mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
simplify needlebench 32k, 128k, 200k for eval
This commit is contained in:
parent
a7cb025e05
commit
32bf9fe802
@ -53,6 +53,7 @@ needlebench_eval_cfg = dict(
|
||||
pred_role='BOT')
|
||||
|
||||
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000])
|
||||
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
|
||||
document_depth_percent_intervals = 20
|
||||
document_depth_percent_interval_type = "linear"
|
||||
|
||||
@ -67,9 +68,7 @@ needlebench_datasets_2needle_en = []
|
||||
language = 'English'
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
|
||||
@ -96,9 +95,7 @@ num_needles = 3
|
||||
needlebench_datasets_3needle_en = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
|
||||
@ -125,9 +122,7 @@ num_needles = 4
|
||||
needlebench_datasets_4needle_en = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
|
||||
@ -154,9 +149,7 @@ num_needles = 5
|
||||
needlebench_datasets_5needle_en = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_en_128k',
|
||||
@ -190,9 +183,7 @@ needlebench_datasets_2needle_zh = []
|
||||
language = 'Chinese'
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
|
||||
@ -219,9 +210,7 @@ num_needles = 3
|
||||
needlebench_datasets_3needle_zh = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
|
||||
@ -248,9 +237,7 @@ num_needles = 4
|
||||
needlebench_datasets_4needle_zh = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
|
||||
@ -277,9 +264,7 @@ num_needles = 5
|
||||
needlebench_datasets_5needle_zh = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_zh_128k',
|
||||
|
@ -60,10 +60,7 @@ base_path = './data/needlebench'
|
||||
file_list = ['PaulGrahamEssays.jsonl']
|
||||
needlebench_datasets_en = []
|
||||
needle_file_name = 'needles.jsonl'
|
||||
depths_float = generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type)
|
||||
depths = [int(depth) for depth in depths_float]
|
||||
depths = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
dataset_dict = {
|
||||
|
@ -53,6 +53,7 @@ needlebench_eval_cfg = dict(
|
||||
pred_role='BOT')
|
||||
|
||||
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000])
|
||||
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
|
||||
document_depth_percent_intervals = 20
|
||||
document_depth_percent_interval_type = "linear"
|
||||
|
||||
@ -62,9 +63,7 @@ needlebench_datasets_en = []
|
||||
needle_file_name = 'needles.jsonl'
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_origin_en_128k',
|
||||
@ -90,9 +89,7 @@ needlebench_datasets_zh = []
|
||||
needle_file_name = 'needles.jsonl'
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_origin_zh_128k',
|
||||
|
@ -52,9 +52,9 @@ needlebench_eval_cfg = dict(
|
||||
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||
pred_role='BOT')
|
||||
|
||||
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
|
||||
document_depth_percent_intervals = 20
|
||||
document_depth_percent_interval_type = "linear"
|
||||
# context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
|
||||
context_lengths = [16000, 48000, 80000, 112000, 128000, 144000, 176000, 200000]
|
||||
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
|
||||
|
||||
# ----------English Version----------
|
||||
base_path = './data/needlebench'
|
||||
@ -67,9 +67,7 @@ needlebench_datasets_2needle_en = []
|
||||
language = 'English'
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
|
||||
@ -96,9 +94,7 @@ num_needles = 3
|
||||
needlebench_datasets_3needle_en = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
|
||||
@ -125,9 +121,7 @@ num_needles = 4
|
||||
needlebench_datasets_4needle_en = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
|
||||
@ -154,9 +148,7 @@ num_needles = 5
|
||||
needlebench_datasets_5needle_en = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_en_200k',
|
||||
@ -190,9 +182,7 @@ needlebench_datasets_2needle_zh = []
|
||||
language = 'Chinese'
