[Update] Change NeedleInAHaystackDataset to dynamic dataset loading (#754)

* Add NeedleInAHaystack Test

* Apply pre-commit formatting

* Update configs/eval_hf_internlm_chat_20b_cdme.py

Co-authored-by: Songyang Zhang <tonysy@users.noreply.github.com>

* add needle in haystack test

* update needle in haystack test

* update plot function in tools_needleinahaystack.py

* optimizing needleinahaystack dataset generation strategy

* modify minor formatting issues

* add English version support

* change NeedleInAHaystackDataset to dynamic loading

* change NeedleInAHaystackDataset to dynamic loading

* fix needleinahaystack test eval bug

* fix needleinahaystack config bug

---------

Co-authored-by: Songyang Zhang <tonysy@users.noreply.github.com>
This commit is contained in:
Mo Li 2024-01-02 17:22:56 +08:00 committed by GitHub
parent b69fe2343b
commit 33f8df1ca3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 300 additions and 225 deletions

View File

@ -0,0 +1,81 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets.cdme.cdme import CDMEDataset
from opencompass.datasets.cdme.cdme import CDMEEvaluator
from opencompass.datasets.cdme.cdme import cdme_postprocess
from opencompass.datasets.cdme.cdme import cdme_dataset_postprocess
import math
def logistic(x, L=100, x0=50, k=0.1):
return round(L / (1 + math.exp(-k * (x - x0))), 3)
def generate_linear_space(start, end, num):
if num == 1:
return [start]
elif num < 1:
raise ValueError("num must be at least 1.")
step = (end - start) / (num - 1)
return [start + step * i for i in range(num)]
def generate_depth_percents(intervals, interval_type):
if interval_type == 'linear':
return generate_linear_space(0, 100, intervals)
elif interval_type == 'sigmoid':
linear_space = generate_linear_space(0, 100, intervals)
return [logistic(x) for x in linear_space]
else:
raise ValueError('Unsupported interval type')
cdme_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
cdme_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template='''{prompt}'''),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
cdme_eval_cfg = dict(
evaluator=dict(type=CDMEEvaluator),
pred_postprocessor=dict(type=cdme_postprocess),
dataset_postprocessor=dict(type=cdme_dataset_postprocess),
pred_role='BOT')
context_lengths = list(range(1000, 201000, 1000))
document_depth_percent_intervals = 20
document_depth_percent_interval_type = "linear"
base_path = './data/CDME'
file_list = ['zh_finance.jsonl']
cdme_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
dataset_dict = {
'abbr': f'CDME_Length{original_context_length}'
f'Depth{int(depth_percent)}',
'type': CDMEDataset,
'path': base_path,
'length': original_context_length,
'depth': int(depth_percent),
'tokenizer_model': 'gpt-4',
'file_list': file_list,
'num_repeats_per_file': 10,
'length_buffer': 200,
'guide': True,
'language': 'Chinese',
'needle': '\n小明最喜欢的实习的地点就是上海人工智能实验室。\n',
'retrieval_question': '小明最喜欢的实习地点是哪里?请按照'
'“小明最喜欢的实习地点就是________。”的格式回答。',
'reader_cfg': cdme_reader_cfg,
'infer_cfg': cdme_infer_cfg,
'eval_cfg': cdme_eval_cfg
}
cdme_datasets.append(dataset_dict)

