[Feature] Support turbomind (#166)

* support turbomind

* update doc

* Update docs/en/advanced_guides/evaluation_turbomind.md

Co-authored-by: Tong Gao <gaotongxiao@gmail.com>

* Update docs/zh_cn/advanced_guides/evaluation_turbomind.md

Co-authored-by: Tong Gao <gaotongxiao@gmail.com>

* Update docs/zh_cn/advanced_guides/evaluation_turbomind.md

Co-authored-by: Tong Gao <gaotongxiao@gmail.com>

* Update docs/en/advanced_guides/evaluation_turbomind.md

Co-authored-by: Tong Gao <gaotongxiao@gmail.com>

* update

---------

Co-authored-by: Tong Gao <gaotongxiao@gmail.com>
This commit is contained in:
Songyang Zhang 2023-08-10 16:25:11 +08:00 committed by GitHub
parent e7fc54baf1
commit 3f36db3b06
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 310 additions and 1 deletions

View File

@ -0,0 +1,32 @@
from mmengine.config import read_base
from opencompass.models.turbomind import TurboMindModel
with read_base():
# choose a list of datasets
from .datasets.SuperGLUE_CB.SuperGLUE_CB_gen import CB_datasets
# and output the results in a choosen format
from .summarizers.medium import summarizer
datasets = [*CB_datasets]
_meta_template = dict(
round=[
dict(role='HUMAN', begin='<|User|>:', end='<eoh>\n'),
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
],
)
models = [
dict(
type=TurboMindModel,
abbr='internlm-chat-7b-tb',
path="internlm-chat-7b",
model_path='./workspace',
max_out_len=100,
max_seq_len=2048,
batch_size=16,
meta_template=_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]

View File

@ -19,12 +19,16 @@ models = [
truncation_side='left',
use_fast=False,
trust_remote_code=True,
revision="1a6328795c6e207904e1eb58177e03ad24ae06f3"
),
max_out_len=100,
max_seq_len=2048,
batch_size=8,
meta_template=_meta_template,
model_kwargs=dict(trust_remote_code=True, device_map='auto'),
model_kwargs=dict(
trust_remote_code=True,
device_map='auto',
revision="1a6328795c6e207904e1eb58177e03ad24ae06f3"),
run_cfg=dict(num_gpus=1, num_procs=1),
)
]

View File

@ -0,0 +1,55 @@
# Evaluation with LMDeploy
We now support evaluation of models accelerated by the [LMDeploy](https://github.com/InternLM/lmdeploy). LMDeploy is a toolkit designed for compressing, deploying, and serving LLM. **TurboMind** is an efficient inference engine proposed by LMDeploy. OpenCompass is compatible with TurboMind. We now illustrate how to evaluate a model with the support of TurboMind in OpenCompass.
# Setup
## Install OpenCompass
Please follow the [instructions](https://opencompass.readthedocs.io/en/latest/get_started.html) to install the OpenCompass and prepare the evaluation datasets.
## Install LMDeploy
Install lmdeploy via pip (python 3.8+)
```shell
pip install lmdeploy
```
# Evaluation
We take the InternLM as example.
## Step-1: Get InternLM model
```shell
# 1. Download InternLM model(or use the cached model's checkpoint)
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/internlm/internlm-chat-7b /path/to/internlm-chat-7b
# if you want to clone without large files just their pointers
# prepend your git clone with the following env var:
GIT_LFS_SKIP_SMUDGE=1
# 2. Convert InternLM model to turbomind's format, which will be in "./workspace" by default
python3 -m lmdeploy.serve.turbomind.deploy internlm-chat-7b /path/to/internlm-chat-7b
```
## Step-2: Verify the Converted Model
```shell
python -m lmdeploy.turbomind.chat ./workspace
```
## Step-3: Evaluate the Converted Model
In the home folder of OpenCompass
```shell
python run.py configs/eval_internlm_chat_7b_turbomind.py -w outputs/turbomind
```
You are expected to get the evaluation results after the inference and evaluation.

View File

@ -44,6 +44,7 @@ We always welcome *PRs* and *Issues* for the betterment of OpenCompass.
advanced_guides/new_dataset.md
advanced_guides/new_model.md
advanced_guides/evaluation_turbomind.md
.. _Prompt:
.. toctree::

