Merge branch 'main' into SciKnowEval

This commit is contained in:
Linchen Xiao 2025-05-09 17:03:15 +08:00 committed by GitHub
commit 3119903840
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
23 changed files with 1049 additions and 262 deletions

View File

@ -122,6 +122,18 @@
paper: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10778138
configpath: opencompass/configs/datasets/MedBench/medbench_gen.py
configpath_llmjudge: ''
- MedCalc_Bench:
name: MedCalc_Bench
category: Knowledge / Medicine
paper: https://arxiv.org/abs/2406.12036
configpath: opencompass/configs/datasets/MedCalc_Bench/MedCalcBench_official_gen_a5155f.py
configpath_llmjudge: ''
- MedXpertQA:
name: MedQA
category: Knowledge / Medicine
paper: https://arxiv.org/abs/2009.13081
configpath: opencompass/configs/datasets/MedQA/MedQA_gen.py
configpath_llmjudge: opencompass/configs/datasets/MedQA/MedQA_llmjudge_gen.py
- MedXpertQA:
name: MedXpertQA
category: Knowledge / Medicine
@ -695,12 +707,6 @@
paper: https://arxiv.org/pdf/2009.03300
configpath: opencompass/configs/datasets/mmlu/mmlu_gen.py
configpath_llmjudge: opencompass/configs/datasets/mmlu/mmlu_llm_judge_gen.py
- SciEval:
name: SciEval
category: Understanding
paper: https://arxiv.org/pdf/2308.13149
configpath: opencompass/configs/datasets/SciEval_lifscience/SciEval_lifscience_gen.py
configpath_llmjudge: opencompass/configs/datasets/SciEval_lifscience/SciEval_lifscience_llm_judge_gen.py
- mmlu_cf:
name: MMLU-CF
category: Understanding
@ -769,6 +775,12 @@
paper: https://arxiv.org/pdf/1911.11641v1
configpath: opencompass/configs/datasets/piqa/piqa_gen.py
configpath_llmjudge: ''
- ProteinLMBench:
name: ProteinLMBench
category: Knowledge / Biology (Protein)
paper: https://arxiv.org/abs/2406.05540
configpath: opencompass/configs/datasets/ProteinLMBench/ProteinLMBench_gen.py
configpath_llmjudge: opencompass/configs/datasets/ProteinLMBench/ProteinLMBench_llmjudge_gen.py
- py150:
name: py150
category: Code

View File

@ -0,0 +1,57 @@
from opencompass.datasets import MedCalc_BenchDataset, MedCalcOfficial_Evaluator
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
ZERO_SHOT_PROMPT = 'You are a helpful assistant for calculating a score for a given patient note. Please think step-by-step to solve the question and then generate the required score. Your output should only contain a JSON dict formatted as {"step_by_step_thinking": str(your_step_by_step_thinking_procress_to_solve_the_question), "answer": str(short_and_direct_answer_of_the_question)}. \n Here is the patient note:\n{patient_note}\n\nHere is the task:\n{question}\n\nPlease directly output the JSON dict formatted as {"step_by_step_thinking": str(your_step_by_step_thinking_procress_to_solve_the_question), "answer": str(short_and_direct_answer_of_the_question)}:'
# Reader configuration
reader_cfg = dict(
input_columns=[
'row_number',
'calculator_id',
'calculator_name',
'category',
'note_id',
'output_type',
'note_type',
'patient_note',
'question',
'relevant_entities',
'ground_truth_answer',
'lower_limit',
'upper_limit',
'ground_truth_explanation'
],
output_column='ground_truth_answer',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN',prompt=ZERO_SHOT_PROMPT),
])
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(type=MedCalcOfficial_Evaluator),
pred_role='BOT',
)
medcal_bench_dataset = dict(
type=MedCalc_BenchDataset,
abbr='medcal_bench_official_zero_shot_eval',
path='ncbi/MedCalc-Bench-v1.0',
prompt_mode='zero-shot',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg,
)
medcal_bench_datasets = [medcal_bench_dataset]

