mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
[Feature] Add heuristic size partitioner (#63)
* [Feature] Add heuristic size partitioner * update
This commit is contained in:
parent
eea8b04417
commit
3fe5ee096c
@ -57,3 +57,15 @@ Running method:
|
||||
```bash
|
||||
python tools/test_api_model.py [CONFIG_PATH] -n
|
||||
```
|
||||
|
||||
## Prediction Merger
|
||||
|
||||
This tool can merge patitioned predictions.
|
||||
|
||||
Running method:
|
||||
|
||||
```bash
|
||||
python tools/prediction_merger.py CONFIG_PATH [-w WORK_DIR]
|
||||
```
|
||||
|
||||
- `-w`: Work path, default is `'./outputs/default'`.
|
||||
|
@ -66,3 +66,15 @@ python tools/case_analyzer.py CONFIG_PATH [-w WORK_DIR]
|
||||
```bash
|
||||
python tools/test_api_model.py [CONFIG_PATH] -n
|
||||
```
|
||||
|
||||
## Prediction Merger
|
||||
|
||||
本工具可以合并由于 `partitioner` 而产生的分片推理结果。
|
||||
|
||||
运行方式:
|
||||
|
||||
```bash
|
||||
python tools/prediction_merger.py CONFIG_PATH [-w WORK_DIR]
|
||||
```
|
||||
|
||||
- `-w`:工作路径,默认为 `'./outputs/default'`。
|
||||
|
@ -1,6 +1,7 @@
|
||||
import copy
|
||||
import math
|
||||
import os.path as osp
|
||||
from fnmatch import fnmatch
|
||||
from typing import List, Tuple, Union
|
||||
|
||||
import mmengine
|
||||
@ -134,6 +135,30 @@ class SizePartitioner(BasePartitioner):
|
||||
split_configs.append(cfg)
|
||||
return split_configs
|
||||
|
||||
def get_factor(self, dataset: ConfigDict) -> int:
|
||||
infer_cfg = dataset.infer_cfg
|
||||
template = (infer_cfg.prompt_template.template if 'prompt_template'
|
||||
in infer_cfg else infer_cfg.ice_template.template)
|
||||
# If it's the Gen template, the dataset size will be multiplied by the
|
||||
# self.gen_task_coef
|
||||
factor = self.gen_task_coef
|
||||
# If it's the PPL template, the dataset size will be multiplied by the
|
||||
# number of labels
|
||||
if isinstance(template, dict):
|
||||
ctr = sum(key in template for key in ('begin', 'round', 'end'))
|
||||
if ctr != len(template.keys()):
|
||||
factor = len(template.keys())
|
||||
|
||||
dataset_abbr = dataset_abbr_from_cfg(dataset)
|
||||
if any(
|
||||
fnmatch(dataset_abbr, pattern)
|
||||
for pattern in ('bbh*', 'gsm8k*', 'math*', 'strategyqa*',
|
||||
'agieval-jec*', 'agieval-gaokao-mathcloze',
|
||||
'agieval-math')):
|
||||
factor *= 10
|
||||
|
||||
return factor
|
||||
|
||||
def get_cost(self,
|
||||
dataset: ConfigDict,
|
||||
get_raw_factors: bool = False) -> Union[int, Tuple[int, int]]:
|
||||
@ -150,19 +175,8 @@ class SizePartitioner(BasePartitioner):
|
||||
"""
|
||||
dataset_abbr = dataset_abbr_from_cfg(dataset)
|
||||
|
||||
# If it's the PPL template, the dataset size will be multiplied by the
|
||||
# number of labels
|
||||
infer_cfg = dataset.infer_cfg
|
||||
test_range = dataset.reader_cfg.get('test_range', '')
|
||||
template = (infer_cfg.prompt_template.template if 'prompt_template'
|
||||
in infer_cfg else infer_cfg.ice_template.template)
|
||||
# If it's the Gen template, the dataset size will be multiplied by the
|
||||
# self.gen_task_coef
|
||||
factor = self.gen_task_coef
|
||||
if isinstance(template, dict):
|
||||
ctr = sum(key in template for key in ('begin', 'round', 'end'))
|
||||
if ctr != len(template.keys()):
|
||||
factor = len(template.keys())
|
||||
factor = self.get_factor(dataset)
|
||||
|
||||
if dataset_abbr in self.dataset_size:
|
||||
actual_size = eval('len(range(self.dataset_size[dataset_abbr])'
|
||||
|
100
tools/prediction_merger.py
Normal file
100
tools/prediction_merger.py
Normal file
@ -0,0 +1,100 @@
|
||||
import argparse
|
||||
import copy
|
||||
import json
|
||||
import os.path as osp
|
||||
|
||||
import mmengine
|
||||
from mmengine.config import Config, ConfigDict
|
||||
|
||||
from opencompass.utils import build_dataset_from_cfg, get_infer_output_path
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='Run an evaluation task')
|
||||
parser.add_argument('config', help='Train config file path')
|
||||
parser.add_argument('-w',
|
||||
'--work-dir',
|
||||
help='Work path, all the outputs will be '
|
||||
'saved in this path, including the slurm logs, '
|
||||
'the evaluation results, the summary results, etc.'
