[Feat] update code config (#749)

* [Feat] update code dataset

* [Feat] update code dataset

* [Feat] update code dataset
This commit is contained in:
Hubert 2023-12-29 18:46:34 +08:00 committed by GitHub
parent fe0b717033
commit 327951087f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 204 additions and 19 deletions

View File

@ -0,0 +1,36 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvaluator, humaneval_postprocess
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Complete the following python code:\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval',
type=HumanevalDataset,
path='./data/humaneval/human-eval-v2-20210705.jsonl',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]

View File

@ -1,7 +1,7 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvaluator, humaneval_postprocess
from opencompass.datasets import HumanevalDataset, HumanEvaluator, humaneval_postprocess_v2
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
@ -22,7 +22,7 @@ humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess),
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_datasets = [

View File

@ -1 +0,0 @@
./humaneval_gen_8e312c.py

View File

@ -0,0 +1,36 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvaluator, humaneval_postprocess_v2
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Complete the following python code:\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval_passk',
type=HumanevalDataset,
path='./data/humaneval/human-eval-v2-20210705.jsonl',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]

View File

@ -1,7 +1,7 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvaluator, humaneval_postprocess
from opencompass.datasets import HumanevalDataset, HumanEvaluator, humaneval_postprocess_v2
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
@ -22,12 +22,12 @@ humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess),
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_datasets = [
dict(
abbr='openai_humaneval_pass10',
abbr='openai_humaneval_repeat10',
type=HumanevalDataset,
path='./data/humaneval/human-eval-v2-20210705.jsonl',
num_repeats=10,

View File

@ -1 +0,0 @@
./humaneval_cn_gen_6313aa.py

View File

@ -0,0 +1,37 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvaluator, humaneval_postprocess_v2
humaneval_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='完成以下Python代码任务:\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_eval_cfg = dict(
evaluator=dict(type=HumanEvaluator),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_cn_datasets = [
dict(
abbr='openai_humaneval_cn_passk',
type=HumanevalDataset,
path='./data/humaneval_cn/human-eval-cn-v2-20210705.jsonl',
reader_cfg=humaneval_reader_cfg,
infer_cfg=humaneval_infer_cfg,
eval_cfg=humaneval_eval_cfg)
]

View File

@ -27,7 +27,7 @@ humaneval_eval_cfg = dict(
humaneval_cn_datasets = [
dict(
abbr='openai_humaneval_cn_pass10',
abbr='openai_humaneval_cn_repeat10',
type=HumanevalDataset,
path='./data/humaneval_cn/human-eval-cn-v2-20210705.jsonl',
num_repeats=10,

View File

@ -19,7 +19,7 @@ humaneval_plus_infer_cfg = dict(
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_plus_eval_cfg = dict(
evaluator=dict(type=HumanEvaluator,k=1, metric='EvalPlus'),
evaluator=dict(type=HumanEvaluator, metric='EvalPlus'),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),

View File

@ -0,0 +1,36 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvaluator, humaneval_postprocess_v2
humaneval_plus_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_plus_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Complete the following python code:\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_plus_eval_cfg = dict(
evaluator=dict(type=HumanEvaluator, metric='EvalPlus'),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_plus_datasets = [
dict(
abbr='humaneval_plus_passk',
type=HumanevalDataset,
path='./data/humaneval/human-eval-v2-20210705.jsonl',
reader_cfg=humaneval_plus_reader_cfg,
infer_cfg=humaneval_plus_infer_cfg,
eval_cfg=humaneval_plus_eval_cfg)
]

View File

@ -0,0 +1,37 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import HumanevalDataset, HumanEvaluator, humaneval_postprocess_v2
humaneval_plus_reader_cfg = dict(
input_columns=['prompt'], output_column='task_id', train_split='test')
# TODO: allow empty output-column
humaneval_plus_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt='Complete the following python code:\n{prompt}'),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
humaneval_plus_eval_cfg = dict(
evaluator=dict(type=HumanEvaluator, metric='EvalPlus'),
pred_role='BOT',
k=[1, 10, 100], # the parameter only for humaneval
pred_postprocessor=dict(type=humaneval_postprocess_v2),
)
humaneval_plus_datasets = [
dict(
abbr='humaneval_plus_repeat10',
type=HumanevalDataset,
path='./data/humaneval/human-eval-v2-20210705.jsonl',
num_repeats=10,
reader_cfg=humaneval_plus_reader_cfg,
infer_cfg=humaneval_plus_infer_cfg,
eval_cfg=humaneval_plus_eval_cfg)
]