View File

@ -0,0 +1,63 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.utils.text_postprocessors import first_option_postprocess
from opencompass.datasets.MedQA import MedQADataset
QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of Options(e.g. one of ABCDEFGHIJKLMNOP). Think step by step before answering.
Question:\n
{question}
Options:\n
{choices}
""".strip()
MedQA_datasets = []
MedQA_reader_cfg = dict(
input_columns=['question', 'choices'],
output_column='label',
)
MedQA_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
MedQA_subsets = {
'US': 'xuxuxuxuxu/MedQA_US_test',
'Mainland': 'xuxuxuxuxu/MedQA_Mainland_test',
'Taiwan': 'xuxuxuxuxu/MedQA_Taiwan_test',
}
for split in list(MedQA_subsets.keys()):
MedQA_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD')
)
MedQA_datasets.append(
dict(
abbr=f'MedQA_{split}',
type=MedQADataset,
path=MedQA_subsets[split],
reader_cfg=MedQA_reader_cfg,
infer_cfg=MedQA_infer_cfg,
eval_cfg=MedQA_eval_cfg,
)
)

View File

@ -0,0 +1,108 @@
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets.MedQA import MedQADataset
QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of Options(e.g. one of ABCDEFGHIJKLMNOP). Think step by step before answering.
Question:\n
{question}
Options:\n
{choices}
""".strip()
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: {question}\n {choices} \n<Original Question End>\n\n
<Gold Target Begin>: \n{label}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
MedQA_datasets = []
MedQA_reader_cfg = dict(
input_columns=['question', 'choices'],
output_column='label',
)
MedQA_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
MedQA_subsets = {
'US': 'xuxuxuxuxu/MedQA_US_test',
'Mainland': 'xuxuxuxuxu/MedQA_Mainland_test',
'Taiwan': 'xuxuxuxuxu/MedQA_Taiwan_test',
}
for split in list(MedQA_subsets.keys()):
MedQA_eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=MedQADataset,
path=MedQA_subsets[split],
reader_cfg=MedQA_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
MedQA_datasets.append(
dict(
abbr=f'MedQA_{split}',
type=MedQADataset,
path=MedQA_subsets[split],
reader_cfg=MedQA_reader_cfg,
infer_cfg=MedQA_infer_cfg,
eval_cfg=MedQA_eval_cfg,
)
)

View File

@ -0,0 +1,46 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets.ProteinLMBench import ProteinLMBenchDataset, ProteinLMBenchEvaluator
QUERY_TEMPLATE = "Answer the following multiple choice question. There is only one correct answer. The last line of your response should be in the format 'Answer: $LETTER' (without quotes), where LETTER is the letter among {start} through {end}.\n{question}"
# Reader configuration
reader_cfg = dict(
input_columns=['question', 'start', 'end', 'options'],
output_column='label',
)
# Inference configuration
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=QUERY_TEMPLATE
)
], ),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
# Evaluation configuration
eval_cfg = dict(
evaluator=dict(type=ProteinLMBenchEvaluator),
)
proteinlmbench_dataset = dict(
abbr='ProteinLMBench',
type=ProteinLMBenchDataset,
path='tsynbio/ProteinLMBench',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg
)
proteinlmbench_datasets = [proteinlmbench_dataset]

View File

@ -0,0 +1,89 @@
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets.ProteinLMBench import ProteinLMBenchDataset
QUERY_TEMPLATE = "Answer the following multiple choice question. There is only one correct answer. The last line of your response should be in the format 'Answer: $LETTER' (without quotes), where LETTER is the letter among {start} through {end}.\n{question}"
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: {question}\n<Original Question End>\n\n
<Gold Target Begin>: \n{label}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
reader_cfg = dict(
input_columns=['question', 'start', 'end', 'options'],
output_column='label',
)
infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=ProteinLMBenchDataset,
path='tsynbio/ProteinLMBench',
reader_cfg=reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
proteinlmbench_dataset = dict(
abbr='ProteinLMBench',
type=ProteinLMBenchDataset,
path='tsynbio/ProteinLMBench',
reader_cfg=reader_cfg,
infer_cfg=infer_cfg,
eval_cfg=eval_cfg
)
proteinlmbench_datasets = [proteinlmbench_dataset]

View File

@ -1,61 +0,0 @@
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccwithDetailsEvaluator
from opencompass.utils.text_postprocessors import first_option_postprocess
from opencompass.datasets import SciEvalDataset # 你自己实现的类
# 只评测 biology + multiple-choice 的 test split
_hint = ('Given a question and four options, please select the right answer. '
"Your answer should be 'A', 'B', 'C' or 'D'.")
scieval_reader_cfg = dict(
input_columns=['input', 'A', 'B', 'C', 'D'],
output_column='target',
train_split='test',
)
scieval_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=f'{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: '
),
dict(role='BOT', prompt='{target}\n')
]),
),
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin='</E>',
round=[
dict(
role='HUMAN',
prompt=f'{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: '
),
],
),
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=GenInferencer),
)
scieval_eval_cfg = dict(
evaluator=dict(type=AccwithDetailsEvaluator),
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'),
)
scieval_datasets = [
dict(
abbr='scieval_biology',
type=SciEvalDataset,
path='OpenDFM/SciEval',
name='default',
reader_cfg=scieval_reader_cfg,
infer_cfg=scieval_infer_cfg,
eval_cfg=scieval_eval_cfg,
)
]