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
|
||||
@ -219,9 +209,7 @@ num_needles = 3
|
||||
needlebench_datasets_3needle_zh = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
|
||||
@ -248,9 +236,7 @@ num_needles = 4
|
||||
needlebench_datasets_4needle_zh = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
|
||||
@ -277,9 +263,7 @@ num_needles = 5
|
||||
needlebench_datasets_5needle_zh = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_zh_200k',
|
||||
|
@ -52,7 +52,8 @@ needlebench_eval_cfg = dict(
|
||||
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||
pred_role='BOT')
|
||||
|
||||
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
|
||||
# context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
|
||||
context_lengths = list([16000, 48000, 80000, 112000, 128000, 144000, 176000, 200000])
|
||||
document_depth_percent_intervals = 20
|
||||
document_depth_percent_interval_type = "linear"
|
||||
|
||||
@ -60,10 +61,7 @@ base_path = './data/needlebench'
|
||||
file_list = ['PaulGrahamEssays.jsonl']
|
||||
needlebench_datasets_en = []
|
||||
needle_file_name = 'needles.jsonl'
|
||||
depths_float = generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type)
|
||||
depths = [int(depth) for depth in depths_float]
|
||||
depths = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
dataset_dict = {
|
||||
|
@ -52,9 +52,9 @@ needlebench_eval_cfg = dict(
|
||||
dataset_postprocessor=dict(type=needlebench_dataset_postprocess),
|
||||
pred_role='BOT')
|
||||
|
||||
context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
|
||||
document_depth_percent_intervals = 20
|
||||
document_depth_percent_interval_type = "linear"
|
||||
# context_lengths = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
|
||||
context_lengths = [16000, 48000, 80000, 112000, 128000, 144000, 176000, 200000]
|
||||
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
|
||||
|
||||
base_path = './data/needlebench'
|
||||
file_list = ['PaulGrahamEssays.jsonl']
|
||||
@ -62,9 +62,7 @@ needlebench_datasets_en = []
|
||||
needle_file_name = 'needles.jsonl'
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_origin_en_200k',
|
||||
@ -90,9 +88,7 @@ needlebench_datasets_zh = []
|
||||
needle_file_name = 'needles.jsonl'
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_origin_zh_200k',
|
||||
|
@ -53,6 +53,7 @@ needlebench_eval_cfg = dict(
|
||||
pred_role='BOT')
|
||||
|
||||
context_lengths = list([9000, 13000, 17000, 21000, 25000, 29000, 31000, 32000])
|
||||
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
|
||||
document_depth_percent_intervals = 20
|
||||
document_depth_percent_interval_type = "linear"
|
||||
|
||||
@ -67,9 +68,7 @@ needlebench_datasets_2needle_en = []
|
||||
language = 'English'
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
|
||||
@ -96,9 +95,7 @@ num_needles = 3
|
||||
needlebench_datasets_3needle_en = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
|
||||
@ -125,9 +122,7 @@ num_needles = 4
|
||||
needlebench_datasets_4needle_en = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
|
||||
@ -154,9 +149,7 @@ num_needles = 5
|
||||
needlebench_datasets_5needle_en = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_en_32k',
|
||||
@ -190,9 +183,7 @@ needlebench_datasets_2needle_zh = []
|
||||
language = 'Chinese'
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
|
||||
@ -219,9 +210,7 @@ num_needles = 3
|
||||
needlebench_datasets_3needle_zh = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
|
||||
@ -248,9 +237,7 @@ num_needles = 4
|
||||
needlebench_datasets_4needle_zh = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
|
||||
@ -277,9 +264,7 @@ num_needles = 5
|
||||
needlebench_datasets_5needle_zh = []
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_{num_needles}needle_zh_32k',
|
||||
|
@ -60,10 +60,7 @@ base_path = './data/needlebench'
|
||||
file_list = ['PaulGrahamEssays.jsonl']
|
||||
needlebench_datasets_en = []
