mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
[Feature] Add heuristic size partitioner (#63)
* [Feature] Add heuristic size partitioner * update
This commit is contained in:
parent
eea8b04417
commit
3fe5ee096c
@ -57,3 +57,15 @@ Running method:
|
|||||||
```bash
|
```bash
|
||||||
python tools/test_api_model.py [CONFIG_PATH] -n
|
python tools/test_api_model.py [CONFIG_PATH] -n
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Prediction Merger
|
||||||
|
|
||||||
|
This tool can merge patitioned predictions.
|
||||||
|
|
||||||
|
Running method:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python tools/prediction_merger.py CONFIG_PATH [-w WORK_DIR]
|
||||||
|
```
|
||||||
|
|
||||||
|
- `-w`: Work path, default is `'./outputs/default'`.
|
||||||
|
@ -66,3 +66,15 @@ python tools/case_analyzer.py CONFIG_PATH [-w WORK_DIR]
|
|||||||
```bash
|
```bash
|
||||||
python tools/test_api_model.py [CONFIG_PATH] -n
|
python tools/test_api_model.py [CONFIG_PATH] -n
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Prediction Merger
|
||||||
|
|
||||||
|
本工具可以合并由于 `partitioner` 而产生的分片推理结果。
|
||||||
|
|
||||||
|
运行方式:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python tools/prediction_merger.py CONFIG_PATH [-w WORK_DIR]
|
||||||
|
```
|
||||||
|
|
||||||
|
- `-w`:工作路径,默认为 `'./outputs/default'`。
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
import copy
|
import copy
|
||||||
import math
|
import math
|
||||||
import os.path as osp
|
import os.path as osp
|
||||||
|
from fnmatch import fnmatch
|
||||||
from typing import List, Tuple, Union
|
from typing import List, Tuple, Union
|
||||||
|
|
||||||
import mmengine
|
import mmengine
|
||||||
@ -134,6 +135,30 @@ class SizePartitioner(BasePartitioner):
|
|||||||
split_configs.append(cfg)
|
split_configs.append(cfg)
|
||||||
return split_configs
|
return split_configs
|
||||||
|
|
||||||
|
def get_factor(self, dataset: ConfigDict) -> int:
|
||||||
|
infer_cfg = dataset.infer_cfg
|
||||||
|
template = (infer_cfg.prompt_template.template if 'prompt_template'
|
||||||
|
in infer_cfg else infer_cfg.ice_template.template)
|
||||||
|
# If it's the Gen template, the dataset size will be multiplied by the
|
||||||
|
# self.gen_task_coef
|
||||||
|
factor = self.gen_task_coef
|
||||||
|
# If it's the PPL template, the dataset size will be multiplied by the
|
||||||
|
# number of labels
|
||||||
|
if isinstance(template, dict):
|
||||||
|
ctr = sum(key in template for key in ('begin', 'round', 'end'))
|
||||||
|
if ctr != len(template.keys()):
|
||||||
|
factor = len(template.keys())
|
||||||
|
|
||||||
|
dataset_abbr = dataset_abbr_from_cfg(dataset)
|
||||||
|
if any(
|
||||||
|
fnmatch(dataset_abbr, pattern)
|
||||||
|
for pattern in ('bbh*', 'gsm8k*', 'math*', 'strategyqa*',
|
||||||
|
'agieval-jec*', 'agieval-gaokao-mathcloze',
|
||||||
|
'agieval-math')):
|
||||||
|
factor *= 10
|
||||||
|
|
||||||
|
return factor
|
||||||
|
|
||||||
def get_cost(self,
|
def get_cost(self,
|
||||||
dataset: ConfigDict,
|
dataset: ConfigDict,
|
||||||
get_raw_factors: bool = False) -> Union[int, Tuple[int, int]]:
|
get_raw_factors: bool = False) -> Union[int, Tuple[int, int]]:
|
||||||
@ -150,19 +175,8 @@ class SizePartitioner(BasePartitioner):
|
|||||||
"""
|
"""
|
||||||
dataset_abbr = dataset_abbr_from_cfg(dataset)
|
dataset_abbr = dataset_abbr_from_cfg(dataset)
|
||||||
|
|
||||||
# If it's the PPL template, the dataset size will be multiplied by the
|
|
||||||
# number of labels
|
|
||||||
infer_cfg = dataset.infer_cfg
|
|
||||||
test_range = dataset.reader_cfg.get('test_range', '')
|
test_range = dataset.reader_cfg.get('test_range', '')
|
||||||
template = (infer_cfg.prompt_template.template if 'prompt_template'
|
factor = self.get_factor(dataset)
|
||||||
in infer_cfg else infer_cfg.ice_template.template)
|
|
||||||
# If it's the Gen template, the dataset size will be multiplied by the
|
|
||||||
# self.gen_task_coef
|
|
||||||
factor = self.gen_task_coef
|
|
||||||
if isinstance(template, dict):
|
|
||||||
ctr = sum(key in template for key in ('begin', 'round', 'end'))
|
|
||||||
if ctr != len(template.keys()):
|
|
||||||
factor = len(template.keys())
|
|
||||||
|
|
||||||
if dataset_abbr in self.dataset_size:
|
if dataset_abbr in self.dataset_size:
|
||||||
actual_size = eval('len(range(self.dataset_size[dataset_abbr])'
|
actual_size = eval('len(range(self.dataset_size[dataset_abbr])'
|
||||||
|
100
tools/prediction_merger.py
Normal file
100
tools/prediction_merger.py
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
import argparse
|
||||||
|
import copy
|
||||||
|
import json
|
||||||
|
import os.path as osp
|
||||||
|
|
||||||
|
import mmengine
|
||||||
|
from mmengine.config import Config, ConfigDict
|
||||||
|
|
||||||
|
from opencompass.utils import build_dataset_from_cfg, get_infer_output_path
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args():
|
||||||
|
parser = argparse.ArgumentParser(description='Run an evaluation task')
|
||||||
|
parser.add_argument('config', help='Train config file path')
|
||||||
|
parser.add_argument('-w',
|
||||||
|
'--work-dir',
|
||||||
|
help='Work path, all the outputs will be '
|
||||||
|
'saved in this path, including the slurm logs, '
|
||||||
|
'the evaluation results, the summary results, etc.'