View File

@ -1,125 +0,0 @@
# SciEval_lifescience_llmjudge_gen.py
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.utils.text_postprocessors import match_answer_pattern
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import generic_llmjudge_postprocess
from opencompass.datasets import SciEvalDataset
with read_base():
from .SciEval_lifescience_sets import SciEval_lifescience_subsets
QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of ABCD.
{input}
A) {A}
B) {B}
C) {C}
D) {D}
""".strip()
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: {input}
A) {A}
B) {B}
C) {C}
D) {D}
<Original Question End>
<Gold Target Begin>:
{target}
<Gold Target End>
<Predicted Answer Begin>:
{prediction}
<Predicted End>
Judging the correctness of candidates' answers:
""".strip()
scieval_reader_cfg = dict(
input_columns=['input', 'A', 'B', 'C', 'D'],
output_column='target',
train_split='test',
)
scieval_datasets = []
for name in SciEval_lifescience_subsets:
scieval_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
]
)
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
scieval_eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt=(
'You are a helpful assistant who evaluates the correctness '
"and quality of models' outputs."
),
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=SciEvalDataset,
path='OpenDFM/SciEval',
name='default',
reader_cfg=scieval_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
pred_role='BOT',
)
scieval_datasets.append(
dict(
abbr=f'scieval_lifescience_{name}_llmjudge',
type=SciEvalDataset,
path='OpenDFM/SciEval',
name='default',
reader_cfg=scieval_reader_cfg,
infer_cfg=scieval_infer_cfg,
eval_cfg=scieval_eval_cfg,
mode='singlescore',
)
)

View File

@ -1,3 +0,0 @@
SciEval_lifescience_subsets = [
'biology', # 大学生物学
]

View File

@ -0,0 +1,60 @@
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MMLUProDataset
from opencompass.utils.text_postprocessors import match_answer_pattern
categories = [
'health',
]
QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of Options(e.g. one of ABCDEFGHIJKLMNOP). Think step by step before answering.
Question:\n
{question}
Options:\n
{options_str}
""".strip()
mmlu_pro_datasets = []
for category in categories:
mmlu_pro_reader_cfg = dict(
input_columns=['question', 'cot_content', 'options_str'],
output_column='answer',
train_split='validation',
test_split='test',
)
mmlu_pro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN',
prompt=QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
mmlu_pro_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(
type=match_answer_pattern,
answer_pattern=r'(?i)ANSWER\s*:\s*([A-P])')
)
mmlu_pro_datasets.append(
dict(
abbr=f'mmlu_pro_{category.replace(" ", "_")}',
type=MMLUProDataset,
path='opencompass/mmlu_pro',
category=category,
reader_cfg=mmlu_pro_reader_cfg,
infer_cfg=mmlu_pro_infer_cfg,
eval_cfg=mmlu_pro_eval_cfg,
))