|
||||
'If not specified, the work_dir will be set to '
|
||||
'./outputs/default.',
|
||||
default=None,
|
||||
type=str)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
class PredictionMerger:
|
||||
""""""
|
||||
|
||||
def __init__(self, cfg: ConfigDict) -> None:
|
||||
|
||||
self.cfg = cfg
|
||||
self.model_cfg = copy.deepcopy(self.cfg['model'])
|
||||
self.dataset_cfg = copy.deepcopy(self.cfg['dataset'])
|
||||
self.work_dir = self.cfg.get('work_dir')
|
||||
|
||||
def run(self):
|
||||
filename = get_infer_output_path(
|
||||
self.model_cfg, self.dataset_cfg,
|
||||
osp.join(self.work_dir, 'predictions'))
|
||||
root, ext = osp.splitext(filename)
|
||||
partial_filename = root + '_0' + ext
|
||||
|
||||
if osp.exists(osp.realpath(filename)):
|
||||
return
|
||||
|
||||
if not osp.exists(osp.realpath(partial_filename)):
|
||||
print(f'{filename} not found')
|
||||
return
|
||||
|
||||
# Load predictions
|
||||
partial_filenames = []
|
||||
if osp.exists(osp.realpath(filename)):
|
||||
preds = mmengine.load(filename)
|
||||
else:
|
||||
preds, offset = {}, 0
|
||||
i = 1
|
||||
while osp.exists(osp.realpath(partial_filename)):
|
||||
partial_filenames.append(osp.realpath(partial_filename))
|
||||
_preds = mmengine.load(partial_filename)
|
||||
partial_filename = root + f'_{i}' + ext
|
||||
i += 1
|
||||
for _o in range(len(_preds)):
|
||||
preds[str(offset)] = _preds[str(_o)]
|
||||
offset += 1
|
||||
|
||||
dataset = build_dataset_from_cfg(self.dataset_cfg)
|
||||
if len(preds) != len(dataset.test):
|
||||
print('length mismatch')
|
||||
return
|
||||
|
||||
print(f'Merge {partial_filenames} to {filename}')
|
||||
with open(filename, 'w', encoding='utf-8') as f:
|
||||
json.dump(preds, f, indent=4, ensure_ascii=False)
|
||||
|
||||
|
||||
def dispatch_tasks(cfg):
|
||||
for model in cfg['models']:
|
||||
for dataset in cfg['datasets']:
|
||||
PredictionMerger({
|
||||
'model': model,
|
||||
'dataset': dataset,
|
||||
'work_dir': cfg['work_dir']
|
||||
}).run()
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
cfg = Config.fromfile(args.config)
|
||||
# set work_dir
|
||||
if args.work_dir is not None:
|
||||
cfg['work_dir'] = args.work_dir
|
||||
else:
|
||||
cfg.setdefault('work_dir', './outputs/default')
|
||||
dispatch_tasks(cfg)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user