View File

@ -0,0 +1,81 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets.cdme.cdme import CDMEDataset
from opencompass.datasets.cdme.cdme import CDMEEvaluator
from opencompass.datasets.cdme.cdme import cdme_postprocess
from opencompass.datasets.cdme.cdme import cdme_dataset_postprocess
import math
def logistic(x, L=100, x0=50, k=0.1):
return round(L / (1 + math.exp(-k * (x - x0))), 3)
def generate_linear_space(start, end, num):
if num == 1:
return [start]
elif num < 1:
raise ValueError("num must be at least 1.")
step = (end - start) / (num - 1)
return [start + step * i for i in range(num)]
def generate_depth_percents(intervals, interval_type):
if interval_type == 'linear':
return generate_linear_space(0, 100, intervals)
elif interval_type == 'sigmoid':
linear_space = generate_linear_space(0, 100, intervals)
return [logistic(x) for x in linear_space]
else:
raise ValueError('Unsupported interval type')
cdme_reader_cfg = dict(input_columns=['prompt'], output_column='answer')
cdme_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template='''{prompt}'''),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
cdme_eval_cfg = dict(
evaluator=dict(type=CDMEEvaluator),
pred_postprocessor=dict(type=cdme_postprocess),
dataset_postprocessor=dict(type=cdme_dataset_postprocess),
pred_role='BOT')
context_lengths = list(range(1000, 33000, 1000))
document_depth_percent_intervals = 20
document_depth_percent_interval_type = "linear"
base_path = './data/CDME'
file_list = ['zh_finance.jsonl']
cdme_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
dataset_dict = {
'abbr': f'CDME_Length{original_context_length}'
f'Depth{int(depth_percent)}',
'type': CDMEDataset,
'path': base_path,
'length': original_context_length,
'depth': int(depth_percent),
'tokenizer_model': 'gpt-4',
'file_list': file_list,
'num_repeats_per_file': 10,
'length_buffer': 200,
'guide': True,
'language': 'Chinese',
'needle': '\n小明最喜欢的实习的地点就是上海人工智能实验室。\n',
'retrieval_question': '小明最喜欢的实习地点是哪里?请按照'
'“小明最喜欢的实习地点就是________。”的格式回答。',
'reader_cfg': cdme_reader_cfg,
'infer_cfg': cdme_infer_cfg,
'eval_cfg': cdme_eval_cfg
}
cdme_datasets.append(dataset_dict)

View File

@ -1,7 +1,10 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets.cdme.cdme import CDMEDataset,CDMEEvaluator,cdme_postprocess,cdme_dataset_postprocess
from opencompass.datasets.cdme.cdme import CDMEDataset
from opencompass.datasets.cdme.cdme import CDMEEvaluator
from opencompass.datasets.cdme.cdme import cdme_postprocess
from opencompass.datasets.cdme.cdme import cdme_dataset_postprocess
import math
@ -10,6 +13,10 @@ def logistic(x, L=100, x0=50, k=0.1):
def generate_linear_space(start, end, num):
if num == 1:
return [start]
elif num < 1:
raise ValueError("num must be at least 1.")
step = (end - start) / (num - 1)
return [start + step * i for i in range(num)]
@ -40,26 +47,35 @@ cdme_eval_cfg = dict(
pred_role='BOT')
context_lengths = list(range(1000, 9000, 1000))
document_depth_percent_intervals = 35
document_depth_percent_intervals = 20
document_depth_percent_interval_type = "linear"
base_path = './data/CDME/processed'
base_path = './data/CDME'
file_list = ['zh_finance.jsonl']
cdme_datasets = []
for original_context_length in context_lengths:
for depth_percent in generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
dataset_dict = dict(
abbr=f'CDME_Length{original_context_length}'
'Depth{int(depth_percent)}',
type=CDMEDataset,
path=base_path,
length=original_context_length,
depth=int(depth_percent),
reader_cfg=cdme_reader_cfg,
infer_cfg=cdme_infer_cfg,
eval_cfg=cdme_eval_cfg
)
dataset_dict = {
'abbr': f'CDME_Length{original_context_length}'
f'Depth{int(depth_percent)}',
'type': CDMEDataset,
'path': base_path,
'length': original_context_length,
'depth': int(depth_percent),
'tokenizer_model': 'gpt-4',
'file_list': file_list,
'num_repeats_per_file': 10,
'length_buffer': 200,
'guide': True,
'language': 'Chinese',
'needle': '\n小明最喜欢的实习的地点就是上海人工智能实验室。\n',
'retrieval_question': '小明最喜欢的实习地点是哪里?请按照'
'“小明最喜欢的实习地点就是________。”的格式回答。',
'reader_cfg': cdme_reader_cfg,
'infer_cfg': cdme_infer_cfg,
'eval_cfg': cdme_eval_cfg
}
cdme_datasets.append(dataset_dict)

