mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
[Feature] Support turbomind (#166)
* support turbomind * update doc * Update docs/en/advanced_guides/evaluation_turbomind.md Co-authored-by: Tong Gao <gaotongxiao@gmail.com> * Update docs/zh_cn/advanced_guides/evaluation_turbomind.md Co-authored-by: Tong Gao <gaotongxiao@gmail.com> * Update docs/zh_cn/advanced_guides/evaluation_turbomind.md Co-authored-by: Tong Gao <gaotongxiao@gmail.com> * Update docs/en/advanced_guides/evaluation_turbomind.md Co-authored-by: Tong Gao <gaotongxiao@gmail.com> * update --------- Co-authored-by: Tong Gao <gaotongxiao@gmail.com>
This commit is contained in:
parent
e7fc54baf1
commit
3f36db3b06
32
configs/eval_internlm_chat_7b_turbomind.py
Normal file
32
configs/eval_internlm_chat_7b_turbomind.py
Normal file
@ -0,0 +1,32 @@
|
||||
from mmengine.config import read_base
|
||||
from opencompass.models.turbomind import TurboMindModel
|
||||
|
||||
with read_base():
|
||||
# choose a list of datasets
|
||||
from .datasets.SuperGLUE_CB.SuperGLUE_CB_gen import CB_datasets
|
||||
# and output the results in a choosen format
|
||||
from .summarizers.medium import summarizer
|
||||
|
||||
datasets = [*CB_datasets]
|
||||
|
||||
|
||||
_meta_template = dict(
|
||||
round=[
|
||||
dict(role='HUMAN', begin='<|User|>:', end='<eoh>\n'),
|
||||
dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
|
||||
],
|
||||
)
|
||||
|
||||
models = [
|
||||
dict(
|
||||
type=TurboMindModel,
|
||||
abbr='internlm-chat-7b-tb',
|
||||
path="internlm-chat-7b",
|
||||
model_path='./workspace',
|
||||
max_out_len=100,
|
||||
max_seq_len=2048,
|
||||
batch_size=16,
|
||||
meta_template=_meta_template,
|
||||
run_cfg=dict(num_gpus=1, num_procs=1),
|
||||
)
|
||||
]
|
@ -19,12 +19,16 @@ models = [
|
||||
truncation_side='left',
|
||||
use_fast=False,
|
||||
trust_remote_code=True,
|
||||
revision="1a6328795c6e207904e1eb58177e03ad24ae06f3"
|
||||
),
|
||||
max_out_len=100,
|
||||
max_seq_len=2048,
|
||||
batch_size=8,
|
||||
meta_template=_meta_template,
|
||||
model_kwargs=dict(trust_remote_code=True, device_map='auto'),
|
||||
model_kwargs=dict(
|
||||
trust_remote_code=True,
|
||||
device_map='auto',
|
||||
revision="1a6328795c6e207904e1eb58177e03ad24ae06f3"),
|
||||
run_cfg=dict(num_gpus=1, num_procs=1),
|
||||
)
|
||||
]
|
||||
|
55
docs/en/advanced_guides/evaluation_turbomind.md
Normal file
55
docs/en/advanced_guides/evaluation_turbomind.md
Normal file
@ -0,0 +1,55 @@
|
||||
# Evaluation with LMDeploy
|
||||
|
||||
We now support evaluation of models accelerated by the [LMDeploy](https://github.com/InternLM/lmdeploy). LMDeploy is a toolkit designed for compressing, deploying, and serving LLM. **TurboMind** is an efficient inference engine proposed by LMDeploy. OpenCompass is compatible with TurboMind. We now illustrate how to evaluate a model with the support of TurboMind in OpenCompass.
|
||||
|
||||
# Setup
|
||||
|
||||
## Install OpenCompass
|
||||
|
||||
Please follow the [instructions](https://opencompass.readthedocs.io/en/latest/get_started.html) to install the OpenCompass and prepare the evaluation datasets.