View File

@ -56,7 +56,7 @@ mbpp_eval_cfg = dict(evaluator=dict(type=MBPPPassKEvaluator), pred_role="BOT")
mbpp_datasets = [
dict(
type=MBPPDataset_V2,
abbr='mbpp',
abbr='mbpp_passk',
path='./data/mbpp/mbpp.jsonl',
reader_cfg=mbpp_reader_cfg,
infer_cfg=mbpp_infer_cfg,

View File

@ -58,7 +58,7 @@ mbpp_eval_cfg = dict(evaluator=dict(type=MBPPPassKEvaluator), pred_role="BOT")
mbpp_datasets = [
dict(
type=MBPPDataset_V2,
abbr='mbpp_pass10',
abbr='mbpp_repeat10',
path='./data/mbpp/mbpp.jsonl',
num_repeats=10,
reader_cfg=mbpp_reader_cfg,

View File

@ -56,7 +56,7 @@ sanitized_mbpp_eval_cfg = dict(evaluator=dict(type=MBPPPassKEvaluator), pred_rol
sanitized_mbpp_datasets = [
dict(
type=SanitizedMBPPDataset,
abbr='sanitized_mbpp',
abbr='sanitized_mbpp_passk',
path='./sanitized-mbpp.jsonl',
reader_cfg=sanitized_mbpp_reader_cfg,
infer_cfg=sanitized_mbpp_infer_cfg,

View File

@ -56,7 +56,7 @@ sanitized_mbpp_eval_cfg = dict(evaluator=dict(type=MBPPPassKEvaluator), pred_rol
sanitized_mbpp_datasets = [
dict(
type=SanitizedMBPPDataset,
abbr='sanitized_mbpp_pass10',
abbr='sanitized_mbpp_repeat10',
path='./sanitized-mbpp.jsonl',
num_repeats=10,
reader_cfg=sanitized_mbpp_reader_cfg,

View File

@ -56,7 +56,7 @@ mbpp_eval_cfg = dict(evaluator=dict(type=MBPPPassKEvaluator), pred_role="BOT")
mbpp_cn_datasets = [
dict(
type=MBPPDataset_V2,
abbr='mbpp_cn',
abbr='mbpp_cn_passk',
path='./data/mbpp_cn/mbpp_cn.jsonl',
reader_cfg=mbpp_reader_cfg,
infer_cfg=mbpp_infer_cfg,

View File

@ -56,7 +56,7 @@ mbpp_eval_cfg = dict(evaluator=dict(type=MBPPPassKEvaluator), pred_role="BOT")
mbpp_cn_datasets = [
dict(
type=MBPPDataset_V2,
abbr='mbpp_cn_pass10',
abbr='mbpp_cn_repeat10',
path='./data/mbpp_cn/mbpp_cn.jsonl',
num_repeats=10,
reader_cfg=mbpp_reader_cfg,

View File

@ -621,6 +621,7 @@ class HuggingFaceChatGLM3(HuggingFace):
peft_path: Optional[str] = None,
tokenizer_only: bool = False,
model_kwargs: dict = dict(device_map='auto'),
generation_kwargs: dict = dict(),
meta_template: Optional[Dict] = None,
extract_pred_after_decode: bool = False,
batch_padding: bool = False,
@ -634,6 +635,7 @@ class HuggingFaceChatGLM3(HuggingFace):
tokenizer_kwargs=tokenizer_kwargs,
peft_path=peft_path,
tokenizer_only=tokenizer_only,
generation_kwargs=generation_kwargs,
model_kwargs=model_kwargs,
meta_template=meta_template,
extract_pred_after_decode=extract_pred_after_decode,
@ -647,15 +649,17 @@ class HuggingFaceChatGLM3(HuggingFace):
def generate(self,
inputs: List[str or PromptList],
max_out_len: int = 512,
temperature: float = 0.6,
skip_overlength=False) -> str:
skip_overlength=False,
**kwargs) -> str:
"""Generate response from input prompt.
Args:
inputs (list): input prompt
max_out_len (int): max output length
temperature (float): temperature for sampling
"""
generation_kwargs = kwargs.copy()
generation_kwargs.update(self.generation_kwargs)
responses = []
for _input in inputs:
assert isinstance(_input, (str, PromptList))
@ -692,7 +696,8 @@ class HuggingFaceChatGLM3(HuggingFace):
try:
response, history = self.model.chat(self.tokenizer,
user_content,
history=history)
history=history,
**generation_kwargs)
# response will be dict sometime
if isinstance(response, dict):
response = response.get('content', '')