View File

@ -2,7 +2,7 @@ from opencompass.models import HuggingFaceCausalLM
from mmengine.config import read_base
with read_base():
from .datasets.cdme.cdme import cdme_datasets
from .datasets.cdme.cdme8k import cdme_datasets
datasets = [*cdme_datasets]

View File

@ -1,7 +1,9 @@
import json
import random
import re
from pathlib import Path
import tiktoken
from datasets import Dataset
from opencompass.datasets.base import BaseDataset
@ -13,15 +15,110 @@ from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
class CDMEDataset(BaseDataset):
@staticmethod
def load(path: str, length: int, depth: int):
def load(
path: str,
length: int,
depth: int,
tokenizer_model: str,
file_list: list[str],
num_repeats_per_file: int,
length_buffer: int,
guide: bool,
language: str,
needle: str,
retrieval_question: str,
):
data = {'prompt': [], 'answer': []}
for file in Path(path).glob('*.jsonl'):
tokenizer = tiktoken.encoding_for_model(tokenizer_model)
def _generate_context(tokens_context, depth_percent, needle):
tokens_needle = _get_tokens_from_context(needle)
insertion_point = int(len(tokens_context) * (depth_percent / 100))
tokens_context = (tokens_context[:insertion_point] +
tokens_needle + tokens_context[insertion_point:])
new_context = _decode_tokens(tokens_context)
return new_context
def _get_tokens_from_context(context):
return tokenizer.encode(context)
def _decode_tokens(tokens):
return tokenizer.decode(tokens)
def _modify_retrieval_question(retrieval_question):
if language == 'Chinese':
parts = retrieval_question.split('请按照')
guide_retrieval_question = (parts[0] + '在回答之前,请思考文档中与此问题'
'最相关的内容是什么。请按照' + parts[1])
return guide_retrieval_question
elif language == 'English':
parts = retrieval_question.split('Please answer in the format')
guide_retrieval_question = (
parts[0] + 'Before answering, please consider'
' what in the document is most relevant to this question.'
' Please answer in the format' + parts[1])
return guide_retrieval_question
else:
raise ValueError(f"Language '{language}' is not supported.")
def _generate_prompt(context, retrieval_question):
if guide:
retrieval_question = _modify_retrieval_question(
retrieval_question)
if language == 'Chinese':
prompt = ('你是一个善于回答用户问题的智能AI助手\n'
'请保持你的回答简洁清楚。不要说和下面文档中的无关的话'
',或重复你的回答\n'
f'用户现在给你的文档是{context}\n\n'
f'现在请问:{retrieval_question}')
elif language == 'English':
prompt = ('You are an intelligent AI assistant skilled in '
'answering user questions.\n'
'Please keep your answers concise and clear. Do not'
' talk about irrelevant topics or repeat your '
'answers.\n'
f'The document given to you by the user is {context}'
f'\n\nNow, the question is: {retrieval_question}')
else:
raise ValueError(f"Language '{language}' is not supported.")
return prompt
files = Path(path).glob('*.jsonl')
for file in files:
if file.name not in file_list:
continue
with open(file, 'r', encoding='utf-8') as f:
for line in f:
line = json.loads(line.strip())
if line['length'] == length and line['depth'] == depth:
data['prompt'].append(line['prompt'])
data['answer'].append(line['answer'])
lines_bak = [json.loads(line.strip()) for line in f]
lines = lines_bak.copy()
for counter in range(num_repeats_per_file):
random.seed(counter)
random.shuffle(lines)
context_length = length - length_buffer
target_length_per_record = context_length - len(
_get_tokens_from_context(needle))
accumulated_tokens = []
for line in lines:
tokens_current_line = _get_tokens_from_context(
line['text'])
accumulated_tokens.extend(tokens_current_line)
if len(accumulated_tokens) >= target_length_per_record:
break
processed_text = _generate_context(
accumulated_tokens[:target_length_per_record], depth,
needle)
processed_prompt = _generate_prompt(processed_text,
retrieval_question)
data['prompt'].append(processed_prompt)
data['answer'].append(needle)
dataset = Dataset.from_dict({
'prompt': data['prompt'],