|
||||
|
||||
## Install LMDeploy
|
||||
|
||||
Install lmdeploy via pip (python 3.8+)
|
||||
|
||||
```shell
|
||||
pip install lmdeploy
|
||||
```
|
||||
|
||||
# Evaluation
|
||||
|
||||
We take the InternLM as example.
|
||||
|
||||
## Step-1: Get InternLM model
|
||||
|
||||
```shell
|
||||
# 1. Download InternLM model(or use the cached model's checkpoint)
|
||||
|
||||
# Make sure you have git-lfs installed (https://git-lfs.com)
|
||||
git lfs install
|
||||
git clone https://huggingface.co/internlm/internlm-chat-7b /path/to/internlm-chat-7b
|
||||
|
||||
# if you want to clone without large files – just their pointers
|
||||
# prepend your git clone with the following env var:
|
||||
GIT_LFS_SKIP_SMUDGE=1
|
||||
|
||||
# 2. Convert InternLM model to turbomind's format, which will be in "./workspace" by default
|
||||
python3 -m lmdeploy.serve.turbomind.deploy internlm-chat-7b /path/to/internlm-chat-7b
|
||||
|
||||
```
|
||||
|
||||
## Step-2: Verify the Converted Model
|
||||
|
||||
```shell
|
||||
python -m lmdeploy.turbomind.chat ./workspace
|
||||
```
|
||||
|
||||
## Step-3: Evaluate the Converted Model
|
||||
|
||||
In the home folder of OpenCompass
|
||||
|
||||
```shell
|
||||
python run.py configs/eval_internlm_chat_7b_turbomind.py -w outputs/turbomind
|
||||
```
|
||||
|
||||
You are expected to get the evaluation results after the inference and evaluation.
|
@ -44,6 +44,7 @@ We always welcome *PRs* and *Issues* for the betterment of OpenCompass.
|
||||
|
||||
advanced_guides/new_dataset.md
|
||||
advanced_guides/new_model.md
|
||||
advanced_guides/evaluation_turbomind.md
|
||||
|
||||
.. _Prompt:
|
||||
.. toctree::
|
||||
|
55
docs/zh_cn/advanced_guides/evaluation_turbomind.md
Normal file
55
docs/zh_cn/advanced_guides/evaluation_turbomind.md
Normal file
@ -0,0 +1,55 @@
|
||||
# 评测LMDeploy模型
|
||||
|
||||
我们支持评测使用[LMDeploy](https://github.com/InternLM/lmdeploy)加速过的大语言模型。LMDeploy 由 MMDeploy 和 MMRazor 团队联合开发,是涵盖了 LLM 任务的全套轻量化、部署和服务解决方案。 **TurboMind** 是 LMDeploy 推出的高效推理引擎。OpenCompass 对 TurboMind 进行了适配,本教程将介绍如何使用 OpenCompass 来对 TurboMind 加速后的模型进行评测。
|
||||
|
||||
# 环境配置
|
||||
|
||||
## 安装OpenCompass
|
||||
|
||||
请根据OpenCompass[安装指南](https://opencompass.readthedocs.io/en/latest/get_started.html) 来安装算法库和准备数据集。
|
||||
|
||||
## 安装LMDeploy
|
||||
|
||||
使用pip安装LMDeploy( python 3.8+)
|
||||
|
||||
```shell
|
||||
pip install lmdeploy
|
||||
```
|
||||
|
||||
# 评测
|
||||
|
||||
我们使用InternLM作为例子来介绍如何评测
|
||||
|
||||
## 第一步: 获取InternLM模型
|
||||
|
||||
```shell
|
||||
# 1. Download InternLM model(or use the cached model's checkpoint)
|
||||
|
||||
# Make sure you have git-lfs installed (https://git-lfs.com)
|
||||
git lfs install
|
||||
git clone https://huggingface.co/internlm/internlm-chat-7b /path/to/internlm-chat-7b
|
||||
|
||||
# if you want to clone without large files – just their pointers
|
||||
# prepend your git clone with the following env var:
|
||||
GIT_LFS_SKIP_SMUDGE=1
|
||||
|
||||
# 2. Convert InternLM model to turbomind's format, which will be in "./workspace" by default
|
||||
python3 -m lmdeploy.serve.turbomind.deploy internlm-chat-7b /path/to/internlm-chat-7b
|
||||
|
||||
```
|
||||
|
||||
## 第二步: 验证转换后的模型
|
||||
|
||||
```shell
|
||||
python -m lmdeploy.turbomind.chat ./workspace
|
||||
```
|
||||
|
||||
## 第三步: 评测转换后的模型
|
||||
|