View File

@ -0,0 +1,101 @@
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.evaluator import GenericLLMEvaluator
from opencompass.datasets import MMLUProDataset, generic_llmjudge_postprocess
categories = [
'health',
]
QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'ANSWER: $LETTER' (without quotes) where LETTER is one of Options(e.g. one of ABCDEFGHIJKLMNOP). Think step by step before answering.
Question:\n
{question}
Options:\n
{options_str}
""".strip()
GRADER_TEMPLATE = """
Please as a grading expert, judge whether the final answers given by the candidates below are consistent with the standard answers, that is, whether the candidates answered correctly.
Here are some evaluation criteria:
1. Please refer to the given standard answer. You don't need to re-generate the answer to the question because the standard answer has been given. You only need to judge whether the candidate's answer is consistent with the standard answer according to the form of the question. Don't try to answer the original question. You can assume that the standard answer is definitely correct.
2. Because the candidate's answer may be different from the standard answer in the form of expression, before making a judgment, please understand the question and the standard answer first, and then judge whether the candidate's answer is correct, but be careful not to try to answer the original question.
3. Some answers may contain multiple items, such as multiple-choice questions, multiple-select questions, fill-in-the-blank questions, etc. As long as the answer is the same as the standard answer, it is enough. For multiple-select questions and multiple-blank fill-in-the-blank questions, the candidate needs to answer all the corresponding options or blanks correctly to be considered correct.
4. Some answers may be expressed in different ways, such as some answers may be a mathematical expression, some answers may be a textual description, as long as the meaning expressed is the same. And some formulas are expressed in different ways, but they are equivalent and correct.
Please judge whether the following answers are consistent with the standard answer based on the above criteria. Grade the predicted answer of this new question as one of:
A: CORRECT
B: INCORRECT
Just return the letters "A" or "B", with no text around it.
Here is your task. Simply reply with either CORRECT, INCORRECT. Don't apologize or correct yourself if there was a mistake; we are just trying to grade the answer.
<Original Question Begin>: {question}\n {options_str} \n<Original Question End>\n\n
<Gold Target Begin>: \n{answer}\n<Gold Target End>\n\n
<Predicted Answer Begin>: \n{prediction}\n<Predicted End>\n\n
Judging the correctness of candidates' answers:
""".strip()
mmlu_pro_datasets = []
for category in categories:
mmlu_pro_reader_cfg = dict(
input_columns=['question', 'cot_content', 'options_str'],
output_column='answer',
train_split='validation',
test_split='test',
)
mmlu_pro_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt=QUERY_TEMPLATE),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
mmlu_pro_eval_cfg = dict(
evaluator=dict(
type=GenericLLMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt="You are a helpful assistant who evaluates the correctness and quality of models' outputs.",
)
],
round=[
dict(role='HUMAN', prompt=GRADER_TEMPLATE),
],
),
),
dataset_cfg=dict(
type=MMLUProDataset,
path='opencompass/mmlu_pro',
category=category,
reader_cfg=mmlu_pro_reader_cfg,
),
judge_cfg=dict(),
dict_postprocessor=dict(type=generic_llmjudge_postprocess),
),
)
mmlu_pro_datasets.append(
dict(
abbr=f'mmlu_pro_{category.replace(" ", "_")}',
type=MMLUProDataset,
path='opencompass/mmlu_pro',
category=category,
reader_cfg=mmlu_pro_reader_cfg,
infer_cfg=mmlu_pro_infer_cfg,
eval_cfg=mmlu_pro_eval_cfg,
)
)

View File

@ -0,0 +1,14 @@
import torch
from opencompass.models import HuggingFaceBaseModel
models = [
dict(
type=HuggingFaceBaseModel,
abbr='baichuan-m1-14b-base-hf',
path='baichuan-inc/Baichuan-M1-14B-Base',
max_out_len=1024,
batch_size=8,
model_kwargs=dict(device_map='auto', trust_remote_code=True, torch_dtype=torch.bfloat16),
run_cfg=dict(num_gpus=1),
)
]

View File

@ -0,0 +1,14 @@
import torch
from opencompass.models import HuggingFacewithChatTemplate
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='baichuan-m1-14b-instruct-hf',
path='baichuan-inc/Baichuan-M1-14B-Instruct',
max_out_len=2048,
batch_size=8,
model_kwargs=dict(device_map='auto', trust_remote_code=True, torch_dtype=torch.bfloat16),
run_cfg=dict(num_gpus=1),
)
]

View File

@ -0,0 +1,17 @@
from opencompass.models import HuggingFacewithChatTemplate
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='huatuogpt2-13b-hf',
path='FreedomIntelligence/HuatuoGPT2-13B',
tokenizer_kwargs=dict(padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=True,),
max_out_len=1024,
batch_size=8,
model_kwargs=dict(device_map='auto', trust_remote_code=True),
run_cfg=dict(num_gpus=4),
)
]

View File

@ -0,0 +1,13 @@
from opencompass.models import HuggingFacewithChatTemplate
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='huatuogpt2-7b-hf',
path='FreedomIntelligence/HuatuoGPT2-7B',
max_out_len=1024,
batch_size=8,
model_kwargs=dict(device_map='auto', trust_remote_code=True),
run_cfg=dict(num_gpus=1),
)
]