View File

@ -1,176 +1,13 @@
import argparse
import json
import os
import shutil
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import tiktoken
from matplotlib.colors import LinearSegmentedColormap
class CDMEDatasetProcessor:
def __init__(self,
path,
output_path,
tokenizer_model='gpt-4',
num_records_per_file=10,
length_buffer=200,
guided=False,
file_list=[]):
self.path = path
self.output_path = output_path
self.tokenizer = tiktoken.encoding_for_model(tokenizer_model)
self.num_records_per_file = num_records_per_file
self.length_buffer = length_buffer
self.guided = guided
self.file_list = file_list
def process_files(self,
context_lengths,
needle,
retrieval_question,
document_depth_percent_intervals,
document_depth_percent_interval_type='linear'):
files = Path(self.path).glob('*.jsonl')
for file in files:
if os.path.basename(file) in self.file_list:
self.process_file(file, context_lengths, needle,
retrieval_question,
document_depth_percent_intervals,
document_depth_percent_interval_type)
def process_file(self, file, context_lengths, needle, retrieval_question,
document_depth_percent_intervals,
document_depth_percent_interval_type):
with open(file, 'r', encoding='utf-8') as f:
lines = [json.loads(line.strip()) for line in f]
# set output file
output_file = Path(self.output_path) / f'{file.stem}_processed.jsonl'
output_file.parent.mkdir(parents=True, exist_ok=True)
with open(output_file, 'w', encoding='utf-8') as out_f:
for original_context_length in context_lengths:
context_length = original_context_length - self.length_buffer
target_length_per_record = context_length - len(
self._get_tokens_from_context(needle))
for depth_percent in self._generate_depth_percents(
document_depth_percent_intervals,
document_depth_percent_interval_type):
counter = 0
accumulated_tokens = []
for line in lines:
tokens_current_line = self._get_tokens_from_context(
line['text'])
accumulated_tokens.extend(tokens_current_line)
if len(accumulated_tokens) >= target_length_per_record:
processed_text = self._generate_context(
accumulated_tokens[:target_length_per_record],
depth_percent, needle)
processed_prompt = self._generate_prompt(
processed_text, retrieval_question)
json.dump(
{
'prompt': processed_prompt,
'answer': needle,
'length': original_context_length,
'depth': int(depth_percent),
},
out_f,
ensure_ascii=False)
out_f.write('\n')
counter += 1
if counter >= self.num_records_per_file:
break
# reset accumulated_tokens for next record
accumulated_tokens = []
def _generate_context(self, tokens_context, depth_percent, needle):
tokens_needle = self._get_tokens_from_context(needle)
# Insert the needle into the context at the specified depth percent
insertion_point = int(len(tokens_context) * (depth_percent / 100))
tokens_context = (tokens_context[:insertion_point] + tokens_needle +
tokens_context[insertion_point:])
# Decode the tokens back to text
new_context = self._decode_tokens(tokens_context)
return new_context
def _get_tokens_from_context(self, context):
return self.tokenizer.encode(context)
def _decode_tokens(self, tokens):
return self.tokenizer.decode(tokens)
def _generate_prompt(self, context, retrieval_question):
if self.guided:
prompt = ('你是一个善于回答用户问题的智能AI助手\n'
'请保持你的回答简洁清楚。不要说和下面文档中的无关的话,或重复你的回答\n'
f'用户现在给你的文档是{context}\n\n'
f'现在请问:{retrieval_question}'
f'提示文档中与该问题最相关的句子是_______')
else:
prompt = ('你是一个善于回答用户问题的智能AI助手\n'