||||
在OpenCompass项目文件执行:
|
||||
|
||||
```shell
|
||||
python run.py configs/eval_internlm_chat_7b_turbomind.py -w outputs/turbomind
|
||||
```
|
||||
|
||||
当模型完成推理和指标计算后,我们便可获得模型的评测结果
|
@ -54,6 +54,7 @@ OpenCompass 上手路线
|
||||
|
||||
advanced_guides/new_dataset.md
|
||||
advanced_guides/new_model.md
|
||||
advanced_guides/evaluation_turbomind.md
|
||||
|
||||
.. _工具:
|
||||
.. toctree::
|
||||
|
161
opencompass/models/turbomind.py
Normal file
161
opencompass/models/turbomind.py
Normal file
@ -0,0 +1,161 @@
|
||||
import os.path as osp
|
||||
import random
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
from opencompass.models.base import BaseModel
|
||||
from opencompass.models.base_api import TokenBucket
|
||||
from opencompass.utils.logging import get_logger
|
||||
from opencompass.utils.prompt import PromptList
|
||||
|
||||
PromptType = Union[PromptList, str]
|
||||
|
||||
|
||||
def valid_str(string, coding='utf-8'):
|
||||
"""decode text according to its encoding type."""
|
||||
invalid_chars = [b'\xef\xbf\xbd']
|
||||
bstr = bytes(string, coding)
|
||||
for invalid_char in invalid_chars:
|
||||
bstr = bstr.replace(invalid_char, b'')
|
||||
ret = bstr.decode(encoding=coding, errors='ignore')
|
||||
return ret
|
||||
|
||||
|
||||
class TurboMindModel(BaseModel):
|
||||
"""Model wrapper for TurboMind API.
|
||||
|
||||
Args:
|
||||
path (str): The name of OpenAI's model.
|
||||
model_path (str): folder of the turbomind model's path
|
||||
max_seq_len (int): The maximum allowed sequence length of a model.
|
||||
Note that the length of prompt + generated tokens shall not exceed
|
||||
this value. Defaults to 2048.
|
||||
query_per_second (int): The maximum queries allowed per second
|
||||
between two consecutive calls of the API. Defaults to 1.
|
||||
retry (int): Number of retires if the API call fails. Defaults to 2.
|
||||
meta_template (Dict, optional): The model's meta prompt
|
||||
template if needed, in case the requirement of injecting or
|
||||
wrapping of any meta instructions.
|
||||
"""
|
||||
|
||||
is_api: bool = True
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
path: str,
|
||||
model_path: str,
|
||||
max_seq_len: int = 2048,
|
||||
query_per_second: int = 1,
|
||||
retry: int = 2,
|
||||
meta_template: Optional[Dict] = None,
|
||||
):
|
||||
|
||||
super().__init__(path=path,
|
||||
max_seq_len=max_seq_len,
|
||||
meta_template=meta_template)
|
||||
self.logger = get_logger()
|
||||
|
||||
from lmdeploy import turbomind as tm
|
||||
from lmdeploy.model import MODELS as LMMODELS
|
||||
from lmdeploy.turbomind.tokenizer import Tokenizer as LMTokenizer
|
||||
|
||||
self.retry = retry
|
||||
|
||||
tokenizer_model_path = osp.join(model_path, 'triton_models',
|
||||
'tokenizer')
|
||||
self.tokenizer = LMTokenizer(tokenizer_model_path)
|
||||
tm_model = tm.TurboMind(model_path, eos_id=self.tokenizer.eos_token_id)
|
||||
self.model_name = tm_model.model_name
|
||||
self.model = LMMODELS.get(self.model_name)()
|
||||
self.generator = tm_model.create_instance()
|
||||
self.token_bucket = TokenBucket(query_per_second)
|
||||
|
||||
def generate(
|
||||
self,
|
||||
inputs: List[str or PromptList],
|
||||
max_out_len: int = 512,
|
||||
temperature: float = 0.0,
|
||||
) -> List[str]:
|
||||
"""Generate results given a list of inputs.