View File

@ -0,0 +1,15 @@
from opencompass.models import HuggingFacewithChatTemplate
from opencompass.utils.text_postprocessors import extract_non_reasoning_content
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='huatuogpt-o1-7b-hf',
path='FreedomIntelligence/HuatuoGPT-o1-7B',
max_out_len=2048,
batch_size=8,
model_kwargs=dict(device_map='auto', trust_remote_code=True),
run_cfg=dict(num_gpus=1),
pred_postprocessor=dict(type=extract_non_reasoning_content, think_start_token='## Thinking', think_end_token='## Final Response'),
)
]

View File

@ -0,0 +1,15 @@
from opencompass.models import HuggingFacewithChatTemplate
from opencompass.utils.text_postprocessors import extract_non_reasoning_content
models = [
dict(
type=HuggingFacewithChatTemplate,
abbr='huatuogpt-o1-8b-hf',
path='FreedomIntelligence/HuatuoGPT-o1-8B',
max_out_len=2048,
batch_size=8,
model_kwargs=dict(device_map='auto', trust_remote_code=True),
run_cfg=dict(num_gpus=1),
pred_postprocessor=dict(type=extract_non_reasoning_content, think_start_token='## Thinking', think_end_token='## Final Response'),
)
]

View File

@ -0,0 +1,323 @@
import math
import re
from datetime import datetime
import numpy as np
from datasets import load_dataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
def check_correctness(answer: str, ground_truth, calid, upper_limit,
lower_limit):
""""""
calid = int(calid)
if calid in [13, 68]:
# Output Type: date
if datetime.strptime(
answer,
'%m/%d/%Y').strftime('%-m/%-d/%Y') == datetime.strptime(
ground_truth, '%m/%d/%Y').strftime('%-m/%-d/%Y'):
correctness = 1
else:
correctness = 0
elif calid in [69]:
# Output Type: integer (A, B)
match = re.search(
r"\(?[\"\']?(\d+)\s*(weeks?)?[\"\']?,?"
r"\s*[\"\']?(\d+)\s*(days?)?[\"\']?\s*\)?", ground_truth)
ground_truth = f'({match.group(1)}, {match.group(3)})'
match = re.search(
r"\(?[\"\']?(\d+)\s*(weeks?)?[\"\']?,?"
r"\s*[\"\']?(\d+)\s*(days?)?[\"\']?\s*\)?", answer)
if match:
weeks = match.group(1)
days = match.group(3)
answer = f'({weeks}, {days})'
if eval(answer) == eval(ground_truth):
correctness = 1
else:
correctness = 0
else:
correctness = 0
elif calid in [
4, 15, 16, 17, 18, 20, 21, 25, 27, 28, 29, 32, 33, 36, 43, 45, 48,
51, 69
]:
# Output Type: integer A
answer = round(eval(answer))
if answer == eval(ground_truth):
correctness = 1
else:
correctness = 0
elif calid in [
2, 3, 5, 6, 7, 8, 9, 10, 11, 19, 22, 23, 24, 26, 30, 31, 38, 39,
40, 44, 46, 49, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67
]:
# Output Type: decimal
answer = eval(answer)
if answer >= eval(lower_limit) and answer <= eval(upper_limit):
correctness = 1
else:
correctness = 0
else:
raise ValueError(f'Unknown calculator ID: {calid}')
return correctness
def extract_answer(answer, calid):
calid = int(calid)
extracted_answer = re.findall(r'[Aa]nswer":\s*(.*?)\}', answer)
matches = re.findall(
r'"step_by_step_thinking":\s*"'
r'([^"]+)"\s*,\s*"[Aa]nswer"', answer)
if matches:
# Select the last match
last_match = matches[-1]
explanation = last_match
else:
explanation = 'No Explanation'
if len(extracted_answer) == 0:
extracted_answer = 'Not Found'
else:
extracted_answer = extracted_answer[-1].strip().strip('"')
if extracted_answer == 'str(short_and_direct\
_answer_of_the_question)':
extracted_answer = 'Not Found'
if extracted_answer == 'str(value which is\
the answer to the question)':
extracted_answer = 'Not Found'
if extracted_answer == 'X.XX':
extracted_answer = 'Not Found'
if calid in [13, 68]:
# Output Type: date
match = re.search(
r'^(0?[1-9]|1[0-2])\/(0?[1-9]'
r'|[12][0-9]|3[01])\/(\d{4})', extracted_answer)
if match:
month = int(match.group(1))
day = int(match.group(2))
year = match.group(3)
answer = f'{month:02}/{day:02}/{year}'
else:
answer = 'N/A'
elif calid in [69]:
# Output Type: integer (A, B)
match = re.search(
r"\(?[\"\']?(\d+)\s*(weeks?)?[\"\']?,"
r"\?\s*[\"\']?(\d+)\s*(days?)?[\"\']?\s*\)?", extracted_answer)
extracted_answer = extracted_answer.replace('[', '(').replace(
']', ')').replace("'", '').replace('"', '')
match = re.search(
r"\(?[\"\']?(\d+)\s*(weeks?)?[\"\']?,"
r"?\s*[\"\']?(\d+)\s*(days?)?[\"\']?\s*\)?", extracted_answer)
if match:
weeks = match.group(1)
days = match.group(3)
answer = f'({weeks}, {days})'
else:
answer = 'N/A'
elif calid in [
4, 15, 16, 17, 18, 20, 21, 25, 27, 28, 29, 32, 33, 36, 43, 45, 48,
51, 69
]:
# Output Type: integer A
match = re.search(r'(\d+) out of', extracted_answer)
if match: # cases like "3 out of 5"
answer = match.group(1)
else:
match = re.search(r'-?\d+(, ?-?\d+)+', extracted_answer)
if match: # cases like "3, 4, 5"
answer = str(len(match.group(0).split(',')))
else:
# match = re.findall(r"(?<!-)\d+", extracted_answer)
match = re.findall(r'(-?\d+(\.\d+)?)', extracted_answer)
# match = re.findall(r"-?\d+", extracted_answer)
if len(match) > 0: # find the last integer
answer = match[-1][0]
# answer = match[-1].lstrip("0")
else:
answer = 'N/A'