|
||||||
|
'If not specified, the work_dir will be set to '
|
||||||
|
'./outputs/default.',
|
||||||
|
default=None,
|
||||||
|
type=str)
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
class PredictionMerger:
|
||||||
|
""""""
|
||||||
|
|
||||||
|
def __init__(self, cfg: ConfigDict) -> None:
|
||||||
|
|
||||||
|
self.cfg = cfg
|
||||||
|
self.model_cfg = copy.deepcopy(self.cfg['model'])
|
||||||
|
self.dataset_cfg = copy.deepcopy(self.cfg['dataset'])
|
||||||
|
self.work_dir = self.cfg.get('work_dir')
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
filename = get_infer_output_path(
|
||||||
|
self.model_cfg, self.dataset_cfg,
|
||||||
|
osp.join(self.work_dir, 'predictions'))
|
||||||
|
root, ext = osp.splitext(filename)
|
||||||
|
partial_filename = root + '_0' + ext
|
||||||
|
|
||||||
|
if osp.exists(osp.realpath(filename)):
|
||||||
|
return
|
||||||
|
|
||||||
|
if not osp.exists(osp.realpath(partial_filename)):
|
||||||
|
print(f'{filename} not found')
|
||||||
|
return
|
||||||
|
|
||||||
|
# Load predictions
|
||||||
|
partial_filenames = []
|
||||||
|
if osp.exists(osp.realpath(filename)):
|
||||||
|
preds = mmengine.load(filename)
|
||||||
|
else:
|
||||||
|
preds, offset = {}, 0
|
||||||
|
i = 1
|
||||||
|
while osp.exists(osp.realpath(partial_filename)):
|
||||||
|
partial_filenames.append(osp.realpath(partial_filename))
|
||||||
|
_preds = mmengine.load(partial_filename)
|
||||||
|
partial_filename = root + f'_{i}' + ext
|
||||||
|
i += 1
|
||||||
|
for _o in range(len(_preds)):
|
||||||
|
preds[str(offset)] = _preds[str(_o)]
|
||||||
|
offset += 1
|
||||||
|
|
||||||
|
dataset = build_dataset_from_cfg(self.dataset_cfg)
|
||||||
|
if len(preds) != len(dataset.test):
|
||||||
|
print('length mismatch')
|
||||||
|
return
|
||||||
|
|
||||||
|
print(f'Merge {partial_filenames} to {filename}')
|
||||||
|
with open(filename, 'w', encoding='utf-8') as f:
|
||||||
|
json.dump(preds, f, indent=4, ensure_ascii=False)
|
||||||
|
|
||||||
|
|
||||||
|
def dispatch_tasks(cfg):
|
||||||
|
for model in cfg['models']:
|
||||||
|
for dataset in cfg['datasets']:
|
||||||
|
PredictionMerger({
|
||||||
|
'model': model,
|
||||||
|
'dataset': dataset,
|
||||||
|
'work_dir': cfg['work_dir']
|
||||||
|
}).run()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = parse_args()
|
||||||
|
cfg = Config.fromfile(args.config)
|
||||||
|
# set work_dir
|
||||||
|
if args.work_dir is not None:
|
||||||
|
cfg['work_dir'] = args.work_dir
|
||||||
|
else:
|
||||||
|
cfg.setdefault('work_dir', './outputs/default')
|
||||||
|
dispatch_tasks(cfg)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Loading…
Reference in New Issue
Block a user