|
||||
|
||||
Args:
|
||||
inputs (List[str or PromptList]): A list of strings or PromptDicts.
|
||||
The PromptDict should be organized in OpenCompass'
|
||||
API format.
|
||||
max_out_len (int): The maximum length of the output.
|
||||
temperature (float): What sampling temperature to use,
|
||||
between 0 and 2. Higher values like 0.8 will make the output
|
||||
more random, while lower values like 0.2 will make it more
|
||||
focused and deterministic. Defaults to 0.7.
|
||||
|
||||
Returns:
|
||||
List[str]: A list of generated strings.
|
||||
"""
|
||||
prompts = inputs
|
||||
with ThreadPoolExecutor() as executor:
|
||||
results = list(
|
||||
executor.map(self._generate, prompts,
|
||||
[max_out_len] * len(inputs),
|
||||
[temperature] * len(inputs)))
|
||||
return results
|
||||
|
||||
def wait(self):
|
||||
"""Wait till the next query can be sent.
|
||||
|
||||
Applicable in both single-thread and multi-thread environments.
|
||||
"""
|
||||
return self.token_bucket.get_token()
|
||||
|
||||
def _generate(self, input: str or PromptList, max_out_len: int,
|
||||
temperature: float) -> str:
|
||||
"""Generate results given a list of inputs.
|
||||
|
||||
Args:
|
||||
inputs (str or PromptList): A string or PromptDict.
|
||||
The PromptDict should be organized in OpenCompass'
|
||||
API format.
|
||||
max_out_len (int): The maximum length of the output.
|
||||
temperature (float): What sampling temperature to use,
|
||||
between 0 and 2. Higher values like 0.8 will make the output
|
||||
more random, while lower values like 0.2 will make it more
|
||||
focused and deterministic.
|
||||
|
||||
Returns:
|
||||
str: The generated string.
|
||||
"""
|
||||
assert isinstance(input, (str, PromptList))
|
||||
|
||||
assert type(
|
||||
input
|
||||
) is str, 'We only support string for TurboMind Python API now'
|
||||
|
||||
intput_token_ids = self.tokenizer.encode(input)
|
||||
|
||||
for _ in range(self.retry):
|
||||
self.wait()
|
||||
session_id = random.randint(1, 100000)
|
||||
nth_round = 0
|
||||
for outputs in self.generator.stream_infer(
|
||||
session_id=session_id,
|
||||
input_ids=[intput_token_ids],
|
||||
stream_output=False,
|
||||
request_output_len=max_out_len,
|
||||
sequence_start=(nth_round == 0),
|
||||
sequence_end=False,
|
||||
step=0,
|
||||
stop=False,
|
||||
top_k=40,
|
||||
top_p=0.8,
|
||||
temperature=temperature,
|
||||
repetition_penalty=1.0,
|
||||
ignore_eos=False,
|
||||
random_seed=random.getrandbits(64)
|
||||
if nth_round == 0 else None):
|
||||
pass
|
||||
|
||||
output_token_ids, _ = outputs[0]
|
||||
# decode output_token_ids
|
||||
response = self.tokenizer.decode(output_token_ids)
|
||||
response = valid_str(response)
|
||||
|
||||
return response
|
Loading…
Reference in New Issue
Block a user