elif calid in [
2, 3, 5, 6, 7, 8, 9, 10, 11, 19, 22, 23, 24, 26, 30, 31, 38, 39,
40, 44, 46, 49, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67
]:
# Output Type: decimal
match = re.search(r'str\((.*)\)', extracted_answer)
if match:
expression = match.group(1).replace('^', '**').replace(
'is odd', '% 2 == 1').replace('is even', '% 2 == 0').replace(
'sqrt', 'math.sqrt').replace('.math', '').replace(
'weight',
'').replace('height', '').replace('mg/dl', '').replace(
'g/dl', '').replace('mmol/L', '').replace(
'kg', '').replace('g',
'').replace('mEq/L', '')
expression = expression.split('#')[0]
if expression.count('(') > expression.count(')'): # add missing ')
expression += ')' * (expression.count('(') -
expression.count(')'))
elif expression.count(')') > expression.count(
'('): # add missing (
expression = '(' * (expression.count(')') -
expression.count('(')) + expression
try:
answer = eval(expression, {'__builtins__': None}, {
'min': min,
'pow': pow,
'round': round,
'abs': abs,
'int': int,
'float': float,
'math': math,
'np': np,
'numpy': np
})
except Exception:
print(f'Error in evaluating expression: {expression}')
answer = 'N/A'
else:
match = re.search(r'(-?\d+(\.\d+)?)\s*mL/min/1.73',
extracted_answer)
if match: # cases like "8.1 mL/min/1.73 m\u00b2"
answer = eval(match.group(1))
else:
match = re.findall(r'(-?\d+(\.\d+)?)\%', extracted_answer)
if len(match) > 0: # cases like "53.1%"
answer = eval(match[-1][0]) / 100
else:
match = re.findall(r'(-?\d+(\.\d+)?)', extracted_answer)
if len(
match
) > 0: # cases like "8.1 mL/min/1.73 m\u00b2" or "11.1"
answer = eval(match[-1][0])
else:
answer = 'N/A'
if answer != 'N/A':
answer = str(answer)
return answer, explanation
def _parse(item, prompt_mode):
item['row_number'] = item['Row Number']
item['calculator_id'] = item['Calculator ID']
item['calculator_name'] = item['Calculator Name']
item['category'] = item['Category']
item['output_type'] = item['Output Type']
item['note_id'] = item['Note ID']
item['note_type'] = item['Note Type']
item['patient_note'] = item['Patient Note']
item['question'] = item['Question']
item['relevant_entities'] = item['Relevant Entities']
item['ground_truth_answer'] = item['Ground Truth Answer']
item['lower_limit'] = item['Lower Limit']
item['upper_limit'] = item['Upper Limit']
item['ground_truth_explanation'] = item['Ground Truth Explanation']
return item
@LOAD_DATASET.register_module()
class MedCalc_BenchDataset(BaseDataset):
@staticmethod
def load(path: str, prompt_mode: str, **kwargs):
data_files = {
'test': 'data/test-00000-of-00001.parquet',
'train': 'data/train-00000-of-00001.parquet'
}
dataset = load_dataset(path, data_files=data_files, split='test')
# dataset = dataset.select(range(2))
if prompt_mode == 'zero-shot':
dataset = dataset.map(lambda item: _parse(item, prompt_mode),
load_from_cache_file=False)
elif prompt_mode == 'few-shot':
pass # TODO: Implement few-shot prompt
return dataset
class MedCalcOfficial_Evaluator(BaseEvaluator):
def score(self, predictions, references, test_set):
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
correct = 0
count = 0
details = []
for idx, (i, j) in enumerate(zip(predictions, references)):
calculator_id = test_set['calculator_id'][idx]
lower_limit = test_set['lower_limit'][idx]
upper_limit = test_set['upper_limit'][idx]
row_number = test_set['row_number'][idx]
note_id = test_set['note_id'][idx]
category = test_set['category'][idx]
question = test_set['question'][idx]
calculator_name = test_set['calculator_name'][idx]
patient_note = test_set['patient_note'][idx]
ground_truth_explanation = test_set['ground_truth_explanation'][
idx]
ground_truth_answer = test_set['ground_truth_answer'][idx]
try:
answer_value, explanation = extract_answer(
i, int(calculator_id))
print(answer_value)
print(explanation)
correctness = check_correctness(answer_value,
ground_truth_answer,
calculator_id, upper_limit,
lower_limit)
status = 'Correct' if correctness else 'Incorrect'
outputs = {
'Row Number': int(row_number),
'Calculator Name': calculator_name,
'Calculator ID': calculator_id,
'Category': category,
'Note ID': note_id,
'Patient Note': patient_note,
'Question': question,
'LLM Answer': answer_value,
'LLM Explanation': explanation,
'Ground Truth Answer': ground_truth_answer,
'Ground Truth Explanation': ground_truth_explanation,
'Result': status
}
except Exception as e:
outputs = {
'Row Number': int(row_number),
'Calculator Name': calculator_name,
'Calculator ID': calculator_id,
'Category': category,
'Note ID': note_id,
'Patient Note': patient_note,
'Question': question,
'LLM Answer': str(e),
'LLM Explanation': str(e),
'Ground Truth Answer': ground_truth_answer,
'Ground Truth Explanation': ground_truth_explanation,
'Result': 'Incorrect'
}
status = 'Incorrect'
count += 1
if status == 'Correct':
correct += 1
details.append(outputs)
result = {'accuracy': 100 * correct / count, 'details': details}
return result