View File

@ -0,0 +1,55 @@
# 评测LMDeploy模型
我们支持评测使用[LMDeploy](https://github.com/InternLM/lmdeploy)加速过的大语言模型。LMDeploy 由 MMDeploy 和 MMRazor 团队联合开发,是涵盖了 LLM 任务的全套轻量化、部署和服务解决方案。 **TurboMind** 是 LMDeploy 推出的高效推理引擎。OpenCompass 对 TurboMind 进行了适配,本教程将介绍如何使用 OpenCompass 来对 TurboMind 加速后的模型进行评测。
# 环境配置
## 安装OpenCompass
请根据OpenCompass[安装指南](https://opencompass.readthedocs.io/en/latest/get_started.html) 来安装算法库和准备数据集。
## 安装LMDeploy
使用pip安装LMDeploy( python 3.8+)
```shell
pip install lmdeploy
```
# 评测
我们使用InternLM作为例子来介绍如何评测
## 第一步: 获取InternLM模型
```shell
# 1. Download InternLM model(or use the cached model's checkpoint)
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/internlm/internlm-chat-7b /path/to/internlm-chat-7b
# if you want to clone without large files just their pointers
# prepend your git clone with the following env var:
GIT_LFS_SKIP_SMUDGE=1
# 2. Convert InternLM model to turbomind's format, which will be in "./workspace" by default
python3 -m lmdeploy.serve.turbomind.deploy internlm-chat-7b /path/to/internlm-chat-7b
```
## 第二步: 验证转换后的模型
```shell
python -m lmdeploy.turbomind.chat ./workspace
```
## 第三步: 评测转换后的模型
在OpenCompass项目文件执行
```shell
python run.py configs/eval_internlm_chat_7b_turbomind.py -w outputs/turbomind
```
当模型完成推理和指标计算后,我们便可获得模型的评测结果

View File

@ -54,6 +54,7 @@ OpenCompass 上手路线
advanced_guides/new_dataset.md
advanced_guides/new_model.md
advanced_guides/evaluation_turbomind.md
.. _工具:
.. toctree::

View File

@ -0,0 +1,161 @@
import os.path as osp
import random
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union
from opencompass.models.base import BaseModel
from opencompass.models.base_api import TokenBucket
from opencompass.utils.logging import get_logger
from opencompass.utils.prompt import PromptList
PromptType = Union[PromptList, str]
def valid_str(string, coding='utf-8'):
"""decode text according to its encoding type."""
invalid_chars = [b'\xef\xbf\xbd']
bstr = bytes(string, coding)
for invalid_char in invalid_chars:
bstr = bstr.replace(invalid_char, b'')
ret = bstr.decode(encoding=coding, errors='ignore')
return ret
class TurboMindModel(BaseModel):
"""Model wrapper for TurboMind API.
Args:
path (str): The name of OpenAI's model.
model_path (str): folder of the turbomind model's path
max_seq_len (int): The maximum allowed sequence length of a model.
Note that the length of prompt + generated tokens shall not exceed
this value. Defaults to 2048.
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 1.
retry (int): Number of retires if the API call fails. Defaults to 2.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
"""
is_api: bool = True
def __init__(
self,
path: str,
model_path: str,
max_seq_len: int = 2048,
query_per_second: int = 1,
retry: int = 2,
meta_template: Optional[Dict] = None,
):
super().__init__(path=path,
max_seq_len=max_seq_len,
meta_template=meta_template)
self.logger = get_logger()
from lmdeploy import turbomind as tm
from lmdeploy.model import MODELS as LMMODELS
from lmdeploy.turbomind.tokenizer import Tokenizer as LMTokenizer
self.retry = retry
tokenizer_model_path = osp.join(model_path, 'triton_models',
'tokenizer')
self.tokenizer = LMTokenizer(tokenizer_model_path)
tm_model = tm.TurboMind(model_path, eos_id=self.tokenizer.eos_token_id)
self.model_name = tm_model.model_name
self.model = LMMODELS.get(self.model_name)()
self.generator = tm_model.create_instance()
self.token_bucket = TokenBucket(query_per_second)
def generate(
self,
inputs: List[str or PromptList],
max_out_len: int = 512,
temperature: float = 0.0,
) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str or PromptList]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
temperature (float): What sampling temperature to use,
between 0 and 2. Higher values like 0.8 will make the output
more random, while lower values like 0.2 will make it more
focused and deterministic. Defaults to 0.7.
Returns:
List[str]: A list of generated strings.
"""
prompts = inputs
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, prompts,
[max_out_len] * len(inputs),
[temperature] * len(inputs)))
return results
def wait(self):
"""Wait till the next query can be sent.
Applicable in both single-thread and multi-thread environments.
"""
return self.token_bucket.get_token()
def _generate(self, input: str or PromptList, max_out_len: int,
temperature: float) -> str:
"""Generate results given a list of inputs.
Args:
inputs (str or PromptList): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
temperature (float): What sampling temperature to use,
between 0 and 2. Higher values like 0.8 will make the output
more random, while lower values like 0.2 will make it more
focused and deterministic.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
assert type(
input
) is str, 'We only support string for TurboMind Python API now'
intput_token_ids = self.tokenizer.encode(input)
for _ in range(self.retry):
self.wait()
session_id = random.randint(1, 100000)
nth_round = 0
for outputs in self.generator.stream_infer(
session_id=session_id,
input_ids=[intput_token_ids],
stream_output=False,
request_output_len=max_out_len,
sequence_start=(nth_round == 0),
sequence_end=False,
step=0,
stop=False,
top_k=40,
top_p=0.8,
temperature=temperature,
repetition_penalty=1.0,
ignore_eos=False,
random_seed=random.getrandbits(64)
if nth_round == 0 else None):
pass
output_token_ids, _ = outputs[0]
# decode output_token_ids
response = self.tokenizer.decode(output_token_ids)
response = valid_str(response)
return response