import BaseDataset # 保持与 MMLUDataset 同级的导包风格
|
||||||
|
|
||||||
|
|
||||||
|
@LOAD_DATASET.register_module()
|
||||||
|
class PromptCBLUEDataset(BaseDataset):
|
||||||
|
"""Loader for PromptCBLUE life-science tasks (CHIP-CDN, CHIP-CTC …).
|
||||||
|
|
||||||
|
- 只读 `dev.json`。
|
||||||
|
- 保留指定 `task_dataset` 的所有任务类型(包括 normalization、cls 等)。
|
||||||
|
- 若 `target` 不在 `answer_choices`,自动追加;并生成 `options_str`
|
||||||
|
(形如 “A. 选项1\\nB. 选项2 …”)。
|
||||||
|
- 返回 `DatasetDict`,将 dev 复制到 test 以满足评估流程。
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load(path: str, name: str, **kwargs):
|
||||||
|
path = get_data_path(path)
|
||||||
|
file_path = osp.join(path, 'dev.json')
|
||||||
|
if not osp.exists(file_path):
|
||||||
|
raise FileNotFoundError(f'`dev.json` not found under {path}')
|
||||||
|
|
||||||
|
records = []
|
||||||
|
with open(file_path, 'r', encoding='utf-8') as f:
|
||||||
|
for line in f:
|
||||||
|
rec = json.loads(line)
|
||||||
|
if rec.get('task_dataset') != name:
|
||||||
|
continue # 过滤子数据集
|
||||||
|
|
||||||
|
choices = rec.get('answer_choices', []).copy()
|
||||||
|
target = rec.get('target')
|
||||||
|
if target not in choices:
|
||||||
|
choices.append(target)
|
||||||
|
|
||||||
|
options_str = '\n'.join(f'{chr(65+i)}. {opt}'
|
||||||
|
for i, opt in enumerate(choices))
|
||||||
|
|
||||||
|
records.append({
|
||||||
|
'input': rec['input'],
|
||||||
|
'answer_choices': choices,
|
||||||
|
'options_str': options_str,
|
||||||
|
'target': target,
|
||||||
|
})
|
||||||
|
|
||||||
|
# 保证列完整,即使 records 为空
|
||||||
|
if records:
|
||||||
|
ds = Dataset.from_list(records)
|
||||||
|
else:
|
||||||
|
ds = Dataset.from_dict({
|
||||||
|
k: []
|
||||||
|
for k in ['input', 'answer_choices', 'options_str', 'target']
|
||||||
|
})
|
||||||
|
dataset = DatasetDict(dev=ds, test=ds) # dev 与 test 指向同一份
|
||||||
|
return dataset
|
@ -115,6 +115,7 @@ from .OlympiadBench import * # noqa: F401, F403
|
|||||||
from .OpenFinData import * # noqa: F401, F403
|
from .OpenFinData import * # noqa: F401, F403
|
||||||
from .physics import * # noqa: F401, F403
|
from .physics import * # noqa: F401, F403
|
||||||
from .piqa import * # noqa: F401, F403
|
from .piqa import * # noqa: F401, F403
|
||||||
|
from .PromptCBLUE import PromptCBLUEDataset # noqa: F401, F403
|
||||||
from .py150 import * # noqa: F401, F403
|
from .py150 import * # noqa: F401, F403
|
||||||
from .qasper import * # noqa: F401, F403
|
from .qasper import * # noqa: F401, F403
|
||||||
from .qaspercut import * # noqa: F401, F403
|
from .qaspercut import * # noqa: F401, F403
|
||||||
|
Loading…
Reference in New Issue
Block a user