View File

@ -0,0 +1,29 @@
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class MedQADataset(BaseDataset):
@staticmethod
def load_single(path):
dataset = []
ds = load_dataset(path)
for data in ds['train']:
data['label'] = data['answer_idx']
choices = ''
for option in data['options']:
choices += option + '. ' + data['options'][option] + '\n'
data['choices'] = choices
dataset.append(data)
return Dataset.from_list(dataset)
@staticmethod
def load(path):
dataset = MedQADataset.load_single(path)
return dataset

View File

@ -0,0 +1,58 @@
from datasets import load_dataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET
from opencompass.utils.text_postprocessors import first_option_postprocess
from .base import BaseDataset
def _parse(item):
item['start'] = chr(65)
item['end'] = chr(65 + len(item.get('options', [])) - 1)
new_options = []
choices = ''
for i in range(len(item['options'])):
new_options.append(item['options'][i].split(': ')[-1])
choices += chr(65 +
i) + '. ' + item['options'][i].split(': ')[-1] + '\n'
item['question'] = (f'\nQuestion: {item["question"]}\n'
f'Answer Choices: \n{choices}')
item['options'] = new_options
item['label'] = chr(65 + int(item['answer'].split(' ')[-1]) -
1) # Index from 1 in answer
return item
@LOAD_DATASET.register_module()
class ProteinLMBenchDataset(BaseDataset):
@staticmethod
def load(path: str, **kwargs):
dataset = load_dataset(path, 'evaluation', split='train')
dataset = dataset.map(lambda item: _parse(item))
return dataset
class ProteinLMBenchEvaluator(BaseEvaluator):
def score(self, predictions, references, test_set):
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
correct = 0
count = 0
details = []
for idx, (prediction,
reference) in enumerate(zip(predictions, references)):
options = ''.join(
[chr(65 + i) for i in range(len(test_set['options'][idx]))])
predict = first_option_postprocess(prediction, options)
detail = {'pred': predict, 'answer': reference, 'correct': False}
count += 1
if predict == reference:
correct += 1
detail['correct'] = True
details.append(detail)
result = {'accuracy': 100 * correct / count, 'details': details}
return result