'请保持你的回答简洁清楚。不要说和下面文档中的无关的话,或重复你的回答\n'
f'用户现在给你的文档是{context}\n\n'
f'现在请问:{retrieval_question}')
return prompt
def _generate_depth_percents(self, intervals, interval_type):
if interval_type == 'linear':
return np.linspace(0, 100, num=intervals)
elif interval_type == 'sigmoid':
return [self._logistic(x) for x in np.linspace(0, 100, intervals)]
else:
raise ValueError('Unsupported interval type')
@staticmethod
def _logistic(x, L=100, x0=50, k=0.1):
return np.round(L / (1 + np.exp(-k * (x - x0))), 3)
class CDMEDataset():
@staticmethod
def generate(processed_datasets_path, data_path, tokenizer_model,
num_records_per_file, length_buffer, guided, file_list,
context_lengths, needle, retrieval_question,
document_depth_percent_intervals):
# Check if the processed datasets directory exists
if os.path.exists(processed_datasets_path):
shutil.rmtree(processed_datasets_path)
print('The existing processed datasets directory '
f'{processed_datasets_path} has been '
'removed for a fresh start.')
else:
print('No existing processed datasets directory found at'
f' {processed_datasets_path}. '
'Starting with a fresh directory.')
processor = CDMEDatasetProcessor(
path=data_path,
output_path=processed_datasets_path,
tokenizer_model=tokenizer_model,
num_records_per_file=num_records_per_file,
length_buffer=length_buffer,
guided=guided,
file_list=file_list)
processor.process_files(context_lengths, needle, retrieval_question,
document_depth_percent_intervals)
print('Datasets has been created.')
@staticmethod
def visualize(csv_file_paths):
for file_path in csv_file_paths:
@ -276,31 +113,9 @@ class CDMEDataset():
def main():
parser = argparse.ArgumentParser(description='Generate CDMEDataset.')
parser = argparse.ArgumentParser(description='Generate NeedleInAHaystack'
'Test Plots')
parser.add_argument('--processed_datasets_path',
type=str,
default='./data/CDME/processed')
parser.add_argument('--data_path', type=str, default='./data/CDME')
parser.add_argument('--tokenizer_model', type=str, default='gpt-4')
parser.add_argument('--num_records_per_file', type=int, default=10)
parser.add_argument('--length_buffer', type=int, default=200)
parser.add_argument('--guided', type=bool, default=False)
parser.add_argument('--file_list', nargs='*', default=['zh_finance.jsonl'])
parser.add_argument('--context_lengths',
nargs='*',
type=int,
default=list(range(1000, 9000, 1000)))
parser.add_argument('--needle',
type=str,
default='\n小明最喜欢的实习的地点就是上海人工智能实验室。\n')
parser.add_argument('--retrieval_question',
type=str,
default='小明最喜欢的实习地点是哪里?'
'你的回答格式应该为“小明最喜欢的实习地点就是________。”')
parser.add_argument('--document_depth_percent_intervals',
type=int,
default=35)
parser.add_argument('--plot',
action='store_true',
help='Visualize the dataset results')
@ -317,21 +132,6 @@ def main():
exit(1)
CDMEDataset.visualize(args.csv_file_paths)
else:
doc_depth_intervals = args.document_depth_percent_intervals
CDMEDataset.generate(
processed_datasets_path=args.processed_datasets_path,
data_path=args.data_path,
tokenizer_model=args.tokenizer_model,
num_records_per_file=args.num_records_per_file,
length_buffer=args.length_buffer,
guided=args.guided,
file_list=args.file_list,
context_lengths=args.context_lengths,
needle=args.needle,
retrieval_question=args.retrieval_question,
document_depth_percent_intervals=doc_depth_intervals)
if __name__ == '__main__':
main()