|
||||
needle_file_name = 'needles.jsonl'
|
||||
depths_float = generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type)
|
||||
depths = [int(depth) for depth in depths_float]
|
||||
depths = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
dataset_dict = {
|
||||
|
@ -53,6 +53,7 @@ needlebench_eval_cfg = dict(
|
||||
pred_role='BOT')
|
||||
|
||||
context_lengths = list([9000, 13000, 17000, 21000, 25000, 29000, 31000, 32000])
|
||||
depths_list = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
|
||||
document_depth_percent_intervals = 20
|
||||
document_depth_percent_interval_type = "linear"
|
||||
|
||||
@ -62,9 +63,7 @@ needlebench_datasets_en = []
|
||||
needle_file_name = 'needles.jsonl'
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_origin_en_32k',
|
||||
@ -90,9 +89,7 @@ needlebench_datasets_zh = []
|
||||
needle_file_name = 'needles.jsonl'
|
||||
|
||||
for original_context_length in context_lengths:
|
||||
for depth_percent in generate_depth_percents(
|
||||
document_depth_percent_intervals,
|
||||
document_depth_percent_interval_type):
|
||||
for depth_percent in depths_list:
|
||||
dataset_dict = {
|
||||
'abbr': f'Length{original_context_length}'
|
||||
f'Depth{int(depth_percent)}_origin_zh_32k',
|
||||
|
@ -4,6 +4,7 @@ from opencompass.summarizers.needlebench import NeedleBenchATCSummarizer
|
||||
# ----------NeedleBench-4k-summarizer----------
|
||||
context_lengths_4k = list(range(1000, 5000, 1000))
|
||||
depths = [0, 5, 10, 15, 21, 26, 31, 36, 42, 47, 52, 57, 63, 68, 73, 78, 84, 89, 94, 100]
|
||||
depths_list_sparse = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
|
||||
|
||||
# Initialize the lists
|
||||
_needlebench_4k_2needle_en = []
|
||||
@ -235,7 +236,7 @@ _needlebench_32k_origin_zh = []
|
||||
|
||||
# Fill the lists using nested loops
|
||||
for original_context_length in context_lengths_32k:
|
||||
for depth_percent in depths:
|
||||
for depth_percent in depths_list_sparse:
|
||||
_needlebench_32k_2needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_2needle_en_32k')
|
||||
_needlebench_32k_3needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_3needle_en_32k')
|
||||
_needlebench_32k_4needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_4needle_en_32k')
|
||||
@ -343,7 +344,7 @@ _needlebench_128k_origin_zh = []
|
||||
|
||||
# Fill the lists using nested loops
|
||||
for original_context_length in context_lengths_128k:
|
||||
for depth_percent in depths:
|
||||
for depth_percent in depths_list_sparse:
|
||||
_needlebench_128k_2needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_2needle_en_128k')
|
||||
_needlebench_128k_3needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_3needle_en_128k')
|
||||
_needlebench_128k_4needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_4needle_en_128k')
|
||||
@ -435,8 +436,7 @@ needlebench_128k_summarizer = dict(
|
||||
|
||||
# ----------NeedleBench-200k-summarizer----------
|
||||
|
||||
context_lengths_200k = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000, 144000, 160000, 176000, 192000, 200000])
|
||||
|
||||
context_lengths_200k = list([16000, 48000, 80000, 112000, 128000, 144000, 176000, 200000])
|
||||
# Initialize the lists
|
||||
_needlebench_200k_2needle_en = []
|
||||
_needlebench_200k_3needle_en = []
|
||||
@ -451,7 +451,7 @@ _needlebench_200k_origin_zh = []
|
||||
|
||||
# Fill the lists using nested loops
|
||||
for original_context_length in context_lengths_200k:
|
||||
for depth_percent in depths:
|
||||
for depth_percent in depths_list_sparse:
|
||||
_needlebench_200k_2needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_2needle_en_200k')
|
||||
_needlebench_200k_3needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_3needle_en_200k')
|
||||
_needlebench_200k_4needle_en.append(f'Length{original_context_length}Depth{int(depth_percent)}_4needle_en_200k')
|
||||
|
Loading…
Reference in New Issue
Block a user