View File

@ -1,62 +0,0 @@
import re
from typing import List
from datasets import Dataset, DatasetDict, load_dataset
from opencompass.datasets.base import BaseDataset
from opencompass.registry import LOAD_DATASET
# 预编译的多选题正则,按 PEP-8 每行 < 79 字符
_PATTERN_MC = (
r'^(?P<stem>.*?)' # 题干
r'(?:A\.)\s*(?P<A>.*?)\s*' # 选项 A
r'B\.\s*(?P<B>.*?)\s*' # 选项 B
r'C\.\s*(?P<C>.*?)\s*' # 选项 C
r'D\.\s*(?P<D>.*?)' # 选项 D
r'Answer:' # 答案分隔符
)
@LOAD_DATASET.register_module()
class SciEvalDataset(BaseDataset):
"""Biology multiple-choice subset of SciEval."""
@staticmethod
def load(path: str, name: str, **kwargs) -> DatasetDict:
dataset = DatasetDict()
for split in ('test', ):
raw_iter = load_dataset(
path,
name=name,
split=split,
streaming=True,
)
examples: List[dict] = []
for ex in raw_iter:
if (ex.get('category') != 'biology'
or ex.get('type') != 'multiple-choice'):
continue
ans_list = ex.get('answer') or ex.get('answers') or []
if not ans_list:
continue
target = ans_list[0]
match = re.search(_PATTERN_MC, ex.get('question', ''), re.S)
if not match:
continue
examples.append({
'input': match.group('stem').strip(),
'A': match.group('A').strip(),
'B': match.group('B').strip(),
'C': match.group('C').strip(),
'D': match.group('D').strip(),
'target': target,
})
dataset[split] = Dataset.from_list(examples)
return dataset

View File

@ -97,6 +97,9 @@ from .math_intern import * # noqa: F401, F403
from .mathbench import * # noqa: F401, F403
from .mbpp import * # noqa: F401, F403
from .medbench import * # noqa: F401, F403
from .MedCalc_Bench import MedCalc_BenchDataset # noqa: F401
from .MedCalc_Bench import MedCalcOfficial_Evaluator # noqa: F401
from .MedQA import * # noqa: F401, F403
from .MedXpertQA import * # noqa: F401, F403
from .mgsm import * # noqa: F401, F403
from .mmlu import * # noqa: F401, F403
@ -118,6 +121,7 @@ from .OlympiadBench import * # noqa: F401, F403
from .OpenFinData import * # noqa: F401, F403
from .physics import * # noqa: F401, F403
from .piqa import * # noqa: F401, F403
from .ProteinLMBench import * # noqa: F401, F403
from .py150 import * # noqa: F401, F403
from .qasper import * # noqa: F401, F403
from .qaspercut import * # noqa: F401, F403
@ -130,9 +134,7 @@ from .ruler import * # noqa: F401, F403
from .safety import * # noqa: F401, F403
from .scibench import ScibenchDataset, scibench_postprocess # noqa: F401, F403
from .scicode import * # noqa: F401, F403
from .SciKnowEval import SciKnowEvalDataset # noqa: F401, F403
from .SciKnowEval import SciKnowEvalEvaluator # noqa: F401, F403
from .SciEval_lifescience import SciEvalDataset # noqa: F401
from .SciKnowEval import * # noqa: F401, F403
from .simpleqa import * # noqa: F401, F403
from .siqa import * # noqa: F401, F403
from .smolinstruct import * # noqa: F401, F403

View File

@ -23,7 +23,8 @@ class BaseDataset:
'idx': idx
},
with_indices=True,
writer_batch_size=16)
writer_batch_size=16,
load_from_cache_file=False)
dataset = concatenate_datasets([dataset] * n)
self.dataset = dataset
else:
@ -34,7 +35,8 @@ class BaseDataset:
'idx': idx
},
with_indices=True,
writer_batch_size=16)
writer_batch_size=16,
load_from_cache_file=False)
dataset[key] = concatenate_datasets([dataset[key]] * n)
self.dataset[key] = dataset[key]
self._init_reader(**reader_cfg)